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Abstract: The decarbonization of industrial energy systems which comprise different networks (such
as steam, water, electric power, fuel sources) is crucial for mitigating climate change and achieving
sustainability goals. This paper presents a comprehensive methodology integrated in an open-source
in-house tool for the coupled design and operation optimization of energy systems in industrial
settings. The proposed approach integrates advanced optimization techniques with modeling of
energy systems including properties like mass flow and temperature to simultaneously optimize
both design parameters and operational strategies. The methodology encompasses the optimized
integration of various energy technologies, such as renewable energy technologies, energy storage,
and power-to-heat technologies while considering changing operational conditions and variable
energy demand and supply. A multi-objective optimization framework is employed to balance
conflicting targets, such as minimizing greenhouse gas emissions, operational costs, and ensuring
system reliability. The in-house tool application considering a case study based on a food industry
process demonstrates the effectiveness of the proposed approach in significantly reducing carbon
footprints as well as operational and investment costs compared to traditional low-fidelity methods
incorporated in commercial tools. The optimized concept achieved through the in-house tool has
shown 8.5% less emission (EMI) compared to the optimized designs of the commercial tool. It shows
36% reduction in CO2 emissions compared to the existing facility of the case study. The optimized
energy concept can be implemented in the existing facility with a payback period of 4.6 years. The
outcomes of the selected use-case highlight the importance of coordinated design and operation
decisions in achieving optimal performance and sustainability in industrial energy systems. It also
shows an ideal workflow for making optimized design decisions to decarbonize industry with novel
energy concepts. Thus, this work provides a robust foundation for future research and practical
applications aimed at accelerating the transition towards low-carbon industrial processes.

Keywords: coupled optimization; modeling; decarbonization; optimal design; optimal operation strategy

1. Introduction

The need for sustainable production is increasing in industries all over the world.
Industries are responsible for almost 34% of the CO2 emissions in Europe [1]. A very impor-
tant challenge that must be considered for sustainable production is the reduction of the use
of fossil fuels, which are currently used extensively. The associated emission of greenhouse
gas needs to be mitigated due to their hazardous effects on the climate. Novel energy
transition methods or concepts such as Integrated Energy System (IES) which comprises
different Renewable Energy Sources (RESs), power to heat conversion components, energy
storages and if needed also conventional fuel-based energy components could mitigate CO2
emissions effectively [2]. Efficient design and operation of such energy-transition concepts
is very crucial due to the economic aspects attached to it. Such optimal energy-transition
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concepts have potential to support significant cost savings alongside reducing CO2 emis-
sions of industrial energy systems [3–5]. The design decisions, such as the capacities of
the units involved and the layout of the energy system, are usually determined before
the development of energy concepts. On the other hand, strategic operation decisions are
required after the development of concepts, such as the operating strategy of the IES [6].

Multi-objective energy optimization to select a design and plan an operational strategy
could be one of the most effective ways to solve such problems. When the design and
operation of an energy system are optimized in a decoupled manner without consideration
of their dependencies on each other, it could lead to suboptimal solutions [7]. Therefore,
it is important to consider both design and operation, which leads to a coupled optimiza-
tion problem, where the design capacity and operation of the IES have to be optimized
simultaneously in order to minimize costs and CO2 emissions [2]. Ref. [8] showed the
optimal capacity and operation of storages in a multi-energy system. The optimization
problem in [8] is formulated as a Mixed Integer Linear Program (MILP) and solved with
Gurobi (Version 10.0) [9]. Ref. [10] optimized the design of integrated urban energy systems
considering uncertainty in the renewable generation. Ref. [10] formulated an optimization
problem as MILP and solved with stochastic solvers. Ref. [11] demonstrated an integrated
design and operation optimization (MILP solved with Gurobi) of multi-energy systems in
dairies and showed significant reduction in emissions. Apart from the above-mentioned
research, there are many commercial software tools available, which perform energy sys-
tem optimization and offer different functionalities [12–14]. Such traditional commercial
software tools typically rely on energy-balance methods, which are mostly formulated as
Linear Problems (LPs) or MILP and overlook critical thermodynamic parameters, such
as mass flow rates and temperature variations across components. However, these pa-
rameters are crucial for accurately capturing exergy losses, component interactions, and
the dynamic behavior of systems [15]. By integrating mass and temperature data into
optimization frameworks, such as in coupled design and operation models, it becomes pos-
sible to achieve higher fidelity and more realistic system designs. These models can better
account for heat-transfer characteristics, efficiency curves, and non-linearities in equipment
performance, leading to more reliable and optimized energy systems [16]. Consequently,
this approach not only enhances the system’s overall energy efficiency but also aligns better
with practical operational conditions and system constraints, which is often missed by
conventional energy-balance-based tools. These problems are usually Non-Linear Problems
(NLPs). As energy systems become increasingly complex, mass- and temperature-based
optimization models represent a critical advancement over traditional methods, offering
substantial improvements in both economic and environmental outcomes. There exist some
commercial software tools that use thermodynamic properties [17–19]. These tools allow
for rigorous process design and operational flexibility, which is critical in industries with
complex heat and material exchanges. Energy-balance-focused tools (e.g., Top-Energy 3.2,
EnergyPLAN, RETscreen) simplify the system modeling by focusing on energy inputs and
outputs, making them less accurate for systems requiring detailed thermodynamic analysis.
Tools like Aspen Plus V14.1 and Modelica V1.23.0 can model complex process-integration
scenarios, including co-generation and heat-recovery systems, where temperature levels
and mass flows are critical. In contrast, energy-balance tools focus on overall system
energy efficiency, often missing opportunities for deeper integration and optimization at
the thermodynamic level.

In the process of optimizing the design and operation of integrated energy systems,
one efficient way to use energy-balance-based commercial tools is to simulate different
configurations with commercial tools and decide on the final configuration. Simulating
different configurations of energy components’ connections is computationally expensive.
It can be simulated with MILP frameworks of commercial tools. When the configuration is
finalized, coupled design and operation optimization can be carried out with a detailed
NLP optimization framework [2]. This paper explores the coupled design and operation
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optimization considering non-linear thermodynamic properties’ interactions, which leads
to better design decisions compared to commercial tools.

2. Materials and Methods

In this paper, an in-house programmed tool is presented for coupled design and
operation optimization of energy systems. Sanddorn GmbH (Herzberg, Germany), which
is located in the state Brandenburg in Germany is chosen as the case study for this paper.
Sanddorn GmbH is one of the partners in the European Union’s Horizon Europe Project
SINNOGENES. It is a medium-sized food and cosmetic industry. The energy concept is first
configured and coupled design-operation optimization is performed for the case study. The
problem is first formulated with the energy-balance method and optimized in Top-Energy
and preliminary concepts are analyzed. Among these preliminary concepts, the most
optimal and convenient concept is chosen by the stakeholder. This concept is then further
implemented with detailed modeling considering thermodynamic properties such as mass
flow and temperature in the in-house tool. The optimized designs are then compared
with the preliminary design results of Top-Energy. The commercial software tools usually
use Linear Problem (LP) and Mixed Integer Linear Problem (MILP) solvers for faster
computation. Due to the large number of constraints and variables, the proposed multi-
objective coupled optimization problem is very complex and requires large computational
efforts. Most of the energy-balance-based energy system-optimization problems are MILP.
With the inclusion of thermodynamic properties in modeling energy components and their
interaction, the problem becomes a Non-Linear Problem (NLP), which is computationally
quite expensive to solve. In this paper the MILP solution acquired by commercial software
and the NLP solution acquired by the in-house optimization framework are compared
and analyzed.

2.1. Case Study

As mentioned in Section 2, a food and cosmetic industry facility is chosen as the case
study as part of teh EU Project SINNOGENES. The existing facility of the energy system
of Sanddorn GmbH consists of a gas boiler for generating steam and a 55 kWp-PV plant
for renewable electricity generation, which is connected to the electric grid for the feed-in
electricity. The heat required for the production is covered by generating steam at 133 ◦C
temperature and 3 bar pressure. It is further used in flash pasteurisation at 76 ◦C and for
eliminating pathogens with thermal treatment at 90 ◦C. The existing components are shown
in Figure 1. Current electricity and heat demand for this process are shown in Figure 2.
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Figure 2. Electricity and heat demand of the use-case.

Table 1 shows the current operating cost and CO2 emissions of the Sanddorn GmbH
production facility for one year. The main aim of this project is to minimize these CO2
emissions with minimum investment and operating cost.

Table 1. Operating cost (T€/a) and CO2 emissions (t/a).

Operating Cost CO2 Emissions

161 217

As mentioned earlier, in the existing facility heat demand is covered by steam. The
main energy-consuming unit is the flash pasteurization unit, which requires high-temperature
heat for short periods of time. For this purpose, high-temperature steam has been used so
far. The first step towards decarbonizing the industry was to reduce the heat demand by
shifting from steam to hot water. Hot water requires higher mass flow but it reduces the
high-temperature requirement. The experiments were performed at the facility and the
stakeholder decided to deliver heat at 95 °C flow temperature with hot water. It reduces
the heat demand up to 15%.

Table 2 shows the new operating cost and CO2 emission when using hot water to cover
heat demand instead of high temperature steam. It reduces by 4.3% and 6% the current
operating cost and CO2 emissions, respectively.

Table 2. New operating cost (T€/a) and CO2 emissions (t/a) when using hot water to cover heat
demand.

Operating Cost CO2 Emissions

154 204

To find the optimal design and operation of the processing plant, one superstructure
was created initially with all the possible energy components available. Preliminary studies
showed that the Wind Turbine (WT) does not fit in the case study due to its very high
investment costs [2]. Figure 3 shows the superstructure considered for the optimization of
the energy system.
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main energy-consuming unit is the flash pasteurization unit, which requires high-temperature
heat for short periods of time. For this purpose, high-temperature steam has been used so
far. The first step towards decarbonizing the industry was to reduce the heat demand by
shifting from steam to hot water. Hot water requires higher mass flow but it reduces the
high-temperature requirement. The experiments were performed at the facility and the
stakeholder decided to deliver heat at 95 ◦C flow temperature with hot water. It reduces
the heat demand up to 15%.

Table 2 shows the new operating cost and CO2 emission when using hot water to cover
heat demand instead of high temperature steam. It reduces by 4.3% and 6% the current
operating cost and CO2 emissions, respectively.

Table 2. New operating cost (T€/a) and CO2 emissions (t/a) when using hot water to cover heat demand.
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To find the optimal design and operation of the processing plant, one superstructure
was created initially with all the possible energy components available. Preliminary studies
showed that the Wind Turbine (WT) does not fit in the case study due to its very high
investment costs [2]. Figure 3 shows the superstructure considered for the optimization of
the energy system.
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Figure 3. Superstructure for coupled optimization.

2.2. Modeling and Problem Formulation for Energy-Balance-Based Optimization

In coupled optimization, operations of the energy concept including different energy
components and their capacities are optimized simultaneously. By doing this, an appro-
priate capacity estimation can be achieved which also includes the effects of operational
strategy, which in turn support strategic decisions of the investment. Thus, optimum values
of the capacities of renewable energy (RE) systems and storages in an energy concept can
be determined by carrying out structural optimization [20]. First, these components are
modelled in Top-Energy software. Their design and operation are optimized with MILP
solver. As mentioned in Section 2, the preliminary designs for finalizing the configuration
of the energy concept can be optimized with a commercial tool such as Top-Energy, and
later detailed non-linear coupled optimization can be performed with an in-house tool
to obtain better design capacities. The modeling of different components follows below.
Modeling of the components is taken from the works of [2] and [20].

2.2.1. Photovoltaic

The electrical power output PPV
out of the PV unit depends on the solar irradiance I and

the efficiency of the PV unit ηPV . It is mainly constrained by solar irradiance I and the peak
power PPV

peak . The maximum output is restricted by the maximum peak power, which is 55
kWp, because the case study facility does not have more space available for large PV to be
installed. That is why PV size is not considered as a design variable. Only power output
PPV

out of PV is taken as an operational variable in coupled optimization. It is represented by

PPV
out = ηPV · PPV

peak
Ig

IST
· (1 + TC(TPV

cell − TPV
ST )), (1)

where ηPV is the collector efficiency which is chosen as constant 0.19, which is taken from
the existing PV system installed in the facility; IST is the incident radiation taken for the
standard test conditions (1000 W/m2); TC represents the temperature coefficient; TPV

cell is the
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The electrical power output PPV
out of the PV unit depends on the solar irradiance I and

the efficiency of the PV unit ηPV . It is mainly constrained by solar irradiance I and the peak
power PPV

peak. The maximum output is restricted by the maximum peak power, which is
55 kWp, because the case study facility does not have more space available for large PV to
be installed. That is why PV size is not considered as a design variable. Only power output
PPV

out of PV is taken as an operational variable in coupled optimization. It is represented by

PPV
out = ηPV ·PPV
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IST
·
(

1 + TC
(

TPV
cell − TPV

ST

))
, (1)

where ηPV is the collector efficiency which is chosen as constant 0.19, which is taken from
the existing PV system installed in the facility; IST is the incident radiation taken for the
standard test conditions (1000 W/m2); TC represents the temperature coefficient; TPV

cell is the
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temperature of the PVcell ; TPV
ST represents the temperature at the standard test conditions;

and Ig represents the global inclined incidence irradiance for the location.
The peak power of the whole PV system is given by

PPV
peak = Pm2

peak·APV
nom, (2)

where Pm2

peak is the peak power per square meter. TPV
cell is defined as

TPV
cell = Tamb +

(
Ig − INOCT

)
·
(

Tcell
NOCT − Tamb

NOCT

)
, (3)

where INOCT is the solar radiation. At INOCT , NCOT is defined, which stands for Nominal
Cell Operating Temperature; Tcell

NOCT is the Nominal Operating Cell Temperature (318.15 k),
and, Tamb

NOCT is the ambient temperature when NCOT is defined (298.15 k).

2.2.2. Electric Boiler

An EB is modelled with power-to-heat efficiency. Efficiency ηEB for EB is taken as
constant (0.95) to have a linear relation and ease of computation [21]. The heat output of
the EB generally depends on input (consumed) electric power PEB

in to the EB, part-load
behavior αEB, and nominal capacity PEB

nom, which is a design variable. It is shown as

PEB
out = ηEB·PEB

in , PEB
out = αEB·PEB

nom. (4)

2.2.3. Solar Thermal Collector

There are two types of ST collectors, which are generally used for generating renewable
heat, flat plate collectors and evacuated tube collectors. For this use-case, flat plate collectors
with tilt angle of 40◦ are chosen according to the mounting space available on the facility,
which is integrated in the proposed energy concept [22]. The ST model is created according
to the quadratic efficiency model developed by [23], which is shown as

ηST = η0 −
a1·∆T

I
− a2·∆T2

I
, (5)

where η0 represents optical collector efficiency, a1 and a2 stand for loss coefficients in relation
to linear and quadratic terms, ∆T shows the temperature difference between collector fluid
temperature and ambient outside temperature, and I represents global solar irradiance on
the flat plate collector surface for the given location. According to the European EN 19275,
collector fluid temperature can be chosen as the average collector temperature of the inlet
and outlet temperature of the working fluid [24].

Weather data for each hour at the location of Sanddorn GmbH were collected from
European commission photovoltaic geographical information system [25].

Output thermal energy of ST is given by

.
QST = ηST ·I·AST

nom, (6)

where the collector surface area AST
nom of the flat plate collector is the design variable.

2.2.4. Heat Pump

Thermal output power of the heat pump depends on its nominal capacity PHP
nom, and

part-load behavior λHP.
PHP

out = PHP
nom·λHP (7)

The coefficient of performance (COP) is calculated as

COPHP = 0.5
Tw

out
Tw

out − Tc
source

, (8)
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where Tw
out is the outlet temperature on the heat sink side, and Tc

amb corresponds to the heat
source temperature. The efficiency is chosen as 0.5, which is usually taken as an average
efficiency in different manufacturers’ heat pumps [26].

Hence, the output power is defined as

PHP
out = PHP

in ·COPHP (9)

where PHP
in is the input electric power.

2.2.5. Thermal Energy Storage

Energy balance for the thermal energy storage is given as

dETES

dt
=

.
Q

ch −
.

Q
dch −

.
Q

loss
, (10)

where E is the energy stored in TES at the given time.
.

Q
ch

is the charging power, which is
defined as

.
Q

ch
= ηch·PTES

ch (11)

where ηch is the charging efficiency and PTES
ch represents charging power.

.
Q

dch
represents discharging power, which is calculated as

.
Q

dch
=

1
ηdch ·P

TES
dch , (12)

where ηdch is the discharging efficiency and PTES
dch represents discharging power. TES is

assumed as a lumped storage, where the temperature inside the storage remains con-
stant throughout the spatial co-ordinates. This assumption is for ease of calculation.
When the modeling fidelity is increased, the temperature gradient inside the storage
must be considered.

2.3. Problem Formulation

The coupled design and operation optimization problem formulated for the case study
has two objectives which have to be minimized: total annualized cost (TAC) and emission
(EMI) [2]. TAC is the aggregation of the investment cost (C) and operational cost (OC)
over one year. The production plant of the use-case is already built, so the investment cost
for building the facility and land cost are excluded. EMI is the representation of the CO2
emission. The minimization problem is formulated as

min
x,y

[TAC(x, y), EMI(x, y)], (13)

with TAC and EMI as the objectives to minimize. The first minimization objective TAC
includes the investment cost of each component and the operational cost of the energy
system concept, which is shown as

TAC(x, y) = OC(x, y) + ∑
i∈D

Ci
(

xi
)

, (14)

where OC depends on the net electricity and gas bought from the grids, which is defined as

OC(x, y) = ∑
m∈M

(
pel

buy·Eel
in,m − pel

sell ·Eel
out,m

)
, (15)

and the investment cost Ci of each component is described as
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Ci =

(
(γ + 1)τ ·γ
(γ + 1)τ − 1

+ α

)
·CAPEX, (16)

which consists of capital expenditure CAPEX, maintenance cost factor for operation α,
interest rate γ and time horizon of the investment τ for financing the cost [2]. CAPEX
calculation depends on reference capacity xi of each component and it is shown as

CAPEX = CAPEX0·
(

xi

x0

)β

, (17)

where β represents the scaling exponent with respect to the nominal capacity of each energy
component [21]. The second minimization objective EMI is presented as

EMI(x, y) = ∑
m∈M

(
gel ·

(
Eel

in,m − Eel
out,m

))
, (18)

where M represents reference days and D = {PV, ST, EB, HP, TES}.
x =

[
APV , PWT

nom, QEB
nom, QHP

nom
]

are the design variables and y =
[

Eel
in,m, Eel

out,m

]
are

the operational variables considered for the above-mentioned objective function. EMI is
calculated based on how much net electricity and gas are bought from the grid. Each
consumed unit of electricity Eel

in,m − Eel
out,m has related corresponding CO2 factor gel for the

calculation of EMI.
The heat-demand constraint is defined as

Qdem −
(

QST + QEB + QHP + Qdch − Qch
)
≤ 0, (19)

which shows that net heat generated from ST, EB, TES, and HP should cover the heat
demand of the production process in each time step. The lower and upper bound of the
capacity constraint are as follows

xi
min·zi ≤ xi ≤ xi

max·zi ∀i ∈ x and zi ∈ {0, 1}, (20)

where xi
min and xi

max are the lower and upper bounds of the design capacity of each energy
component. z shows the the existence of the component in the energy concept as a binary
variable.

Capacity limits of the energy components are shown in Table 3. These are taken as the
lower and upper bounds of design variables. The PV system is already built on the existing
facility and the stakeholder has decided not to extend the capacity of PV, so its lower and
upper bounds are kept the same, 55 kWp. The peak heat demand as shown in Figure 2
is 209 kW. The heat-generating components’ capacity bounds are chosen accordingly to
fulfil this peak demand. The HP upper bound is chosen higher compared to EB, in order to
charge TES with HP when electricity prices are lower. The upper limit of ST size is decided
based on the space available for the mounting on the facility.

Table 3. Design capacity limits.

Component Parameter Lower Bound Upper Bound

PV-capacity (kWp) 55 55
ST-surface (m2) 0 135

Electric Boiler (kWth) 0 250
Heat Pump (kWth) 0 750

TES (kWth) 0 1000
Battery (kWh) 0 1000
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2.4. Energy-Balance-Based Optimization—MILP

As discussed earlier, the initial concepts were optimized with the commercial software
Top-Energy, which is based on MILP optimization solvers. As the optimization method
solves energy balance, the output temperature and mass flow cannot be varied easily at
the same time. Due to this, the output temperature of each component is kept fixed at
95 ◦C, which is the process demand temperature. With commercial software tools, usually
the design and operation variables are optimized in a decoupled manner, which might
give suboptimal solutions. Due to its linear formulation, the results can be achieved faster,
which is an advantage for any stakeholder with respect to making decisions.

Figure 4 shows the new optimized energy concept of the case study. This configuration
is the result of the MILP (solver—GUROBI) energy-based design optimization [9]. Here,
operation optimization has been partially considered with reference days. Once the capacity
of the components is optimized, they are kept fixed during full operation optimization.
The optimized capacity of the components can be seen in Figure 4. There are two TESs
in the final concept. TES-1 will be charged by ST during hot summer days. It can also
become discharged and cover the heat demand during summer days. In winters, the output
temperature of ST might not reach 95 ◦C, which is needed to cover the heat demand. In
this case, TES-1 will be used to store low-temperature ST output and use it as a heat source
for the HP to increase its COP. TES-2 is majorly used to become charged by HP when the
electricity prices are very low or the PV electric output is high on summer days.
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These design capacities are based on energy-balance-based optimization and linearized
problem formulation. To find and validate the optimal design capacities, non-linear coupled
optimization is important. In the next section, the in-house coupled optimization tool is
discussed.

2.5. Coupled Design and Operation-Optimization Tool (CoDeOpT)

The Coupled Design and Operation-Optimization Tool (CoDeOpT) for energy systems
integrates the process of designing energy system components with their operational strate-
gies to maximize overall efficiency and performance. This tool simultaneously considers
the selection, sizing, and configuration of system elements (such as renewable energy
sources, energy-conversion and -storage systems, as well as conventional generators) and
their day-to-day operational management. By optimizing both the design and operation in
a unified framework, the tool ensures that the energy system can meet demand reliably,
minimize costs, and reduce environmental impact, thus providing a holistic approach
to energy system planning and management in the retrofit of energy-supply systems re-
quired for an effective energy transition. This tool integrates the modeling of components
with thermodynamic properties such as mass flow and temperature, which allows the
component modeling to be non-linear and potentially accurate. With this approach, the
output temperature and mass flow of each component can be variable in each time step. It
represents more accurate mixing of energy flows in the energy system.
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These design capacities are based on energy-balance-based optimization and linearized
problem formulation. To find and validate the optimal design capacities, non-linear coupled
optimization is important. In the next section, the in-house coupled optimization tool is
discussed.

2.5. Coupled Design and Operation-Optimization Tool (CoDeOpT)

The Coupled Design and Operation-Optimization Tool (CoDeOpT) for energy systems
integrates the process of designing energy system components with their operational strate-
gies to maximize overall efficiency and performance. This tool simultaneously considers
the selection, sizing, and configuration of system elements (such as renewable energy
sources, energy-conversion and -storage systems, as well as conventional generators) and
their day-to-day operational management. By optimizing both the design and operation in
a unified framework, the tool ensures that the energy system can meet demand reliably,
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minimize costs, and reduce environmental impact, thus providing a holistic approach
to energy system planning and management in the retrofit of energy-supply systems re-
quired for an effective energy transition. This tool integrates the modeling of components
with thermodynamic properties such as mass flow and temperature, which allows the
component modeling to be non-linear and potentially accurate. With this approach, the
output temperature and mass flow of each component can be variable in each time step. It
represents more accurate mixing of energy flows in the energy system.

Three components where thermal properties are important to be considered are HP,
TES, and ST. The new detailed modeling of these components for the in-house tool is
explained in the next subsections.

2.5.1. Solar Thermal Collector (ST)

Incidence-correction factor for ST

KST(t) = cos(θST(t))−
(

αST,1·θST(t) + αST,1·θ2
ST(t)

)
; (21)

Modified incedence-correction factor for ST

KST(t) = 1 − (1 − αST)

0.55
·
(

1
cos(θST(t))

− 1
)

; (22)

Temperature difference short form

∆TST,amb(t) =
TST,out(t) + TST,in(t)

2
− Tamb(t); (23)

Thermal output of ST

.
mST(t)·cp,water·(TST,out(t)− TST,in(t))= (1 − fST,cur(t))·AST·

[KST(t)·I(t)·ηST,opt−
βST,0·(βST,1·∆TST,amb(t)

+βST,2·∆T2
ST,amb(t)

+βST,3·∆T3
ST,amb(t)

+βST,4·∆T4
ST,amb(t)

)
].

2.5.2. Heat Pump (HP)

The coefficient of Performance of HP is given by

COPHP,hot(t) = ηHP·
THP,hot,out(t)

THP,hot,out(t)− THP,cold,in(t)
. (24)

The thermal output of HP is calculated with mass flow and temperature as follows

.
mHP,hot(t)·cp,water·(THP,hot,out(t)− THP,hot,in(t)) = COPHP,hot(t)·PHP(t). (25)

The maximum thermal output power of HP is constrained as follows

.
mHP,hot(t)·cp,water·(THP,hot,out(t)− THP,hot,in(t)) ≤

.
QHP,nom· fHP,max. (26)

The thermal input of HP from the heat source is given as

.
mHP,cold(t)·cp,water·(THP,cold,in(t)− THP,cold,out(t)) = (COPHP,hot(t)− 1)·PHP(t). (27)
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2.5.3. Thermal Energy Storage (TES)

The TES energy-balance equation is shown as

mTES·cp,TES·dTTES(t)
dt =

.
mTES,ch(t)·cp,water·(TTES,ch,in(t)− TTES,ch,out(t))

− .
mTES,dis(t)·cp,water·(TTES,dis,out(t)− TTES,dis,in(t)).

(28)

Charging outlet temperature using an effectiveness model is represented as

TTES,ch,out(t) = TTES,ch,in(t)− εTES,ch·(TTES,ch,in(t)− TTES(t)), (29)

where effectiveness ε is assumed to be 0.9 [27].
In the same way, discharging outlet temperature using an effectiveness model can be

written as

TTES,dis,out(t) = TTES,dis,in(t)− εTES,dis·(TTES,dis,in(t)− TTES(t)). (30)

All the symbols and parameters can be found in the “Nomenclature” list at the end of
the paper.

2.6. Information Flow and Structure of the Tool (NLP)

Figure 5 shows the structure and information flow of the tool. It is divided into
five major blocks, which are inputs, initialization, optimization framework, component
models and post-processing (KPI-evaluation and results). This tool takes different input
parameters, such as weather conditions according to location, electricity price, variable heat
demand, capacity bounds, fluid properties, etc. The optimization framework handles the
design and operation optimization in a coupled manner. Design optimization is solved with
the genetic algorithm Non-Sorting Genetic Algorithm (NSGA-II) [28] and the operation
optimization is solved inside the design optimization with the stochastic NLP solver
Interior Point OPTimizer (IPOPT). The design optimization is programmed and solved
in the PYMOO framework of Python (Version 3.9) and the operation optimization in the
PYOMO framework of Python [28,29]. Middleware is also implemented in the tool to
facilitate data exchange between the optimizer and the operator.

Some features of CoDeOpT are presented below.

• This tool integrates both the design and operational optimization processes for energy
systems. It aims to minimize overall cost and emission by considering multiple energy
sources, storage options, and operational strategies.

• Input data handling—the tool takes weather data inputs to assess the availability of
renewable energy sources such as solar and wind. It processes electricity price data to
determine optimal operation times based on market conditions. Design bounds for
system components are defined to ensure feasible and practical design solutions.

• Modules—different component-modeling modules with several module connections
have been created. The implemented modeling modules are as follows: Photovoltaic
(PV), Solar Thermal Collector (ST), Heat Pump (HP), Thermal Energy Storage (TES),
Electric Boiler (EB) and Grid. Further developments in these modules can be easily
integrated.

• Optimization core—the tool uses advanced optimization algorithms to determine the
optimal configuration of energy system components. It simultaneously optimizes the
operation of the system to meet energy demand while minimizing costs and emissions.
Both design variables (e.g., capacity, sizing) and operational variables (e.g., dispatch)
are considered.

• Key Outputs:

- Optimized design capacities: These provide the best possible sizes and configura-
tions for various energy system components.
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- Optimal operation strategy: This suggests the most efficient operational schedules
and strategies to meet energy demand.

- Evaluation of Key Performance Indicators (KPIs): This calculates metrics such as
savings, and emission reductions to evaluate the system’s performance.

• Flexibility and adaptability—the tool is designed to handle a wide range of energy
systems, including hybrid systems that combine renewable and conventional energy
sources. It can be adapted to various industrial processes and scales, from small-scale
installations to large industrial plants.

• It provides a user-friendly script for input data entry and parameter adjustments. It
generates detailed output data files and visualizations to help users understand the
optimization results and make informed decisions.

• Overall, this coupled design and operation-optimization tool provides a comprehen-
sive solution for enhancing the performance and sustainability of energy systems,
ensuring that they meet demand reliably, cost-effectively, and with minimal environ-
mental impact.
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3. Results and Discussion

As discussed in Section 2, the commercial tool is used initially to determine the best
suitable configuration from the available technology. Once the configuration is decided,
MILP optimization is performed with a commercial tool to obtain the optimal designs con-
sidering some aspects of plant operation. These optimized designs might be the suboptimal
solution and it has to be compared and validated with the detailed couple optimization. As
explained in Section 2.5, the tool CoDeOpT allows the non-linear modeling and considera-
tion of thermodynamic properties in solving coupled design and operation optimization. It
considers the operational variables and their effects while optimizing designs in a coupled
manner, which leads to better design capacities. In Figure 6, optimized design capacities
that resulted from Top-Energy and CoDeOpT are compared. As can be seen in Figure 6,
there is some difference between optimized capacities from MILP decoupled and NLP
coupled optimization. This difference results in significant differences in optimization
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objectives. NLP coupled optimization considers all non-linearities occurring in the system
with the interaction of thermodynamic properties of different streams, which in turn gives
better estimation of the design capacities. These design capacities lead to lesser TAC and
EMI compared to the designs optimized by commercial MILP tools.
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Figure 6. Design capacity comparison between MILP decoupled (Top-Energy) vs. NLP coupled
(CoDeOpT) optimization.

Table 4 shows the TAC and EMI as a result of MILP decoupled optimization and NLP
coupled optimization it. It also shows the reduction in TAC and EMI for optimized designs
obtained from MILP and NLP optimization compared to the existing facility. It can be
seen that NLP coupled optimization delivers almost 8.5% less TAC and EMI compared to
MILP decoupled optimization with optimal designs. The optimized concept through NLP
coupled optimization shows 36% less CO2 emission compared to the existing facility, which
can be reduced only 24% when MILP decoupled optimization is used. The payback period
of the investment for the new optimized energy concept is 6.2 years when it is optimized
with the MILP decoupled optimization. It is calculated to be 4.6 years, when optimized
with NLP coupled optimization. Clearly, NLP coupled optimization delivers better results
than MILP decoupled optimization. The drawback of NLP coupled optimization is the
computational effort. NLP coupled optimization takes approximately 13 hours to solve on
11th Gen Intel(R) Core(TM) i7-1185G7 with 16 GB RAM, and MILP decoupled optimization
requires approximately 17 minutes on the same computer. It is a trade-off between accuracy
and computational effort. NLP coupled optimization produces better results in terms
of minimizing objectives, but it requires more computational effort. This can be further
improved with better parallelization methods and using relaxation strategies. The results
clearly show that inclusion of thermodynamic properties and non-linearity into coupled
optimization delivers optimal design capacities compared to energy-balance-based linear
optimization, which in turn reduces cost and emission. The MILP optimization approach
overestimates the capacities due to a lack of information concerning the thermal behavior
of the system. This in turn causes an overestimation of the operating cost and leads to a
longer payback period. The ideal approach to make optimized design decisions according
to the results of this paper is to start with the MILP commercial tool and simulate different
configurations to find the best suitable configuration of the energy concept. Once the
configuration is decided, one can run coupled design and operation optimization with the
NLP tool. This methodology or the workflow can be the best trade-off between accuracy
and computational time. This approach can be applied to different industrial use-cases
as well. In an ongoing analysis of different industries, a new energy concept of a large
paper-manufacturing plant optimized with NLP coupled optimization approach showed
62% reduction in CO2 emissions compared to its existing emissions.
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Table 4 shows the TAC and EMI as a result of MILP decoupled optimization and NLP
coupled optimization it. It also shows the reduction in TAC and EMI for optimized designs
obtained from MILP and NLP optimization compared to the existing facility. It can be
seen that NLP coupled optimization delivers almost 8.5% less TAC and EMI compared to
MILP decoupled optimization with optimal designs. The optimized concept through NLP
coupled optimization shows 36% less CO2 emission compared to the existing facility, which
can be reduced only 24% when MILP decoupled optimization is used. The payback period
of the investment for the new optimized energy concept is 6.2 years when it is optimized
with the MILP decoupled optimization. It is calculated to be 4.6 years, when optimized
with NLP coupled optimization. Clearly, NLP coupled optimization delivers better results
than MILP decoupled optimization. The drawback of NLP coupled optimization is the
computational effort. NLP coupled optimization takes approximately 13 h to solve on 11th
Gen Intel(R) Core(TM) i7-1185G7 with 16 GB RAM, and MILP decoupled optimization
requires approximately 17 minutes on the same computer. It is a trade-off between accuracy
and computational effort. NLP coupled optimization produces better results in terms
of minimizing objectives, but it requires more computational effort. This can be further
improved with better parallelization methods and using relaxation strategies. The results
clearly show that inclusion of thermodynamic properties and non-linearity into coupled
optimization delivers optimal design capacities compared to energy-balance-based linear
optimization, which in turn reduces cost and emission. The MILP optimization approach
overestimates the capacities due to a lack of information concerning the thermal behavior
of the system. This in turn causes an overestimation of the operating cost and leads to a
longer payback period. The ideal approach to make optimized design decisions according
to the results of this paper is to start with the MILP commercial tool and simulate different
configurations to find the best suitable configuration of the energy concept. Once the
configuration is decided, one can run coupled design and operation optimization with the
NLP tool. This methodology or the workflow can be the best trade-off between accuracy
and computational time. This approach can be applied to different industrial use-cases
as well. In an ongoing analysis of different industries, a new energy concept of a large
paper-manufacturing plant optimized with NLP coupled optimization approach showed
62% reduction in CO2 emissions compared to its existing emissions.
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Table 4. TAC (T€/a) and EMI (t/a) comparison between MILP decoupled and NLP coupled opti-
mization and the existing concept solution.

Status Quo/Tool and Solver TAC (T€/a) EMI (t/a) Reduction EMI Computational
Time (h)

Existing facility - 217 0% -
Optimized concept with Top-Energy (MILP) 179 164 24% 0.3
Optimized concept with CoDeOpT (NLP) 152 139 36% 13

The ideal workflow to select the suitable configuration and optimize the design ca-
pacities is shown in Figure 7. It shows the steps to follow for selecting the best suitable
configuration with a commercial MILP tool and running coupled NLP optimization to
optimize the design capacities. This workflow takes advantage of both commercial MILP
tools and the in-house NLP tool to find the best trade-off between computational time
and accuracy.
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approach to solve a multi-objective design and operation optimization of a food industry.
Component modeling for solving energy-balance-based optimization is described. This
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4. Conclusions

This paper presents a comparison between the commercial tool and in-house tool
approach to solve a multi-objective design and operation optimization of a food industry.
Component modeling for solving energy-balance-based optimization is described. This
energy-balance-based approach is solved with the MILP solver to achieve computationally
faster design concepts. But it might have delivered suboptimal solutions due to the
linearized problem and decoupled optimization. The in-house tool CoDeOpT is introduced
to solved coupled design and operation optimization for energy systems considering non-
linearities in thermodynamic properties with NLP solvers. The differences in the optimized
designs with respect to their effects on the minimization objectives are also presented.
With NLP coupled optimization, 8.5% lower objectives compared to MILP decoupled
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optimization can be achieved and it shows 36% reduction in CO2 emission compared to
the existing reference scenario (existing facility). The payback period for the proposed
optimization concept is 4.6 years. An ideal workflow is shown to follow for selecting
suitable configuration for the use-case and optimizing design capacities of selected energy
components. The next steps in this research could be optimizing operational strategy with
high accuracy. The selected design capacities were optimized considering the operational
effects. The operating strategy can be further improved with high-fidelity models of thermal
producers such as HP, TES, and ST, which have high interaction of thermal streams. The
operating strategy can be validated with the experimental results after implementing the
proposed energy components in the facility.
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Nomenclature
The following abbreviations are used in this manuscript:
Letter symbols
DLR German Aerospace Center
ST Solar thermal collector
HP Heat pump
TP Thermal Producer
TES Thermal energy storage
HTF Heat transfer fluid
EG Electricity grid
EB Electric Boiler
GG Gas grid
PV Photovoltaic
ch Charge
dis Discharge
amb Ambient
COP Coefficient of performance
NLP Non-linear programming
MILP Mixed Integer Linear Programming
IPOPT Interior Point OPTimizer
NSGA Non-Sorting Genetic Algorithm
IR Interest rate
LT Life time
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