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A B S T R A C T

Operational canopy height mapping at high resolution remains a challenging task at country-level. Most of the
existing state-of-the-art inversion methods propose physically-based schemes which are specifically tuned for
local scales. Only few approaches in the literature have attempted to produce country or global scale estimates,
mostly by means of data-driven approaches and multi-spectral data sources. In this paper, we propose a
robust deep learning approach that exploits single-pass interferometric TanDEM-X data to generate accurate
forest height estimates from a single interferometric bistatic acquisition. The model development is driven by
considerations on both the final performance and the trustworthiness of the model for large-scale deployment
in the context of tropical forests. We train and test our model over the five tropical sites of the AfriSAR 2016
campaign, situated in the West Central state of Gabon, performing spatial cross-validation experiments to test
its generalization capability. We define a specific training dataset and input predictors to develop a robust
model for country-scale inference, by finding an optimal trade-off between the model performance and the
large-scale reliability. The proposed model achieves an overall estimation bias of 0.12 m, a mean absolute
error of 3.90 m, a root mean squared error of 5.08 m and a coefficient of determination of 0.77. Finally, we
generate a time-tagged country-scale canopy height map of Gabon at 25 m resolution, discussing the potential
and challenges of these kinds of products for their application in different scenarios and for the monitoring of
forest changes.
1. Introduction

The regular and precise monitoring of the state of Earth’s forests
is of paramount importance for preservation efforts (FAO, 2020). The
assessment of a forest’s health, dynamics and resources can be achieved
through the measurement and monitoring of proxy indices, such as
the canopy height, the above-ground biomass density or the canopy
cover fraction. Conventionally, the most precise way to estimate such
forest variables is to acquire them manually on-ground on a per-tree
basis, which is both time consuming and expensive (Picard et al.,
2012; Jucker et al., 2017). In order to characterize forests on regional
or national scales statistical acquisition strategies that approximate
the area of interest with representative sampling grids are typically
introduced (Bundeswaldinventur, 2024).

To achieve wall-to-wall estimates at large-scales, it is necessary to
derive these parameters from satellite imagery, by relating the bio-
physical forest parameters to the acquired spaceborne feature-maps.

∗ Corresponding author at: German Aerospace Center (DLR), Microwaves and Radar Institute, Weßling, Germany.
E-mail address: daniel.carcereri@dlr.de (D. Carcereri).

This can be achieved by either inverting physical-based models, which
attempt to describe the interaction of the transmitted signals with the
forest structure, or by relying on data-driven approaches, which directly
learn the underlying relationship from large-amounts of informative
case samples.

In this scenario, Synthetic Aperture Radar (SAR) sensors have re-
ceived great attention from the remote sensing (RS) community, as
the interaction between the electromagnetic waves and the imaged
scatterers strongly depends on the geometrical and the dielectric prop-
erties of the target, i.e., on the characteristics of the vegetation. Here,
the Random Volume over Ground (RVoG) model probably represents
one of the most studied and understood physical interpretations of
the InSAR microwave interaction with the forest structure, charac-
terizing the scattering profile of vegetation as the combination of a
Dirac-like ground component and a vertical distribution of randomly
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oriented scatterers (Papathanassiou and Cloude, 2001; Cloude and
Papathanassiou, 2003). The model inversion requires a single-baseline
fully-polarimetric (i.e., quad-pol.) acquisition, allowing for the esti-
mation of the forest height. Modern spacerbone SAR systems, such
as the German TanDEM-X mission (Krieger et al., 2007, 2013), are
indeed also capable of acquiring fully-polarimetric InSAR products,
but these typically do not represent the operational acquisition mode
for large-scale surveys, as they can only be acquired as experimental
products over limited test sites. Therefore, much effort has gone into
the definition of effective strategies to invert such a model in presence
of non-fully polarimetric data (Chen et al., 2016; Olesk et al., 2016).

More recently, research attention has shifted towards sparse fusion
strategies, aiming at exploiting the availability of modern dedicated
spaceborne LiDAR-based missions (e.g., GEDI, ICESat-2) to retrieve the
model parameters necessary for proper model inversion. In Denbina
et al. (2018) it was proposed to train a support vector machine (SVM)
with sparse LiDAR samples, in order to select the optimal baseline
for the RVoG model inversion with NASA’s UAVSAR (L-band) and
LVIS instruments. The validation over the study areas of the AfriSAR
Campaign (Fatoyinbo et al., 2021) achieved an RMSE varying between
4.99 m and 5.99 m. In Guliaev et al. (2021), the authors proposed to
avoid the parametrization of the simplified vertical profile functions,
and instead to estimate these directly from LiDAR waveforms. Forest
height inversion from TanDEM-X coherence samples led to a root mean
square error (RMSE) of 8.16 m and to a squared Pearson correlation
coefficient 𝑟2 of 0.16 over the AfriSAR test site of Lopé, after removing
10.69% of the estimates, which fell below the interferometric phase
center. Finally, by generating two separate profiles for vegetation below
25 m and above 40 m, respectively, and interpolating the profiles in the
transitional range, the authors achieved a RMSE of 8.62 m and a 𝑟2

f 0.40 (after dropping 14.17% of underestimated samples). Similarly,
n Choi et al. (2023) a mean TanDEM-X vertical reflectivity profile
as estimated using the zero-order eigenvector of the diagonalized
rofile covariance matrix, derived from GEDI LiDAR waveforms. Using
his approach, they generated a continuous 25 m forest height map
f the island of Tasmania, Australia. In comparison with reference
iDAR measurements, their proposed approach achieved RMSE values
etween 6.6 m and 7.2 m, and 𝑟2 values between 0.40 and 0.42, re-
pectively, depending on the considered orbit direction and orthogonal
aseline.

In the last two decades, data-driven approaches have seen a major
urge for remote sensing applications, offering a completely different
aradigm: instead of building up semi-empirical, physically-based mod-
ls and retro-fitting them to the existing data, they take advantage of
he availability of large quantities of heterogeneous data and learn the
nderlying relationships with physical phenomena from the data itself.
p to now, most of the works published in the literature mainly relied
n the use of multi-spectral optical data.

In Potapov et al. (2021), the authors proposed a bagged regression
ree ensemble-based approach to predict canopy heights at a resolution
f 30 m from multi-temporal Landsat acquisitions on a global scale.
he machine learning algorithm was calibrated per-image using GEDI-
erived RH95 estimates as reference, to estimate forest height from a
ixture of Landsat-derived features expressing spectral, phenological,

tatistical and temporal properties of the scene. They obtained a mean
bsolute error (MAE) of 6.36 m, an RMSE of 9.07 m and a coefficient
f determination R2 of 0.61.

More recently, Deep Learning (DL) approaches have received most
f the attention, as these take advantage of local and non-local spa-
ial patterns to improve the performance accuracy over less sophis-
icated pixel-wise approaches. In Lang et al. (2019) a fully convo-
utional approach, based on the Xception DL architecture, was pro-
osed, which was trained to regress forest canopy height from multiple
entinel-2 multi-spectral acquisitions. The authors trained and val-
dated their approach both over two alpine regions in Switzerland
2

sing stereophotogrammetry-derived measurements, and over the five
AfriSAR sites in Gabon using LVIS-derived measurements. Over Gabon,
the authors obtained a MAE of 4.9 m and an RMSE of 6.5 m, respec-
tively, using the least clouded acquisitions, and of 4.3 m and 5.6 m
when considering the median height. In Becker et al. (2023), the
authors proposed a Bayesian Deep Learning (BDL) approach which
was validated at country-level over Norway, achieving state-of-the art
performance in the simultaneous estimation of five complementary
forest structure proxies. These two previous works were combined
and expanded upon in Lang et al. (2023), where the authors proposed
to train their CNN model ensemble using sparse 25 m footprint GEDI
samples as ground-truth data. This resulted in the generation of a
worldwide canopy height estimate map based only on Sentinel-2 ac-
quisitions as input. The performance of the proposed approach was
evaluated using a mixture of independent LVIS and ALS measurement
campaigns, achieving an RMSE of 7.9 m and a mean error (ME) of
1.7 m.

To the best of our knowledge, the work in Carcereri et al. (2023)
was the first one in the literature to investigate the use of a pure data-
driven deep learning-based approach for forest height estimation from
single-pass TanDEM-X InSAR data. The method consisted in a custom
CNN architecture, trained on rasterized LVIS height estimates, acquired
in the context of the 2016 AfriSAR campaign. This preliminary work
achieved a MAE of 4.20 m, an RMSE of 5.69 m and a R2 score of 0.73.

In light of the current state of the art, forest height estimation at
large-scales using InSAR data is plagued by one or more operational
compromises. Physical-based models, while offering a great mathe-
matical interpretation behind the electromagnetic scattering mecha-
nisms (Papathanassiou and Cloude, 2001), in practice require either
a large-quantity of interferometric baselines, fully polarimetric InSAR
acquisitions (Denbina et al., 2018), privileged ancillary information
(e.g., DTM, LiDAR waveforms) (Guliaev et al., 2021; Choi et al., 2023),
or simplifying assumptions that affect the inversion performance (Chen
et al., 2016; Olesk et al., 2016). In practice, the estimation of the
model parameters also requires extensive tuning with respect to the
local properties of the forest: a requirement which is not suited for
generalization purposes over larger areas. The overall performance has
been shown to be outperformed by that achieved by data-driven ap-
proaches, even when the full model is inverted using privileged sources
of information (Denbina et al., 2018; Lang et al., 2019; Carcereri et al.,
2023). When it comes to state-of-the-art deep learning approaches,
peak accuracy is currently achieved with optical data either by ag-
gregating the estimates from multiple dates (Lang et al., 2019), or by
means of model ensembles (Becker et al., 2023; Lang et al., 2023),
both of which increase the computational complexity and the temporal
delay between one estimate and the next. However, performance and
operational deployment using optical sensors are especially limited by
cloud coverage, with an estimated 50% of Earth’s surface being hidden
by clouds at any given moment (Gawlikowski et al., 2022). On the
other hand, the few published works that explored the potential of SAR
sensors (Becker et al., 2023) neither have considered the complexity
given by the side-looking acquisition geometries, nor have explored the
use of interferometric products, resulting in an accuracy which is worse
than the one achieved with optical data only, and thus not justifying
the added overhead and processing complexity.

In this work we present a robust deep learning approach which
uses a single TanDEM-X bistatic acquisition to deliver state-of-the-art
forest height estimates at large scale. Starting from the initial CNN
architecture developed in Carcereri et al. (2023), we investigate the
role of different input features and we design a novel training strategy
tailored for an operational large-scale deployment. Finally, we combine
the gathered information to generate a tree height map for the state
of Gabon, obtained from estimates from a single TanDEM-X coverage
(i.e., only one baseline) and subsequently moisaicked together. This
makes our approach particularly interesting for the exploitation of the
historical and current global TanDEM-X dataset (acquired since the end

of 2010), as well as of the upcoming L-band NISAR mission (launch
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planned in 2024, NASA/ISRO) and of the planned Sentinel-1 bistatic
Earth Explorer mission Harmony (launch planned in 2029, ESA).

The paper is structured as follows. Section 2 lists the different
datasets used in our approach. Section 3 starts with a brief introduction
on the interferometric coherence. Then, it presents the details of our
proposed deep learning approach, including the model architecture, the
training strategy, the performance metrics and the developed approach
to evaluate the trustworthiness of the model for large-scale inference.
Section 4 illustrates a series of experiments for tacking the challenges of
large-scale deployment, investigating the trade-offs between accuracy
and model trustworthiness. This leads to the definition of the final
model and to the generation of a country-scale map of canopy height
over Gabon. Section 5 discusses our findings in the context of large-
scale inference of forest parameters, highlighting potential issues and
offering pragmatic solutions to model deployment and generalization
capabilities. Finally, Section 6 summarizes our efforts and gives an
outlook on potential future research aspects.

2. Materials

2.1. TanDEM-X data

The German TanDEM-X mission comprises two twin SAR satel-
lites, TerraSAR-X and TanDEM-X, operating at X-band and flying in a
varying close-orbit formation (Krieger et al., 2007; Zink et al., 2021).
This particular configuration enables the acquisition of high-resolution,
single-pass InSAR data with variable perpendicular baselines, allowing
for the successful generation and delivery of a global digital elevation
model (DEM) with unprecedented accuracy in 2016 (Rizzoli et al.,
2017).

For the scope of this work, we considered TanDEM-X bistatic data,
acquired in single polarization (HH) stripmap mode, with an extension
in range of about 30 km. We distinguish two forms of TanDEM-X
datasets:

• In order to properly train our model and generalize it across
all possible acquisition geometries, we considered all existing
TanDEM-X bistatic data acquired between December 2010 (i.e.,
the beginning of the mission) and 2022 over the five regions of
interest (ROIs) of the 2016 AfriSAR campaign.

• For the generation of the final large-scale products, we retrieved
all existing acquisitions covering the West Central African state
of Gabon for the years of 2010/11. This allowed us to create
one edge-to-edge mosaic, using products acquired with suitable
interferometric baselines.

The resulting datasets are characterized by a large variety of acquisi-
ion geometries, i.e., of interferometric baselines and incidence angles.
he inputs to our processing chain are the co-registered single-look
omplex (CoSSC) products. The underlying focusing and co-registration
rocessing steps were performed by the operational TanDEM-X proces-
or (ITP) (Fritz et al., 2012).

For each product we compute the backscattering coefficient 𝜎0, as
recorded by the transmitting satellite only (monostatic channel). It
is derived from the absolutely calibrated intensity 𝛽0 (i.e., the radar
brightness) and the local incidence angle 𝜃inc as:

𝜎0 = 𝛽0 sin(𝜃inc), (1)

where 𝜃inc is computed from the satellite’s orbit position and the
underlying DEM product.

For the estimation of the bistatic InSAR phase, we apply 𝛷-Net (Sica
et al., 2021), a state-of-the-art residual deep-learning denoising archi-
tecture, capable of preserving the spatial resolution (compared to the
commonly used boxcar multi-looking approach). For each input CoSSC
product, we also generate the InSAR DEM, called raw DEM. For the
sake of clarity, we recall that the value of an InSAR-based DEM, such
as TanDEM-X, represents the topographic height corresponding to the
3
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location of the radar mean phase center. Given the capability of radar
waves to penetrate into volumetric targets, such as vegetation, this
elevation value is located somewhere below the top of the canopy,
depending on the sensor characteristics (e.g., center frequency and
acquisition geometry) as well as on the properties of the target itself.
Differently, the terms digital surface model (DSM) and digital terrain
model (DTM) identify the elevation of the top of the canopy and of
the ground, respectively. The generation of the raw DEM is motivated
by our previous conclusions in Carcereri et al. (2023) that the use of
the global TanDEM-X edited DEM (González et al., 2020), generated
by combining multiple acquisitions between 2010 and 2015, can be af-
fected by small errors caused by the automatic editing procedure, which
negatively impact our approach. By relying on the raw acquisition DEM
we can also guarantee that all of our input features are consistent with
each other. The raw DEM is also used to compute the local incidence
angle 𝜃inc with respect to the local topography.

Additionally, by considering the annotated information on the satel-
lites’ positions, we encode the information about the interferometric
acquisitions geometry in the form of a two-dimensional map of the
height of ambiguity ℎamb, which is defined as the vertical height change
corresponding to a complete 2𝜋 phase cycle in the interferogram and it
can be expressed for the single-pass InSAR case as:

ℎamb =
𝜆 ⋅ 𝑟 ⋅ sin 𝜃inc

𝐵⟂
, (2)

where 𝐵⟂ is the orthogonal interferometric baseline, 𝜆 is the wave-
length and 𝑟 is the slant-range distance.

The interferometric coherence 𝛾
tot

represents the key metric to eval-
uate the interferometric performance, since it quantifies the amount
of noise in the interferogram (Touzi et al., 1999). It is defined as the
normalized cross-correlation coefficient of the interferometric image
pair, called master (𝑠1) and slave (𝑠2), respectively:

tot
=

𝐸[𝑠1 ⋅ 𝑠∗2]
√

𝐸[𝑠21] ⋅ 𝐸[𝑠22]
, (3)

here 𝐸[⋅] represents the expectation operator and ∗ the complex
onjugate operator. As already done for the InSAR phase, also the
nterferometric coherence is estimated using 𝛷-Net (Sica et al., 2021).
ollowing the approach presented in Rizzoli et al. (2022), it is pos-
ible to factorize 𝛾

tot
into its constituent error contributions, called

ecorrelation factors:

tot = 𝛾SNR ⋅ 𝛾quant ⋅ 𝛾amb ⋅ 𝛾rg ⋅ 𝛾az ⋅ 𝛾temp ⋅ 𝛾vol, (4)

where the different terms on the right-hand side identify the con-
tributions due to limited signal-to-noise ratio

(

𝛾SNR
)

, quantization
(

𝛾quant
)

, ambiguities
(

𝛾amb
)

, baseline decorrelation
(

𝛾rg
)

, relative shift
of the Doppler spectra

(

𝛾az
)

, temporal decorrelation
(

𝛾temp
)

and vol-
ume decorrelation

(

𝛾vol
)

. In particular, the volume decorrelation factor
𝛾vol quantifies the degree of interferometric decorrelation caused by
the scattering effects of a volumetric target, such as forests, sand or
snow packs. From the total interferometric coherence we estimate 𝛾vol,
by following the procedure presented in Rizzoli et al. (2022). The
volume decorrelation factor constitutes a valuable proxy parameter
for the vegetation structure as it is commonly modeled in the lit-
erature as the normalized Fourier transform of the vertical scatterer
distribution (Papathanassiou and Cloude, 2001; Martone et al., 2016):

�̃�vol(�⃗�) = 𝑒𝑖𝑘𝑧𝑧0
∫ 𝑧0+ℎ𝑣
𝑧0

𝐹 (𝑧′, �⃗�)𝑒𝑖𝑘𝑧𝑧′𝑑𝑧′

∫ ℎ𝑣
0 𝐹 (𝑧′, �⃗�)𝑑𝑧′

, (5)

where �⃗� represents the polarization vector, 𝐹 (𝑧′, �⃗�) is the vertical
catterer distribution in the medium, 𝑧0 is the ground elevation, ℎ𝑣
s the forest height and 𝑘𝑧 is the vertical wavenumber. In turn, 𝑘𝑧 is
losely related to the height of ambiguity ℎamb through 𝑘𝑧 = 2𝜋∕ℎamb
Martone et al., 2016).
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Fig. 1. The proposed fully convolutional deep learning model. The subscript numbers indicate the number of kernel filters.
2.2. AfriSAR-16 campaign

As the main source of reference forest height measurements we use
the products generated from the 2016 AfriSAR campaign (Saatchi et al.,
2019; Fatoyinbo et al., 2021) . We consider the full-waveform LiDAR
measurements acquired by NASA’s airborne LVIS (Land, Vegetation and
Ice Sensor) instrument (Blair et al., 1999) between February and March
of 2016. The laser shots sampled the ground in regular intervals, each
of them covering a nominal footprint diameter of 18 m. The resulting
vertical energy profiles were used to derive multiple forest structure
proxy parameters, including the forest height estimates, expressed in
terms of relative height (RH), which represents the height correspond-
ing to a given percentile of returned energy. These products are also
made available in the form of geomaps, which aggregate, interpolate
and rasterize the discrete samples to generate a dense representation
with a ground sampling distance of 25 m. For our work we use the
rasterized RH99 statistic as our reference tree height measurement,
since it represents a good proxy for the top of the canopy (99% of
the returned energy), while it reduces the effects of strong outliers.
We also use the rasterized DTM from LVIS to get the real topographic
information below the dense canopy. The campaign measurements
cover five heterogeneous areas within the state of Gabon (Saatchi et al.,
2019):

• The Lopé National Park, consisting of a mixture of seasonal trop-
ical forest and savannah, both affected by a distinct separation
between wet and dry seasons (Guliaev et al., 2021). The area
is characterized by strong topography, representing the highest
elevation among all the considered regions of interest.

• The Mondah forest, which represents a small protected coastal
site, partially flooded and characterized by the presence of both
mangroves and tropical hardwood forests.

• The Mabounié site, which is a predominantly forested area, with
localized sites of mostly anthropogenic degradation.

• The Pongara National Park, located on the southern side of the
Gabon River and characterized by the presence of seasonally
flooded forests, as well as very tall mangroves stands and some
grassy savannah.

• The Rabi site, characterized by the presence of an onshore oil-
drilling location, is largely covered by dense rainforest.
4

2.3. ESA WorldCover map 2021

In the pre-processing steps, we also make use of the ESA 2021
WorldCover map. This consists in a 10 m resolution global land-cover
product that refers to 2021. It was generated using data from both ESA’s
Sentinel-1 and Sentinel-2 satellites and is freely accessible (Zanaga
et al., 2022). We take advantage of the information it provides to mask
out built-up areas and water bodies from our dataset.

3. Methods

In this section we present the details of the proposed approach,
including the developed DL framework, the training and validation pro-
cedures, as well as the final inference step and reliability estimation.

3.1. Proposed deep learning framework

The proposed method relies on a deep learning architecture, in the
form of a fully convolutional neural network (CNN). At its core, this
technique consists of a sequence of linear cross-correlation computa-
tions, interleaved by non-linear operations (the so called activation
functions). This typology of models has been at the heart of the AI surge
in the computer vision field, as its major advantage over alternative
architectures, such as fully-connected or transformer ones, is the com-
putational efficiency in dealing with structured data including images.
The working principle of CNNs exploits the typical spatial autocorrela-
tion found in EO images. The convolution operation hard-codes this
inductive bias by applying a small kernel function across the entire
spatial extent of the input features, requiring only a limited amount of
parameters in doing so. Assuming non-unitary kernels, by increasing
the number of sequential cross-correlation calculations, the dimensions
of the considered spatial contexts (the so-called receptive field) also
increase. This in turn, allows for the creation of feature representations
of increasing levels of abstraction and complexity. Crucially, this results
in samples at the extremities of the receptive field being weighted less
than those at its center.

Starting from the model proposed in Carcereri et al. (2023) and
illustrated in Fig. 1, in this work we consider the following updated
set of TanDEM-X-derived input features:

• The backscattering coefficient in HH polarization 𝜎0,dB
𝐻𝐻 (in dB

scale).
• The raw acquisition DEM ℎ .
DEM
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Fig. 2. (a) Geographic sub-setting of the AfriSAR campaign study areas into training, validation and testing, (b) Exemplary geographic sub-setting for the spatial cross-validation,
considering Rabi a testing area only.
• The local incidence angle 𝜃inc.
• The estimated total interferometric coherence 𝛾tot .
• The estimated volume decorrelation factor 𝛾vol.
• The height of ambiguity ℎamb.

As output we estimate the RH99 height metric as a proxy for the true
top of the canopy.

The architecture can be split into several functional blocks. In the
input block, the dimensionality of the input features is progressively
increased first to 64 and then to 128 by means of two 1 × 1 convolution
layers. This block is followed by a sequence of 5 hidden blocks, each
consisting of two convolutional layers with 128, 3 × 3 kernel functions,
and which can be interpreted as the main feature extraction sequence.
In the output block (i.e., the tail of the model), the feature dimen-
sionality is decreased back to 64 and later to a single output feature
map by means of two additional convolution layers with 1 × 1 kernels.
All convolution layers are followed by a rectified linear unit (ReLU)
activation function and a batch normalization layer, except for the last
one, which directly produces the output prediction.

3.2. Training, validation and testing strategy

In order to train, validate and test the proposed deep learning
model, we split each of the five AfriSAR study areas into three equally
sized sub-regions based on their geographic extent, and then associate
these to either training, validation or testing, as presented in Fig. 2(a).
This sub-setting strategy was chosen to guarantee the effective repre-
sentation of the heterogeneous forests found across the study areas,
while minimizing the effects of spatial autocorrelation-induced test bias
that is commonly affecting random sampling strategies (Ploton et al.,
2020; Kattenborn et al., 2022).

The model is trained using a fully supervised approach, consisting in
the joint minimization of both the prediction error and 𝑙2-norm of the
model weights, and expressed by the following two term loss function:

𝐿𝑜𝑠𝑠 = 1
𝑛

𝑛
∑

𝑖=1

(

�̂�𝑖 − 𝑦𝑖
)2 + 𝜆 ⋅

𝑚
∑

𝑗=1
𝑤2

𝑗 , (6)

where �̂�𝑖 is the 𝑖th predicted sample, 𝑦𝑖 is the corresponding 𝑖th ref-
erence sample value, 𝑤𝑗 is the 𝑗th weight of the model, 𝑛 is the total
number of samples, 𝑚 is the total number of weights and 𝜆 is the scaling
factor of the 𝑙2-norm.

The model’s weights are iteratively updated on mini-batches of
randomly sampled training patches. The size of these patches is 15 × 15
pixels and it has been chosen in accordance with the receptive field
(RF) of our model, which, for a simple sequence of 𝑛 two-dimensional
convolutional layers with kernel size 𝑘×𝑘 pixels, can be computed as:

RF = 𝑛(𝑘 − 1) + 1. (7)
5

In our case, this results in a RF of 21 pixels or 525 m. Indeed,
smaller patches would strongly crop the receptive field, while larger
ones would not provide any additional benefit, coming at the cost of
increased memory and computational loads, as well as poorer sampling
of the available reference data.

Notably, the loss function is computed only on the central pixel of
each patch, as this allows for better exploiting the available fragmented
reference dataset and to provide a clearer interpretation of the model’s
working principle, as we will discuss in the inference post-processing.
This choice limits each predicted center pixel to be seen only once
for a given input image (i.e., no oversampling) acquired on a specific
date and with a specific acquisition geometry (i.e., incidence angle and
interferometric baseline). Furthermore, we allow pixels not covered by
the reference data to be included inside the patches to give context to
the forest boundaries.

During the backpropagation step we make use of the commonly
employed ADAM optimizer (Kingma and Ba, 2017). We use the default
hyperparameters of the Keras implementation, except for the initial
learning rate, which is set to 10−4. We determine the end of the training
phase on the dedicated validation set by applying an early-stopping
criterion once the model has stopped improving for more than 35
consecutive epochs.

A total of 13 ⋅106 patches is available for training, which on a single
NVIDIA A100 GPU takes a maximum of 9 hours to train following the
described strategy.

In order to test the trained model, we apply the inference directly
at image level, by splitting each image into smaller chunks of data
(2000 × 2000 pixel) to fit the GPU’s VRAM buffer requirements. To
provide enough contextual information to the model, we mask out the
inferred pixels which do not correspond to a full valid neighborhood
equal to the training patch-size. By applying this condition to all border
pixels, we effectively delete missing values inside the image, requiring
the inference chunks to be sampled with overlap in order to reconstruct
a contiguous prediction map.

We test our predictions by comparing them on a pixel-wise level
with the corresponding values in the reference data. To evaluate the
performance of our model, we use the mean error (ME), the mean
absolute error (MAE), the mean absolute error (MAPE), the root mean
squared error (RMSE) and the coefficient of determination (R2), defined
as follows:

ME = 1
𝑛

𝑛
∑

𝑖=1

(

�̂�𝑖 − 𝑦𝑖
)

, (8)

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

�̂�𝑖 − 𝑦𝑖|| , (9)

MAPE = 100
𝑛
∑

|

|

|

�̂�𝑖 − 𝑦𝑖 |
|

|

, (10)

𝑛 𝑖=1 | 𝑦𝑖 |
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R2 = 1 −
∑𝑛

𝑖=1
(

�̂�𝑖 − 𝑦𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − �̄�
)2

, (12)

where �̄� it the mean reference value.
Furthermore, to test the capability of the model to generalize over

unseen regions and to assess the possible spatial correlations between
the areas used for training and testing (caused by the vicinity of the
split subsets in each AfriSAR test site), we perform geographic cross-
validations by iteratively excluding one of the five sites from training
and validation. To compensate for the decrease in training samples, we
assign 2

3 of each of the remaining four sites for training. An example
s depicted in Fig. 2(b) for the permutation in which the site of Rabi
s used for testing only. The concept is then repeated for all different
ermutations of the five AfriSAR test sites.

.3. Country-scale inference and Map of Applicability (MoA)

For the generation of the final country-scale CHM mosaic we con-
ider TanDEM-X acquisitions from the first global coverage, designed
or the generation of the global DEM product (Rizzoli et al., 2017). In
his way, we can guarantee an almost complete coverage with minimal
aps, as the TanDEM-X products are otherwise acquired irregularly
nd depending on the specific acquisition planning. Conversely, some
egions are imaged multiple times per year (e.g., the AfriSAR test sites)
nd overlaps are therefore still possible. In order to evaluate the single-
aseline quality of the proposed method, we first compute the mean
amb of the overall distribution seen during training. Then, in presence
f overlapping acquisitions only the one with the minimum distance
rom this value is considered. As described in Section 3.1, the model
s subsequently applied to each acquisition individually to generate its
orresponding CH estimate. Finally, the resulting list of forest height
aps is mosaicked together to generate the country-scale product.

The independent validation of the product is challenging: no field
lots exist at the considered scale and they are typically limited to
he areas covered by the AfriSAR campaign, while spacerborne Li-
AR missions such as the Global Ecosystem Dynamics Investigation

GEDI) (Dubayah et al., 2020) are reportedly ill-suited as sources of
eference data in the presence of tall and dense canopy (Fayad et al.,
022; Lahssini et al., 2022; Morin et al., 2022). Inspired by the work
n Meyer and Pebesma (2021), we propose to assess the reliability
f the model’s predictions by validating that the input predictors fall
ithin the subspace sampled by the training data, as data-driven meth-
ds fail to perform reliably on out-of-distribution (OOD) predictor
ombinations (Liu et al., 2020). Ideally, such an evaluation would be
erformed by exhaustively determining for each inference sample the
inimum distance in the predictor hyperspace to the training data

nd determining, on the basis of test data, where the trustworthiness
f the model falls off. Unfortunately, such a computation becomes
omputationally intractable for large numbers of training or inference
amples such as those considered in this study.

To overcome this issue, we instead propose the definition of an ad-
oc ODD detector relying on an approximation of the joint predictor
istribution as a proxy for the training set-sampled predictor space. To
btain such an estimate, we start by computing the histograms for the
ndividual predictors across globally-defined value ranges.1 It is then

1 For each predictor, we consider the following ranges: 𝜎0,dB
𝐻𝐻 ∈ [−25, 10],

𝜃inc ∈ [0,− 𝜋
2
] rad, 𝛾tot ∈ [0, 1], 𝛾vol ∈ [0, 1], ℎamb ∈ [15, 120]m, ℎDEM ∈ [0, 1100]m,

ℎHPF
DEM ∈ [−700, 700]m, ∇ℎDEM ∈ [−4, 4]m m−1, where the last two predictors are

introduced later on in Section 4.3.
6

possible to compute the relative frequency (i.e. the density) value 𝑑𝑗,𝑖
for the i𝑡ℎ-bin and the j𝑡ℎ-predictor as:

𝑑𝑗,𝑖 = 100% ⋅
ℎ𝑗,𝑖

∑𝑁
𝑛=1 ℎ𝑗,𝑛

, (13)

where ℎ𝑗,𝑖 is the absolute frequency value for the i𝑡ℎ-bin and the j𝑡ℎ-
redictor, and 𝑁 is the total number histogram bins. At inference, each
redictor is associated to the density value 𝑑𝑗,𝑖 of the corresponding
𝑡ℎ-bin. This leads to the generation of a geographic map representing,
or each pixel position (𝑥, 𝑦), the relative sample frequency 𝑑𝑗,𝑥,𝑦 seen
y the model during training. The individual predictor maps are then
ggregated into a single reliability score map 𝑆𝑥,𝑦 by computing their
eometric mean as:

𝑥,𝑦 =

( 𝐽
∏

𝑗=1
𝑑𝑗,𝑥,𝑦

)

1
𝐽

, (14)

where 𝐽 is the number of predictors. The resulting mean density map is
directly correlated to the model reliability, as values at (or close to) zero
have jointly seen no (or few) samples in the corresponding predictor
sub-space. Finally, the validation set is used to determine the threshold
for 𝑆𝑥,𝑦 that minimizes the prediction MSE, allowing for the generation
of a binary Map of Applicability (MoA). Values below such a threshold
are considered unreliable and can therefore be discarded.

In practice, the training set predictor distribution and the threshold
are pre-computed once for each independent model and used at infer-
ence to estimate the areas of low prediction reliability. By combining
the performance metrics introduced in Section 3.2 with the proposed
MoA we drive the joint definition of a proper training dataset and of
a set of predictors, which can yield the best possible trade-off between
tested performance and model trustworthiness for large-scale inference.
This is the reasoning behind the series of experiments proposed in
Section 4.

4. Experiments and results

4.1. The impact of missing predictor representation

The first experiment that we propose considers the application of
the training, validation and testing strategy presented in Section 3.2.
In order to be as consistent as possible with the LVIS reference dataset,
we select TanDEM-X data acquired during 2015–2016 only. The per-
formance of the resulting baseline model is summarized in Table 1 (a)
for each test site separately and overall, achieving a ME of −0.96 m,
a MAE of 4.05 m, a MAPE of 14.28%, an RMSE of 5.31 m and a R2 of
0.75. Moreover, we also perform a cross-validation test, as presented
in Section 3.2, and the results are summarized in Table 1 (b). The
performance metrics confirm that the model is robust also when tested
on totally independent test sites. Only a small loss in performance with
respect to the baseline case is detected (ME of −0.52 m, MAE of 4.54 m,
MAPE of 16.38%, RMSE of 5.94 m and R2 of 0.69). This is limited to
the Lopé and Pongara test permutations, and can be explained by the
unique phenological and topographical characteristic found in these
sites.

We then apply the derived baseline model at country-scale by
considering all available TanDEM-X acquisitions acquired between De-
cember 2010 and the end of 2011 in correspondence of the first mission
global coverage. We generate a large-scale CHM mosaic and the corre-
sponding reliability score map and MoA as presented in Section 3.3.
The results are depicted in Fig. 3. As it can be seen, the MoA presents
extended regions of zero values which correspond to entire TanDEM-
X data-takes, revealing missing representations mainly associated to
TanDEM-X acquisition-related parameters. When analyzing in depth
the actual contribution of each single predictor to the reliability score
map, as presented in Fig. 4, one can note that the most critical predictor
is the height of ambiguity, which is directly related to the InSAR
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Table 1
(a) Performance metrics computed for the model trained using TanDEM-X data acquired in 2015–2016 only, for each AfriSAR test site, separately, and overall. (b) Performance
metrics computed for the cross-validation experiment, for each AfriSAR test site permutation, separately, and overall.

(a) (b)

2015–2016 dataset performance Cross-validation performance

Experiment ME MAE MAPE RMSE R2 Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [⋅] [m] [m] [%] [m] [⋅]

Lope −0.42 4.12 11.25 5.34 0.40 Lope −0.24 5.23 15.27 6.75 0.04
Mabounie −1.03 4.82 15.84 6.23 0.37 Mabounie −0.25 4.79 16.20 6.21 0.38
Mondah 0.89 2.25 28.57 3.22 0.90 Mondah 0.84 2.35 29.50 3.32 0.90
Pongara −0.05 3.03 17.30 4.28 0.92 Pongara −1.60 4.56 23.27 5.97 0.84
Rabi −2.03 4.18 13.58 5.32 0.53 Rabi −0.79 4.03 13.54 5.18 0.56
Overall −0.96 4.05 14.28 5.31 0.75 Overall −0.52 4.54 16.38 5.94 0.69
Fig. 3. (a) Country-scale CHM generated using the baseline model trained using TanDEM-X from 2015–2016 only, (b) Corresponding reliability score map and (c) binary MoA.
acquisition geometry. Nevertheless, also the raw DEM relative sample
frequency map presents extended areas of zero values, significantly
contributing to the unreliability of the country-scale CHM mosaic. This
is reflected in the histograms of such features for the training and
inference datasets, respectively, as presented in Fig. 5. Consistently,
severe underestimation of the CHM can be seen in the country-scale
mosaic in Fig. 3(a) in correspondence of zero values of the MoA.
Therefore, at the present stage, the model cannot be considered to be
reliable outside of the AfriSAR test regions. Possible solutions to solve
these issues are proposed in Sections 4.2 and 4.3, respectively.

4.2. Height of ambiguity analysis

In order to tackle the challenge of missing representation in the
input heights of ambiguity, we propose a relaxation of the temporal
stationarity constraint between the 2016 LVIS reference measurements
and the input TanDEM-X data considered in Section 4.1, where only
data-takes acquired in 2015/2016 were considered. This results in a
larger compatibility with the existing TanDEM-X archived data and
leads to a more representative selection of acquisition geometries.

We achieve this by considering TanDEM-X data covering the
AfriSAR test sites, acquired over a time span of about 11 years, starting
from the end of 2010 (beginning of the bistatic TanDEM-X mission) up
to 2021. This allows for the generation of a complete dataset character-
ized by the distribution of ℎamb presented in Fig. 6. As it can be seen, the
distribution of the ℎamb used for the country-scale inference depicted
in Fig. 5(b) is much better represented with respect to the initial
2015/2016 case. By considering multiple acquisitions we also allow
our model to learn a more robust relationship between the acquisition
conditions of the input imagery and the reference canopy height. This
assumes that the temporal misalignment between the input and the
reference data results only in minor forest height inconsistencies due
to natural phenomena, such as growth and tree replacement. These
7

can be characterized as an additive noise contribution, and can thus
be interpreted as a data augmentation process. On the other hand,
drastic logging, fire or afforestation events, if present, are assumed to
be limited in scope and are considered as outliers, whose effects are
mitigated by the availability of a large number of training samples.

Regarding the model performance, we test only on TanDEM-X data
acquired between 2015 and 2016, in order to be as consistent as
possible with the reference LVIS data, as well as with the settings of
the previous experiment in Section 4.1. The achieved model perfor-
mance is summarized in Table 2 (a) (ME of −0.54 m, MAE of 3.78 m,
MAPE of 13.08%, RMSE of 4.98 m and R2 of 0.78), which shows an
overall improvement with respect to the initial baseline scenario. The
cross-validation results are summarized in Table 2 (b), confirming the
robustness of the model when tested on completely independent areas.

The resulting country-scale CHM mosaic, generated from TanDEM-
X acquisitions from December 2010 up to the end of 2011 (as done
in Section 4.1), the corresponding reliability score map and MoA are
depicted in Fig. 7. The MoA presents now much less zero values with
respect to the initial model presented in Fig. 3(b), and the remaining
critical areas are not primarily linked to the TanDEM-X acquisition
geometry but rather to local topographic effects only. Moreover, the
areas of severe CHM underestimation shown in the CHM mosaic of
Fig. 3(a) are not present anymore in the new mosaic of Fig. 7(a). From
now on we will therefore only consider the model trained using the
extended TanDEM-X dataset for further experiments on the impact of
missing representations of the DEM predictor in Section 4.3.

4.3. DEM analysis

When considering the issue of missing DEM representations in the
training set, it is not possible to follow the same strategy proposed
for the height of ambiguity in Section 4.2, since the inclusions of new
acquisitions over the same initial regions of interest would not allow
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Fig. 4. Relative sample frequency for each predictor (indicated below each image) of the model presented in Section 4.1, trained with TanDEM-X data acquired in 2015/2016
only.
Table 2
(a) Performance metrics computed for the model trained using the extended set of TanDEM-X data acquired in between 2010 and 2021, for each AfriSAR test site, separately, and
overall. (b) Performance metrics computed for the corresponding cross-validation experiment, for each AfriSAR test site permutation, separately, and overall.

(a) (b)

Extended dataset performance Cross-validation performance

Experiment ME MAE MAPE RMSE R2 Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [⋅] [m] [m] [%] [m] [⋅]

Lope −0.01 3.88 10.68 5.02 0.47 Lope −0.22 4.29 12.15 5.52 0.36
Mabounie 0.02 4.56 15.49 5.91 0.44 Mabounie 1.58 4.86 17.19 6.31 0.36
Mondah −0.15 2.15 22.81 3.12 0.91 Mondah 0.87 2.19 26.26 3.17 0.91
Pongara −0.90 2.84 14.91 4.00 0.93 Pongara −1.38 4.95 26.64 6.37 0.81
Rabi −1.29 3.81 12.36 4.93 0.60 Rabi −0.80 3.84 12.80 4.97 0.59
Overall −0.54 3.78 13.08 4.98 0.78 Overall −0.18 4.20 15.43 5.49 0.73
the model to see a larger variety of topographies during training. In
particular, when comparing the histograms in Fig. 5(c) and (d), one
can note that only elevations up to about 400 m are well represented
by the AfriSAR test sites. At inference, this results in the majority of
the elevation samples being poorly or not at all represented during the
training phase.

To address this issue, we propose to either completely remove the
DEM as a predictor or to substitute it with some proxy variables which
describe only local topographic variations instead of the absolute ele-
vation of the scene. Regarding the former solution, we expect to loose
some performance with respect to the results presented in Section 4.2 in
favor of a more robust model, while, regarding the latter, we investigate
the use of two different DEM-derived variables: the estimates for the set
of spatial partial derivatives ∇ℎDEM, which correspond to the estimation
of the local terrain slope, and a high-pass filtered version of the DEM
ℎHPFDEM, which removes the mean elevation of the scene, highlighting
only local high-frequency variations of the topography. One should
8

note that ∇ℎDEM is computed as:

∇ℎDEM(𝑥, 𝑦) =
( 𝜕ℎDEM(𝑥, 𝑦)

𝜕𝑥
,
𝜕ℎDEM(𝑥, 𝑦)

𝜕𝑦

)

, (15)

where 𝑥 and 𝑦 are the horizontal and vertical coordinates, respectively.
This corresponds to the addition of two different input predictors,
identifying the horizontal and vertical partial derivatives, respectively.
The performance for all different test cases is summarized in Table 3,
together with the performance of the model derived from the extended
dataset presented in Section 4.2 for comparison purposes (Baseline
case). As expected, the complete removal of the DEM from the set of
predictors (w/o DEM case) causes a general loss in performance, which
is partly mitigated by the use of the DEM spatial derivatives (𝛁 case)
or the high-pass filtered version (HPF case), with the former achieving
the overall peak performance (ME of 0.12 m, MAE of 3.90 m, MAPE
of 15.38%, RMSE of 5.08 m and R2 of 0.77). On the other hand, the
robustness of model for country-scale inference significantly improves,
as it can be seen from the MoA of all three considered cases in Fig. 8.
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Fig. 5. (a) Height of ambiguity histogram for the training, validation and testing datasets corresponding to the 2015–2016 TanDEM-X acquisitions, (b) height of ambiguity histogram
for the 2010–2011 TanDEM-X acquisitions used for the country-scale inference. (c) DEM histogram for the training, validation and testing datasets corresponding to the 2015–2016
TanDEM-X acquisitions, (d) DEM histogram for the 2010–2011 TanDEM-X acquisitions used for the country-scale inference.
Fig. 6. Hight of ambiguity histogram for the extended training, validation and
testing dataset, comprising TanDEM-X acquisitions covering the AfriSAR test sites from
December 2010 up to the end of 2021.

Indeed, for all considered solutions the corresponding MoAs show an
almost complete coverage of valid values, with the 𝛁 case (subfig. (b)
and (e)) being characterized by overall higher values in the reliability
score map. The majority of remaining invalid values is located in
correspondence of water surfaces, which were not seen during training.

4.3.1. Final country-scale model and inference
In light of the knowledge gained from the previous experiments,

we define our final model for the generation of a country-scale map
of the canopy height over Gabon as the CNN architecture proposed
in Section 3.1, trained with an extended dataset of TanDEM-X image
acquired from December 2010 up to 2021 over the test sites of the 2016
9

Table 3
Performance metrics for the DEM analysis experiment. Each row identifies the per-
formance of the model derived from the extended dataset presented in Section 4.2
(Baseline), the model trained without the DEM as predictor (w/o DEM), the model
trained with the DEM derivatives (𝛁) and the model trained with the high-pass filtered
version of the DEM (HPF).

DEM analysis performance

Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [⋅]

Baseline −0.54 3.78 13.08 4.98 0.78
w/o DEM −0.58 4.13 15.93 5.35 0.75
𝛁 0.12 3.90 15.38 5.08 0.77
HPF 0.11 4.00 15.26 5.23 0.76

AfriSAR campaign as presented in Section 4.2, and replacing the input
DEM predictor with the estimate of its spatial derivatives, as proposed
in Section 4.3.

The detailed performance metrics are reported in Table 4 (a) (ME
of 0.12 m, MAE of 3.90 m, MAPE of 15.38%, RMSE of 5.08 m and R2 of
0.77). Compared to the reference model presented in Section 4.2 only
a minor degradation in performance can be observed, predominantly
caused by a small overestimation of very short vegetation samples.
This behavior can be spotted in the scatterplot presented in Fig. 9
(a), showing the reference RH99 LVIS values versus the prediction
for the final selected model. The estimation bias (ME) with respect to
different reference tree height sub-ranges is shown in 9 (b), together
with the overall reference RH99 distribution of test samples. Notably,
measurements are on average slightly overestimated for vegetation
heights below 15 m, are unbiased between 30 m and 40 m, with a
tendency to more strongly overestimate forest heights in the 15 m to
30 m range and to underestimate for values above 40 m. The results
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Fig. 7. (a) Country-scale CHM generated with the model trained using the extended dataset comprising TanDEM-X from 2010 up to 2021 (Section 4.2), (b) corresponding reliability
score map and (c) binary MoA.
Fig. 8. (Top row) Reliability score maps for the three different DEM-related solutions: (a) removal of the DEM as predictor, (b) substitution of the DEM with its spatial derivatives
(local slope), (c) substitution of the DEM with its high-pass filtered version. (Bottom row) Corresponding MoAs.
for the geographic cross-validation experiments are reported in Table 4
(b) and show a similar degree of spatial independence as seen for the
previous results.

To further analyze the model’s bias with respect to parameters
characterizing both the illuminated areas and the acquisition geometry,
we extend the test dataset to all TanDEM-X acquisitions from 2010 up
to 2021 overlapping the AfriSAR test sites. In this way, a good represen-
tation of the analyzed parameters is considered. Fig. 10(a) displays the
10
relative dependency of the estimation error on the acquisition Day Of
the Year (DOY), highlighting a comparably unbiased relationship across
the value range. Fig. 10(b) relates the error to the local terrain slope,
which is computed using the LVIS-derived DTM estimates. It is possible
to note that the median absolute error show almost no dependency on
the local slope of the underlying topography. Additionally, we evaluate
the performance dependency on the TanDEM-X acquisition geometry.
We observe that across both the ℎ (Fig. 10(c)) and the incidence
amb
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Table 4
(a) Performance metrics computed for the final model trained using the estimate of the spatial DEM gradient as a replacement for the DEM itself, shown for each AfriSAR test
site separately and overall. (b) Performance metrics computed for the corresponding cross-validation experiment, shown for each AfriSAR test site permutation separately and
overall.
∇ performance Cross-validation performance

Experiment ME MAE MAPE RMSE R2 Experiment ME MAE MAPE RMSE R2

[m] [m] [%] [m] [⋅] [m] [m] [%] [m] [⋅]

Lope −0.02 3.78 10.41 4.88 0.50 Lope −3.82 5.27 13.36 6.65 0.07
Mabounie 0.44 4.45 15.24 5.77 0.46 Mabounie 1.50 4.65 16.19 6.07 0.41
Mondah 1.98 2.95 39.69 4.00 0.85 Mondah 3.25 4.12 62.94 5.71 0.69
Pongara 1.52 4.21 28.27 5.45 0.86 Pongara −1.17 5.37 28.91 7.01 0.77
Rabi −0.59 3.79 13.01 4.93 0.60 Rabi −1.18 3.85 12.84 4.96 0.59
Overall 0.12 3.90 15.38 5.08 0.77 Overall −1.43 4.64 17.69 6.03 0.68
Fig. 9. Comparative estimation performance plots between the selected model for country-scale inference and the reference LVIS dataset. The scatterplot (a) displays the linear
prediction agreement. The boxplot sequence (b) captures the estimation bias and spread for different reference tree height sub-ranges; the whisker contain 90% of the samples,
the boxes 50%, while the black line represents the median value. The background histograms depict the relative samples distributions of the training (red) and test sets (blue),
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
angle ranges (Fig. 10(d)) the median estimation errors suggest an
essentially unbiased estimation.

Finally, the country-scale mosaic of the CHM over Gabon at 25 m
resolution, inferred for the TanDEM-X acquisitions of 2010/2011 is de-
picted in Fig. 11(a). Further details at higher resolution, corresponding
to the areas included in the red squares, are presented in Fig. 11(b).
The first zoom-in (left), shows the presence of primary tropical forest, a
complex system of rivers and antropogenic activities. In the second one
(center) it is possible to observe the presence of tall mangroves along
the shores of the Gabon estuary, with peak canopy heights above 45 m.
The third one (right) shows a further example of a dense mangrove
forest along the coast.

5. Discussion

The results detailed in Section 4 provide a complete overview on the
challenges and solutions related to the country-scale application of the
proposed method. In particular, moving from the confined study areas
of the 2016 AfriSAR campaign to the country-scale inference poses
the natural challenge of validating the final product, especially in the
absence of complementary reference measurements.

We approached the problem following two different paths. On the
one hand, we examined the reliability of the achieved performance met-
rics by verifying the absence of spatial correlation between the training
and test sets. To do so, we carried out geographically-independent
cross-validations, which resulted in consistently small deviations in
performance with respect to the standard testing strategy. In particular,
these are limited to the Lopé and Pongara test permutations, being
the former characterized by high-relief terrain, and the latter by the
11
presence of tall mangroves. These observations allow us to confirm the
soundness of the achieved model performance.

On the other hand, we assess the applicability of the model at
country scale, where the estimates cannot be validated otherwise. Based
on the assumption of a unique bijective relationship between predictors
and forest height, the proposed approach is meant to identify those pre-
dictors positioned inside the subspace sampled by the training dataset.
Rather than providing a pixel-wise validation, this approach allows for
assessing the trustworthiness of the CH estimates. This means that we
are not pixel-wise associating an accuracy value to each estimate, but
are instead able to identify whether the model accuracy falls within the
boundaries defined during the test phase. Clearly, should the underly-
ing assumption of a bijective relationship not hold anymore (i.e., by
missing a necessary discriminative feature), also the MoA would fail to
detect unreliable estimates.

In practice, in the analyses in Sections 4.1 and 4.2 the MoAs have
allowed for detecting missing representations in the training data,
which directly match with strongly underestimated forest heights. On
the contrary, the proposed modifications of the training data set in
Section 4.2 and the new input predictors defined in Section 4.3 have
led to the definition of a robust model for country-scale inference.

The final model achieves an overall very competitive performance,
which starts to be significantly biased towards underestimation only
for canopy heights above 45 m. Moreover, beyond canopy heights of
55 m, the model tends to saturate, a behavior often observed in the
literature (Lang et al., 2019; Wagner et al., 2024; Schwartz et al., 2024).
This effect might be related to different aspects. On the one hand,
it could be related to the disproportionately low frequency of high
tree samples in the training set or, on the other hand, to the limited
capability of radar waves at X-band to penetrate into dense forests.
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Fig. 10. Estimation error bias and spread versus the acquisition DOY (a), the Terrain Slope (b), the ℎamb (c) and the incidence angle (d) features, represented as a discrete sequences
of boxplots. Each boxplot covers a feature sub-range, and is described by its whiskers (containing 90 percent of the samples), its box (containing 50 percent of the samples) and
black median line. In the backgrounds, the respective feature distributions on the test set (in blue). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Regarding the fact that the performance remains stable with respect
to the DOY, it is reasonable to assume that this is valid for tropical
forests only. For example, we expect temperate forests to be affected
by more complex changes throughout the year, possibly requiring
additional input information to the model, such as the DOY itself or
the time of acquisition, to remain unbiased.

Similarly, the unbiased estimation with respect to the height of
ambiguity and the local incidence angle is extremely relevant for large-
scale applications using single-pass InSAR, as it suggests that our model
is capable of delivering spatially consistent estimates, independently of
the SAR and InSAR geometries.

A performance comparison of our method with respect to the state
of the art in the literature is also of interest. Compared to the prelim-
inary work published in Carcereri et al. (2023), the newly presented
approach yields an overall improvement across all considered metrics.
The total bias has improved by 1.36 m, the MAE by 0.30 m, and the
RSME by 0.61 m. When comparing our methodology to the physical-
based models, the RVoG model represents the most investigated ap-
proach (Papathanassiou and Cloude, 2001; Cloude and Papathanassiou,
2003; Guliaev et al., 2021; Chen et al., 2016; Olesk et al., 2016). Given
the features used in our proposed method, we compare our perfor-
mance with the inverted sinc-approximation of the RVoG model (Olesk
et al., 2016), since it also only requires information about the acqui-
sition geometry (i.e., 𝜃inc and ℎamb) and the volumetric decorrelation
coefficient 𝛾vol from a single-pol, single-baseline acquisition. The RVoG
achieves an overall ME of −2.24 m, a MAE of 8.60 m and an RMSE
of 10.85 m. In Guliaev et al. (2021), the proposed RVoG inversion
scheme using a combination of TanDEM-X imagery and LiDAR profiles
achieved an RMSE of 8.16 m and a 𝑟2 value of 0.16 over the site
of Lopé. For comparison, with our approach we achieve an RMSE of
4.88 m and 𝑟2 of 0.50. In Denbina et al. (2018), the RVoG is inverted
using multi-baseline, quad-pol acquisitions and selecting the optimal
baseline using a support vector machine (SVM) trained on sparse LiDAR
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measurements. These experiments lead to an RMSE of 5.64 m over
Pongara, of 4.99 m over Mondah, and of 5.99 m over Lopé, respectively.
Using our proposed approach, we achieve an RMSE of 5.45 m, 4.00 m
and 4.88 m, respectively. Finally, in Lang et al. (2019) the authors
proposed a deep learning approach, which estimates the CHM values
from Sentinel-2 multi-spectral data. The analyses over the AfriSAR
Campaign test sites achieve a MAE of 4.9 m and an RMSE of 6.5 m
when considering the yearly least cloudy acquisitions, and a MAE of
4.3 m and an RMSE of 5.6 m when applying a temporal median filter
across a one year inference stack. In this context, our proposed method
achieves extremely competitive results, at the advantage of requiring
only a single TanDEM-X acquisition as input.

Finally, the proposed method shows a significant potential for gen-
erating multi-temporal, time-tagged products and for monitoring forest
height changes in time. On the one hand, clear cuts and afforestation
can be easily identified since they represent abrupt changes. On the
other hand, the challenge is to monitor forests dynamics, whose varia-
tions lie within the current uncertainty boundaries of the model. To this
aim, further validation is required to assess the reliability of the derived
model with respect to reference data acquired at different times.

6. Conclusions

In this work, we presented a novel supervised deep learning ap-
proach for country-scale forest height estimation from single-pass
TanDEM-X SAR and InSAR products. The method was trained and
tested using the rasterized airborne LVIS LiDAR measurements, ac-
quired in the context of the 2016 NASA/ESA AfriSAR campaign in
Gabon. The deployment at large-scale posed a series of challenges,
mainly related to missing representations of the input predictor space
in the training set and to the assessment of the model reliability
where no reference data is available for precise validation. To cope
with these challenges, we proposed a novel model reliability measure,
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Fig. 11. (a) Country-scale mosaic of Gabon representing the CHM, generated using TanDEM-X acquisitions from the first global covered of the mission (Dec. 2010 - end of 2011).
(b) Zoom-ins of the three regions included in the red boxes of the country-scale CHM mosaic. Invalid values, caused by either shadow and layover or by the unreliability of the
model, are depicted in white.
called map of applicability, and we used it to drive the definition of a
robust dataset for training, concentrating on the role of the height of
ambiguity and of the raw DEM as input predictors. The final model
delivers accurate height estimates, which show a very competitive
performance with respect to state of the art methods, at the advantage
of requiring only one single TanDEM-X acquisition, i.e., considering
only a single baseline for each pixel. Finally, we deployed our proposed
approach to map the entirety of Gabon at 25 m resolution using time-
tagged data from the first global coverage of TanDEM-X acquisitions.
The proposed method represents a solid starting point for setting
up a reliable framework for the generation of large-scale products
of biophysical forest parameters over tropical forests. As an outlook
to future activities, we aim at further assessing the potential of the
methodology for monitoring changes in time in the canopy height,
as well as improving the model itself, by increasing its complexity
to simultaneously encompass multiple forest scenarios across different
13
continents. In order to further improve the performance, we consider
to expand the framework to a multi-source approach, in which we
take advantage of the synergistic use of both SAR, InSAR and multi-
spectral information. Finally, we also aim at expanding our model to
complementary forest parameters, such as forest coverage and above-
ground biomass, thanks to the flexibility of deep learning to transfer
knowledge between similar domains.
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