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Overview

▪ The D2AE configuration

▪ DLR-AE/LAE aeroelastic design group capabilities

• Conceptual Design Loads

• Parametric modelling for the fuselage structure

• Aeroelastic design process cpacs-MONA 

• Composite structural optimization

• Non linear structural analysis

▪ Summary and outlook
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D2AE Configuration – SMR Configuration for 239 PAX
(Techonology 2035)

Thomas Klimmek et. al., DLR Institute of Aeroelasticity, 2024-10-02, DLRK2024

TLARs D2AE

42.5

Fuselage 

taken from 

D239+ 

(44.5m)

D2AE wing planform 

is input data

→ positioning by 

openAD HTP/VTP size and position, and landing gear 

position estimated by openAD

D239+  

(devloped by

DLR-SL)

D2AE



Results openAD – View of the D2AE Configuration
(CPACS Visualization with TiGL Viewer)
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cpacs-MONA – Parametric Aeroelastic Design Process
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openAD



Resulting Data cpacs-MONA 
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• Various loads for the complete aircraft (conceptual and preliminary)

• Mass estimation for aircraft components 

• Structural model as finite element model for the complete aircraft (MSC Nastran)

• Detailed Mass model available for various mass configurations

• Aerodynamic Model as Doublet Lattice model (correction parameters 

implemented, e.g. camber data, fuselage correction)



DLR-AE/LAE Aeroelastic Design Group Capabilities
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▪ Conceptual Design Loads 

▪ Parametric modelling for the fuselage structure

▪ Aeroelastic design process cpacs-MONA 

▪ Composite structural optimization

▪ Non linear structural analysis

➢Applied to the D2AE configuration

➢Basis D2AE openAD CPACS-Dataset and 

cpacs-MONA results



Conceptual Design Loads

Thomas Klimmek et. al., DLR Institute of Aeroelasticity, 2024-10-02, DLRK2024

Fast and simple flight loads estimation with minimal input 

▪ Set up of simple geometry model – rigid

▪ Example – elliptical chord distribution

➢ Resulting lift distribution is elliptical

➢ Other lift distributions: trapezoidal and Schrenk
(combined)

▪ Set up of simple mass model OEM, MZFM, MTOM

▪ Point masses (e.g. engines)

▪ Line related masses (e.g. fuselage)

▪ Area related masses (e.g. wing)

▪ Volume related masses (e.g. fuel)

▪ Set up of load cases (CS25) and resulting load factor (quasi-static)

▪ Manoeuvre loads 2.5g Pull-up -1g push-down with EAS speed (altitude independent)

▪ Gust loads according to Pratt – additional load factor (in CS23, for CS25 acceptable 
in conceptual design)

▪ Sum of loads for aerodynamics and inertia loads → nodal and cut loads

Background

case: MTOM

Simple geometry lift distributions



Conceptual Design Loads
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▪ Comparison conceptual loads with cpacs-MONA loads 

Wing Fuselage

Comparison towards elastic:

Rigid – Δmax, Δ min: 24% & 8%

Elliptical – Δmax, Δ min: -5% & 2%

Comparison towards elastic:

Rigid – Δmax, Δ min: 18% & 5%

Elliptical – Δmax, Δ min: 12% & 40%

Comparison towards elliptical:

Trapezoidal – Δmax, Δ min: -21% & -20%

Schrenk – Δmax, Δ min: -10% & -10%

Comparison towards elliptical:

Trapezoidal – Δmax, Δ min: -8% & -9%

Schrenk – Δmax, Δ min: -0.1% & -1%
➢ Overall good agreement at a conceptual level



Parametric modelling for the fuselage structure
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▪ CPACS allows for a detailed structural description also for the fuselage

▪ Further development of ModGen to generate fuselage fems with shell and 

beam elements  

D2AE FEM

fuslage using

beam elements

D2AE FEM

fuslage using

shell& beam 

elements



Parametric modelling for the fuselage structure
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▪ Details of structural description 

▪ Advantages
▪ More realistic wing/fuselage integration

▪ HTP and VTP integration 

▪ Loads transfer more realistic especially for 
landing loads

▪ Better distributed mass estimation and 
modelling

▪ More realistic stiffness and dynamic 
characteristics

▪ Structural optimization methods already 
predeveloped



3rd Version 

Aeroelastic design process cpacs-MONA 
Design Adaption
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▪ 1st version leads to infeasible design

▪ High loads around the landing gear

▪ Adaptions for 2nd version:

▪ Shifed rear spar backwards

▪ Shifted landing gear forward

▪ Introduced a mid-spar

▪ Adaptions for 3rd version:

▪ Changed the mid-spar to a „tiny“-spar → design region seperation

without a „stuctural“ reinforecement

1st Version 
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Aeroelastic design process cpacs-MONA
Pratt-Gust vs. Dynamic 1-cos Gust 

Thomas Klimmek et. al., DLR Institute of Aeroelasticity, 2024-10-02, DLRK2024

Parameter Pratt-Gust

Wing primary mass 8832 kg

Max. Mx 7.08e6 Nm

1st elastic Eigenfreq. (OEM) 3,371 Hz

1-cos Gust

8597 kg

6.85e6 Nm

3.366 Hz

Pratt-Gust 1-cos Gust 



Composite structural optimization
Overview

▪ two-step aeroelastic optimization process:
▪ continuous, gradient-based lamination parameter optimization of A and D

stiffness matrices

▪ discrete stacking sequence optimization based on step 1.

▪ Nastran used to generate and export responses and
sensitivities, optimization performed externally

▪ optimization model setup:
▪ design field definition:

▪ each featuring one set of A and D (sample: 14+14=28 fields)

▪ response definition:

▪ e.g. mass, element stress to compute strain and buckling failure, displacement, twist, root 
bending moment, aileron efficiency, eigenfrequency, …

▪ load case definition:

▪ e.g. static +2.5g pull-up, -1.0g push-down, fixed angle of attack,
aileron deflection, static loads

Name des Vortragenden, Institut, Datum

[1] Dillinger, J. K. S. et al. (2013). Stiffness 

optimization of composite wings with aeroelastic 

constraints. Journal of Aircraft

[2] Dillinger, J. (2014). Static Aeroelastic 

Optimization of Composite Wings with Variable 

Stiffness Laminates. TU Delft, Delft University of 

Technology. isbn:9789462035898

constraints in the following sample

objective in the following sample

load cases in the following sample



Composite structural optimization
Sample Results

▪ development of wing skin mass

throughout the iterations

▪ optimized thickness

▪ optimized polar E-modulus per 

design field

▪ failure indices for +2.5g and

-1.0g load cases

▪ sample of aeroelastic loading

generated with the coupled

doublet lattice model

Name des Vortragenden, Institut, Datum
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Nonlinear structural analysis - Displacements
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Static deflection in the right wing for a 2.5g manoeuvre case

▪ Nonlinear analysis of the clamped wing 

structure conducted (SOL 400 MSC 

Nastran)

▪ 2.5g manoeuvre load case generating 

the maximum tip deflection ~13 % of 

half-span applied in the study.

▪ Nonlinear transverse displacement ~ 

2.5 % lower than linear case

▪ Nonlinear spanwise in-plane 

displacement ~ 42 % higher than linear 
case.
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Nonlinear structural analysis - Strains

∆𝜀 in the upper skin ∆𝜀 in the lower skin

▪ Difference between linear and nonlinear strains in the range of  -200 μ𝜀 and +500 μ𝜀.

▪ Consideration of fully nonlinear strain models may have an impact on the sizing results.

300

200

100

0

-100

-200

300

200

100

0

-100

-200

400

500



         

ti  deflection     alf s an 

 

  

  

  

  

  

  

fr
e
 
u
e
n
c
y
  
 
  

 ode    ode    ode   

Thomas Klimmek et. al., DLR Institute of Aeroelasticity, 2024-10-02, DLRK2024

Nonlinear structural analysis – Frequencies 

▪ Linear modal analysis conducted at 

different states of nonlinear deflection.

▪ Eigenfrequencies under 20 Hz do not 

show much variation.

▪ Certain eigenfrequencies above 50 Hz 

show drastic variations, onset already 

under 10 % tip deflection.

▪ Intersecting eigenfrequency curves of 

Modes 15, 16 and 17 indicate potential 

mode coupling and unstable 

oscillations. 



Summary Outlook
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▪ D     ’s S   configuration D     resented

▪ Various analysis and design capabilities of the design group presented from 

conceptual design to preliminary design

▪ D2AE is constantly further developed

▪ Parametric modelling to smoothen the interfaces to the various analysis and design 

methods

▪ New simulation models like structural modelling of the engine pylon with shell and beam 

elements → aeroelastic design tasks

▪ Improvement of the geometry modelling in order to set-up CFD meshes → loads 

analysis
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Thank you very much 

for your attention!

D2AE – developed @ DLR-AE
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