
Clock Domain Crossing Analysis of a
SpaceWire IP-Core

Bachelor Thesis

Degree course Aerospace Engineering

Field of study Aerospace Elektronics

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

by

Johann Lossin

Date: September 23, 2024
Working Period: 01.07.2024 - 23.09.2024
Matriculationnumber: 5113350
Course: TLE
Partner Company: DLR e.V.
Referent Company: Dr. Kai Borchers
Referent University: Prof. Philipp Krämer

Erklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung
für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-
Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

Ich versichere hiermit, dass ich meine Bachelorarbeit (bzw. Projektarbeit oder Studienar-
beit bzw. Hausarbeit) mit dem Thema:

Clock Domain Crossing Analysis of a SpaceWire IP-Core -

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der
gedruckten Fassung übereinstimmt.

Bremen, den September 23, 2024

Johann Lossin

Abstract

In recent years, the use of multiple clocks inside a single IC has grown rapidly to boost
performance. This change comes with unique challenges regarding the data transfer
from one clock domain to another, due to different frequencies colliding. Therefore,
it is necessary to ensure that data crosses the clock domain boundary correctly.

The aim of this paper is to find and if possible correct clock domain crossing (CDC)
violation inducing parts of an open source SpaceWire IP-core, that is used for devel-
oping projects in FPGAs. The IP-core has shown anomalies in a code review, that
could cause CDC errors.

The paper first introduces the concept of CDC and describes several synchronizers
used to solve the problem. After looking at detection methods, the SpaceWire proto-
col is described. With this basis, we take a look at the analyzed SpaceWire IP-core
and its synchronizers, as well as the Questa CDC tool. To find the CDC error in-
ducing parts, a static CDC analysis is performed with Questa CDC, which is part
of the Siemens verification suite. The tool found six violations, which were analyzed
manually. Finally, corrections were made to the IP-core where necessary, and one
usage restriction was found.

ii

Contents

List of Figures v

List of Tables vii

Acronyms viii

1 Introduction 1

2 Theoretical basis 3
2.1 Field Programmable Gate Array . 3

2.1.1 Digital Processing . 4
2.1.2 FPGA Structure . 6
2.1.3 Example VHDL & Signal Time 8

2.2 Clock Domain Crossing . 11
2.2.1 Metastability . 11
2.2.2 Synchronizers . 14

2.2.2.1 2 Flip-Flop Synchronizer 14
2.2.2.2 Gray code Synchronizer 16
2.2.2.3 Asynchronous FIFO 17
2.2.2.4 Single Stage Synchronizer 18

2.2.3 CDC Detection . 19
2.2.3.1 Static Verification . 19
2.2.3.2 Simulation Based Verification 20

2.3 Space Wire . 21
2.3.1 SpaceWire Network . 22
2.3.2 Structure . 24

iii

Contents

3 Used IP-Core & Tool 26
3.1 The SpaceWire ip-Core . 26

3.1.1 2FF IP-core Synchronizer . 28
3.1.2 FIFO IP-core Synchronizer . 29

3.2 Questa CDC Tool . 31

4 CDC Violations & Recovery 33
4.1 Setup . 34
4.2 Single Source Reconvergence of synchronizers 36

4.2.1 FIFO Violation . 37
4.2.2 Reset Violation . 39
4.2.3 Pointer Crossing bitcnt & headptr 41

4.3 Multi-bit signal across clock domain boundary 43
4.4 FIFO pointer mismatch . 44
4.5 Verification . 45

5 Discussion 47

6 Conclusion 49
6.1 Summary . 49
6.2 Outlook . 50

Bibliography 51

Appendix 54
A.1 Full VHDL example code . 54
A.2 Relevant IP-core codes . 57
A.3 makefile and filelist . 59
A.4 Overview of the used AI-based Tools 62

iv

List of Figures

2.1 Computing in Time . 4
2.2 Computing in Space . 4
2.3 Basic FPGA Architecture [3] . 6
2.4 VHDL example Signals . 10
2.5 Types of Signal changes from low to high 12
2.6 Setup Time Violation Waveform . 13
2.7 Hold Time Violation Waveform . 13
2.8 2FF-Synchronizer . 14
2.9 2FF signal timing . 15
2.10 First in First out (FIFO) Synchronizer 17
2.11 Single stage synchronizer receiver clock dynamically changing [12] . . . 18
2.12 SpaceWire differential Signals and clock corollation 21
2.13 SpaceWire Packet Format [16] . 22
2.14 SpaceWire Path Addressing [16] . 23
2.15 SpaceWire Logical Addressing [16] . 24
2.16 SpaceWire Token [16] . 25
2.17 Nominal SpaceWire Clock Domains [17] 25

3.1 Block Diagram of the SpaceWire ip-Core [18] 27

4.1 Detected Errors . 35
4.2 Simple Reconvergence Structure . 36
4.3 Reconvergence Signals . 36
4.4 First Violation’s Logic Circuit . 38
4.5 SpaceWire Null Message[16] . 39
4.6 Second Violation/ reset violation . 40
4.7 Pointer Error Diagram . 41

v

List of Figures

4.8 FIFO violation . 44
4.9 Induced Violation . 46

vi

List of Tables

2.1 Comparison of digital Technologies [3] 5
2.2 FPGA Types [3] [6] . 8
2.3 Gray code and binary counting . 16

4.1 Gray code Counter Incrementation . 42

A.1 Usage of AI-Tools . 62

vii

Acronyms

ASIC Application Specific Integrated Circuit

CDC Clock Domain Crossing

CIS Computing in Space

CIT Computing in Time

DLR Deutsches Zentrum für Luft- & Raumfahrt e.V.

EMC Electromagnetic compatibility

ESA European Space Agency

FF Flip Flop

FIFO First in First out

FPGA Field Programmabel Gate Array

GUI Graphical User Interface

HDL Hardware Discribtion Language

IC Integrated Circuit

IP-Core Intelectual Property-Core

JAXA Japan Aerospace Exploration Agency

Mbps Mega bits per second

MTBF Mean Time Between Failure

NASA National Aeronautics and Space Administration

PCB Printed Circuit Board

RTL Register Transfer Level

SoC System-on-a-Chip

viii

Acronyms

VHDL Very High Speed Hardware Description Language

ix

1 Introduction

As the demand for computational capability in non-terrestrial applications rises, the
need to implement efficient and reliable solutions has to be met. Especially in the
German Aerospace Agency(DLR), which is at the forefront of new space technologies.
One option to improve the efficiency is to use multiple clocks inside an integrated
circuit (IC) (typically a field programmable gate array (FPGA) for custom logic in low
volume production or prototyping). This is a standard practice for highly integrated
circuits like smartphones, but not as common for space applications. The different
clocks control semiconductor areas in the IC, so-called clock domains.

The use of multiple clocks domains comes with a set of unique challenges, foremost
the problem of meta stability where a signal crosses over from one to another clock
domain and is not able to reach the defined low or high states in time. This can cause
timing issues, lost data and undefined signal states throughout the logical circuits.
These issues can occur irregular, making it very difficult to detect them reliably in
hardware.

Reliable communication is an important part of most systems. An example is SpaceWire
which is a well established interface and bus protocol standard, used by many univer-
sities, space agencies, and industry for a multitude of projects. It is defined by the
european comity for space standardization in the standard ECSS-E-ST-50-12C.

SpaceWire is also used by DLR, in this case in the form of an IP-core, a form of digital
logic that is relatively easy to implement in an FPGA. The IP-core has shown signs
of irregularities in the past, that could be caused by clock domain crossing (CDC)
issues. Therefore, it should be analyzed and corrections be implemented, if possible.
This can reduce data errors, that appear during development of new systems and
technologies.

1

1 Introduction

The Analysis is performed with the Questa CDC tool from Siemens, that is able to
find potential CDC violations. The violations are then manually checked. If they pose
no CDC risk they can safely be ignored or be fixed when they are valid.

The Aim of this bachelor thesis is to analyse the SpaceWire IP-core in regard to CDC
related problems and correct them if possible. With the end goal of advising if is can
be used reliably.

We begin by understanding the functionality of digital logic and VHDL, the language
used by the IP core. We also look at the basics of CDC and metastability, as well
as the SpaceWire protocol. We continue with the specific SpaceWire IP-core and its
synchronizers, which are used to transmit signals across the clock domain boundary.
The next step is to examine at the tool. Finally, we complete the analysis by per-
forming a static CDC analysis on the IP-core. This includes setup, running the tool,
manually checking the results, and finally implementing a correction in the IP-core if
necessary.

2

2 Theoretical basis

In the realm of modern digital systems, Field-Programmable Gate Arrays (FPGAs)
and robust communication protocols like SpaceWire are fundamental to advanc-
ing technological capabilities across various applications. This chapter provides an
overview of the theoretical basics essential for understanding and leveraging these
technologies. It begins with an exploration of digital processing principles, setting the
stage for an examination of the structure and working principles of FPGAs. Further,
it delves into critical concepts such as clock domain crossing and metastability, dis-
cussing the challenges they present and the synchronizer techniques used to mitigate
these issues. The chapter culminates with an introduction to SpaceWire, a high-speed
communication protocol designed for space applications, highlighting its key features
and operating principle. Through this, readers will gain a foundation in both FPGA
technology and the specialized communication protocol SpaceWire.

2.1 Field Programmable Gate Array

Field-Programmable Gate Arrays (FPGAs) are powerful and versatile digital process-
ing devices that offer a unique blend of hardware performance and flexibility. Result-
ing in a wide field of applications, from telecommunications to automotive systems,
consumer electronics, and aerospace. This chapter introduces the core concepts and
practical applications of FPGAs, beginning with digital processing followed by the
structure of FPGAs and their technology. Finally, a short VHDL example is shown
to illustrate how FPGA designs can be defined.

3

2 Theoretical basis

2.1.1 Digital Processing

For any kind of data processing, some sort of computational hardware is needed, with
a certain processing structure. Those can be broadly categorized in computing in time
(CIT) and computing in space (CIS). Computing in time is commonly used in generic
computer processors and microcomputers, in which operations take place one after
the other, as illustrated in Figure 2.1, with every operation requiring a fixed amount
of time. Therefore, to perform complex calculations, the key resource is the time it
requires. But this approach enables a highly flexible and cost-effective solution, due to
the relatively few semiconductor components required to build those. Although they
are highly flexible, there exist specialized processors with corresponding optimized
arithmetic logic unit, depending on the task. For example, digital signal processors
for high performance processing or microprocessors for low power applications. [1]

Figure 2.1: Computing in Time Figure 2.2: Computing in Space

Computing in space on the other hand utilizes more semiconductor structures to
perform multiple calculations simultaneously, as depicted in Figure 2.2, while being
not as adaptable to rapidly changing tasks. This simultaneous computation is done
by using parallel logic or computing structures. These can often only perform a
single function. Common example technologies for simultaneous computing are ASICs
(Application Specific Integrated Circuits) and FPGAs (Field Programmable Gate
Array).

ASICs are logic units that are tailored for a specific problem, where the function is
directly manufactured in silicone. Therefore the functionality can not be changed after
production, as it is the case for processors where only the software has to be exchanged.
These application specific solutions allow for a very fast and energy efficient operation.
But it is expensive in production and has a long development time, due to the high
development effort and specific semiconductor manufacturing process where a unique

4

2 Theoretical basis

lithography mask is necessary. This makes them optimal for high quantity production.
[2]

FPGAs, on the other hand, retain the capacity for simultaneous computation while
also exhibiting reconfigurability, rendering them readily adaptable to a diverse array
of applications. This feature renders FPGAs particularly suited to small-scale pro-
duction and prototyping. However, they exhibit a higher power consumption and a
limited number of logic units in comparison to ASICs. The main attributes of each
technology are illustrated in Table 2.1 for comparison.

Strength Weaknesses
fully custom design effort

ASIC high performance inflexibility
low power high cost
flexibility power

FPGA half custom limited resources
cost
low design effort fixed architecture

Processor high flexibility lower performance
cost power

Table 2.1: Comparison of digital Technologies [3]

It is important to note that a variety of combinations of both CIS and CIT exist.
Notable examples include multiprocessors, system on a chip (SoC), and vector pro-
cessors. A multiprocessor is a system that employs multiple CIT processors in parallel
to perform computations. The use of parallel processing allows for an increase in pro-
cessing capacity and a reduction in overall computation time, depending upon the
parallelization capabilities of the software. In contrast, SoCs employ one or multiple
processors in conjunction with an FPGA structure on a single IC. This dual utiliza-
tion enables the FPGA structure to be utilized for time consuming calculations, while
the processor is reserved for sequential and control operations. Additionally, vector
processors are employed when the same calculation is performed on a vast quantity
of data. This vector processor employs a conventional processor architecture with
a single control structure, but with multiple processing structures that perform the
same operation parallel on multiple data sets. [4]

5

2 Theoretical basis

It has to be noted that it is possible to implement a processing core in an FPGA,
resulting in a so called softcore. Although this softcore works like a regular processing
unit, due to the not optimized silicone structure, it is often slower and more energy
inefficient compared to a regular processor.

2.1.2 FPGA Structure

As we discussed in Section 2.1.1, an FPGA is a digital processing device, that is
reconfigurable and is classified as CIS, with a unique structure as shown in Figure
2.3.

Its fundamental components include logic blocks and switching cells. While switching
cells serve the function of a customizable routing network, they can also be interpreted
as an intersection or switches, in that they connect the building blocks. In order to
form a customizable routing network. They form together with the logic blocks the
basis for the reconfigurability. The logic blocks are the basis for the FPGA, by being
reconfigurable or field programmable. The blocks consist of logic gates, which is why
the FPGA designs are called gateware, rather than software. Lastly, the blocks are
arranged in an array as shown in Figure 2.3.

Figure 2.3: Basic FPGA Architecture [3]

6

2 Theoretical basis

The logic blocks consist of a D-flip-lop (FF) and programmable memory within a
look-up table (LUT), allowing the FPGA to be configured with any desired binary
logic. [5] The I/O-blocks are the connection between the internal FPGA structure and
the pins on the package to the circuit board. The final blocks, are special blocks that
provide a fixed function in silicone, with a specific commonly used function to enhance
efficiency. For instance, they include memory registers, multiplication accumulation,
addition, and numerous other operations.[5] This method allows to save space and
semiconductor elements.

To understand how an FPGA operates, it is important to know the difference between
combinatorial and sequential processes. In combinatorial processes only basic binary
logic is used to perform computations where the time necessary directly correlates with
the amount of LUTs the signal has to travel through and their lead time. Sequential
logic utilizes memory and can therefore store information. Thus, it needs clocks to
synchronize the access, prevent insufficient set time for the memory elements and to
avoid race conditions, that cause inconsistent result. Those memory elements include
not just register but flip-flops also serve as memory blocks, which save a signal state.
This saving allows developers to use elements like if- and else-statements, counters,
shift registers, edge detection and many more. With that a sequential operation can be
introduced, to build control sequences, while still fully using the parallel computing.
[4]

Gateware employs its own programming language, a hardware description language
(HDL), which is utilized to describe the functionality of silicon gates or the configu-
ration at the register transfer level (RTL). The most commonly used languages are
VHDL and Verilog. A specific function can be described as an IP-core. This IP-core
can be conceptualized as an IC on a circuit board, wherein the circuit board serves as
the FPGA. The IP-core comprises of input signals, internal logic, and output signals.
For FPGAs, the process of converting the code and loading it to the device differs
from that of software. The VHDL code is synthesized to a netlist, which is then
routed for the specific FPGA. Finally, the FPGA is configured by loading a resulting
bitfile that contains all required information.. [1]

There are three main FPGA technologies that are differentiated from the correspond-
ing configuration memory technology. These are Antifuse, where a small fuse is melted

7

2 Theoretical basis

Antifuse SRAM Flash
Reprogrammable No Yes Yes
Programming Voltage High Vcc High
Volatile No Yes No
Total Ionizing Dose Tolerant Immune High Low
Single Event Upset Tolerant Immune Low Medium
Power Consumption Low Medium Medium

Table 2.2: FPGA Types [3] [6]

to form a permanent memory entry, and two semiconductor memory types, SRAM
and Flash. The different technologies have their advantages and disadvantages, espe-
cially in the space environment. The technologies are listed in Table 2.2 with their
key attributes in comparison. At first glance, antifuse is the obvious choice due to
low power and radiation tolerance. However, it has a detrimental weakness. It is
only possible to program the device once, which is suboptimal for prototyping and
impossible for in-orbit changes or updates. In contrast, SRAM has the advantage of
only requiring a supply voltage to accomplish this. [1]

2.1.3 Example VHDL & Signal Time

In order to illustrate the functionality and signal timeline, a brief example of a full
adder will be employed. As the name implies, the full adder performs the operation
of adding up the inputs. The example comprises of three inputs, a carry (cary) and
two one-bit signals (X(0) and X(1)), as well as one two-bit long output (Y), which
represents the result of the sum of the three inputs in binary code.

In order to continue the analogy of electronics or an IC for VHDL code, it is necessary
to divide the code into two distinct parts. The entity declaration and, consequently,
the ports in lines one to nine of the VHDL code 2.1 correspond to the pads of a
package and are utilized to connect VHDL constructs and to facilitate the transfer of
signals in and out of the FPGA.

It is possible to let multiple VHDL constructs work together to build a larger func-
tionality, like multiple ICs and other components build a complex circuit. How those
constructs are connected is defined at the beginning of the architecture portion. The

8

2 Theoretical basis

architectural Section incorporates a specific design, as well as any internal signals. Ad-
ditionally, the top of the code is where the used packages and other VHDL constructs
are being declared, that are to be utilized.

VHDL is a low-level language that primarily employs binary operations, were registers
and signals are declared. The summation is therefore performed via bit logic, as
illustrated in VHDL-code 2.1. In this context, safe(0) represents the least significant
bit and has the numerical value of one. This safe(0) is high, if the number of input
signals that are high is uneven. In contrast, safe(1) numerical value is two and is
high when at least two input signals are high. If both are high, the result would be a
binary three (2b11).

Code 2.1: VHDL:example Full-adder
1 en t i t y example i s −−FUll_adder
2 port (
3 cary : in std_ulog ic ;
4 X : in std_ulogic_vector (1 downto 0) ;
5 Y : out std_ulogic_vector (1 downto 0) ;
6 c lk_i : in s td_ulog ic ;
7 r s t_i : in s td_ulog ic
8) ;
9 end en t i t y example ;

10

11 a r c h i t e c t u r e r t l 1 o f example i s
12 s i g n a l s a f e : s td_ulogic_vector (1 downto 0) ;
13 begin
14 p1 : p roce s s (c lk_i) begin
15 i f (r i s ing_edge (c lk_i)) then
16 i f (r s t_i = ’1 ’) then
17 Y <= "00" ;
18 sa f e<= "00" ;
19 e l s e
20 s a f e (0)<= cary xor (X(0) xor X(1)) ;
21 s a f e (1)<= (X(1) and X(0)) or ((X(0) xor X(1)) and cary) ;
22 Y<=sa f e ;
23 end i f ;
24 end i f ;
25 end proce s s p1 ;
26 end a r c h i t e c t u r e r t l 1 ;

9

2 Theoretical basis

Figure 2.4: VHDL example Signals

The signal "safe" is employed to illustrate the delay in signal propagation due to
the flip-flops and the dependency on the clock signal. It could be replaced with Y
for efficiency. This delay can be observed in Figure 2.4, where two clock cycles are
required for completion of the process. One cycle for safe to change and one additional
one for the change of Y. This phenomenon is typical of FPGAs and must be taken into
account during design, especially for functions that depend on one another. Although
delays and, consequently, computing in time is present to a certain degree, CIS greatly
surpasses this, as evidenced by the use of multiple logic operations in a single clock
cycle. Lines twenty, and twenty one are performed quasi-simultaneously, and each line
has multiple operations. If this were done via a simple microprocessor, each operation
would be performed consecutively.

10

2 Theoretical basis

2.2 Clock Domain Crossing

Clocks are widely used in digital computing. FPGAs use them as well to indicate
a simultaneous signal transfer or flip-flop change, to perform sequential calculations.
In recent years, the amount of clocks inside a FPGA-design has increased to accom-
modate the increased desire for energy efficiency and speed. Currently, the average
design uses three to four clocks, with some even going up to fifty. Each of these clocks
form a clock domain where they actively control the logic.[7]

These individual domains inside a chip, need to interchange data to work together, as
one system. These clocks often use different frequencies. Furthermore, uncertainties
like clock-jitter or asynchronous clocks with a phase discrepancy influence the ability
to exchange data. [8] While crossing the clock domain boundary with a mismatched
clock edge, the signal can lose its integrity and becomes metastable, resulting in lost
data or erroneous behavior that propagates through the logic circuits.

2.2.1 Metastability

In the digital environment one tends to think only in binary values (0 & 1) but in
reality those values only represent a certain voltage potential inside semiconductor
components. The voltage range between two potentials can not be handled properly
by the components and can cause invalid or faulty signals that propagate through the
system. Additionally, it is easy to assume signal changes happening instantly, even
though in reality that is not the case. Signal lines have a certain impedance due to
charging and recharging the magnetic and electric field. The transistors who build the
logic have a certain capacity which stores energy and therefore delays the change of
the voltage potential. These factors delay the voltage switch. [4] These characteristic
views are illustrated by the signals in the Figure 2.5. The metastable error is the
worst case scenario where the receiving flip-flop was not able to charge or discharge
long enough in order to switch to the other potential. This scenario can happen if the
clock frequency is too high or two or more clock domains interact with each other.

If the different clock domains are not properly aligned during a signal change, it
is possible that metastability occurs. Where the signals don’t reach the required

11

2 Theoretical basis

Figure 2.5: Types of Signal changes from low to high

potential for a high value before sampling by the receiver clock, what can be seen
in Figure 2.5. Therefore, the signal can hover in an undefined state before settling
randomly to either high or low. [8]

Mean time between failure (MTBF) is an indicator of system reliability. If the value
exceeds the expected runtime of the system, it is unlikely that an error will occur
during operation. To determine the occurence of metastability, the Formula 2.1 can
be used.

MTBF =
exp (tres/K1)

K2 ∗ fclk ∗ fdata
(2.1)

The equation above suggests that the receiver clock frequency (fclk) and input signal
frequency (fdata) have a significant impact. The resolution time (tres), or the time
since a clock edge, also has a significant impact as it indicates the time the signal has
to stabilize. The type of FPGA used is also important due to the specifics of how
fast the signal can change depending on the structure and material used, represented
by K1 and K2. [9] This means the only practical values to change are the clock
frequencies.

Metastability errors can be classified as either setup or hold time violation. Depending
on the relative phases of both clock edges. Signals can change their values at a rising
clock edge.[10] If the sampling rising clock edge (Clk2) is too close to the transmitting
clock edge (Clk1), it is possible that the transmitted signal (S1) wasn’t able to change
in time. Thereby, the received signal (S2) does not correspond to S1. This constitutes
a setup violation.[9] This correlation is visualized in Figure 2.6.

Generally, signals are either set for longer duration or change rapidly, i.e. indicating
a state, or rapidly changing due to calculations or bus transmissions. From this, two

12

2 Theoretical basis

Figure 2.6: Setup Time Violation Waveform

Figure 2.7: Hold Time Violation Waveform

distinct error patterns arise, as depicted in the figures 2.6. The left one depicts a
longer duration of signal hold this is relatively stable, because the signals settles at
the next clock edge. [10] Nevertheless, this brings uncertainties for developers and
can be especially problematic if the signal is combined with others. The right Figure
shows a rapidly changing signal transmission, in which whole bits can be lost and
therefore can cause reliability issues or even functional failure.

Hold time violations appear when the transmitting signal holds too long high and
the receiver incorrectly samples the signal.[10] The arising problems are visualized in
Figure 2.7. Unlike setup violations, the sample value is unexpected high instead of
low. Even though, it seems less error inducing if the signal is switching too early, it
still can cause errors with timing, which is detrimental for communication and real
time applications.

13

2 Theoretical basis

2.2.2 Synchronizers

To prevent CDC-errors, synchronizers are used to remove metastability, by creating
a crossing where the output has a defined value at all times. This removes unde-
fined values between high and low, that would propagate through the logic and cause
further problems in the logic. Although that removes part of the concerns, timing
uncertainties still remain. Depending on the use case, different synchronizers can be
implemented with their respected advantages and disadvantages.

2.2.2.1 2 Flip-Flop Synchronizer

As mentioned before, a crucial part of an FPGA are flip-flops (FF), that serve as
memory and beginning and endpoints of signals. By introducing a second receiver
flip-flop in series, the risk of metastability is greatly reduced, creating a two flip-flop
synchronizer (2FF). [9] While this is a common synchronizer, it still has the ability
to go metastable [9]. Therefore, it is used for low data rates.[8]

Figure 2.8: 2FF-Synchronizer

After the data signal changes and crosses the clock domain boundary after exiting the
first flip-flop, the first receiver flip-flop, samples it with a high metastability change,
but the third flip-flop or the second receiver flip-flop, provides a safe output signal.
Meanwhile the metastable flip-flop has a full clock cycle to become stable. While the
third flip-flop delays the signal. This approach reduces the metastability rate greatly
with very low resource consumption.

14

2 Theoretical basis

Figure 2.9: 2FF signal timing

To visualize this principle, Figure 2.9 is used. In this Figure, the data signal changes
from low to high at the output of the first flip-flop, which is controlled by the first clock.
The second flip-flop (2FF) samples the signal (S1), but metastability occurs. Resulting
in an undefined state, shown in red. But due to the characteristics of the synchronizer,
the state of the outgoing signal is always defined, as illustrated as Receiver Signal. To
note is that depending on the type of occurring metastability, the time required to
move through the synchronizer varies. As shown through possibility one and two, this
attribute also brings some uncertainties in the transition and resulting in an effect
that data can not be reliably passed through the clock domain boundary with this
type of synchronizer. Therefore this type of synchronizer is only recommended for
single bit signals.

It is possible to make the flip-flop synchronizer even more reliable by using a cascade
of flip-flops. While the MTBF directly correlates with the number of flip-flops (N)
used, see adjusted MTBF equation 2.2. While increasing the occurring signal delay.
[11]

MTBF =
exp((N − 1) ∗ tres/K1)

K2 ∗ fclk ∗ fdata
(2.2)

15

2 Theoretical basis

2.2.2.2 Gray code Synchronizer

If we use a 2FF synchronizer for a multi bit signal, numerous problems arise. For
serial transmission the timing of received bits can not be presumed as correct, due to
setup and hold time violations, that could change the signal timing at the receiver. If
the signals are transmitted in parallel, the question arises as to when all the bits are
correct before the logic samples the signals. Or rather, after the different signal paths
have reconverged, and when do they change again. [9]

To circumvent this issue while still using 2FF a synchronizer to reduce metastability,
is the use of gray code. Gray code is a special way of changing a multi-bit signal. The
parallel signals can only change one bit at a time (Hamming distance = 1) with this
technique a changed signal can be positively identified after exactly one bit is different
compared to the previous signal. Therefore, signal integrity can be assured.

Gray code
00 −→ 0X −→ 01 −→ X1 −→ 11 −→ 1X −→ 10 −→ X0 −→ 00

Binary
00 −→ 0X −→ 01 −→ XX −→ 10 −→ 1X −→ 11 −→ XX −→ 00

Table 2.3: Gray code and binary counting

To illustrate the principle of gray code, the Table 2.3 is used. A two bit parallel signal
counts upwards until an overflow occurs. The changing bit (X) of the gray code never
exceeds the specified one bit, while still allowing all possible values to be reached.
The obvious disadvantage of gray code is the long transition time between signals,
that have a large amount of different bits (high Hemming distance) and the necessary
use of an additional signal to indicate when it should be read, either as an individual
signal or as a bit in the gray code multi-bit signal.

16

2 Theoretical basis

2.2.2.3 Asynchronous FIFO

Even though gray code synchronizers are a reliable solution for multi-bit signals, their
throughput is rather limited. A common solution is an asynchronous First in First
out (FIFO) synchronizer, when a large data rate is needed.[8]

Figure 2.10: First in First out (FIFO) Synchronizer

To achieve the high transfer rate and reliability, both clock domains share a common
memory block. A read and write signal and address pointers are used to manage the
memory. While the read and write signal is used to control memory operations, the
more important part is the address pointers, that indicate which register is being used
by the corresponding clock domain to prevent simultaneous access and thus data cor-
ruption. During a read or write operation, the affected register is in the corresponding
clock domains jurisdiction and is therefore no longer affected by metastability. How-
ever, this requires the address pointer to cross the clock domains. This crossing is
typically done by using a gray code synchronizer, ensuring the integrity of the address
pointer. Large differences in the access pointers can be circumvented by intelligent
register usage, like only accessing close registers that the gray code pointer is able to
quickly point to. Thus enabling fast communication. [9]

17

2 Theoretical basis

2.2.2.4 Single Stage Synchronizer

The aforementioned synchronizer types have one thing in common, they define signal
paths and structures to prevent metastability. An alternative approach would be to
detect the relative distance of both clock edges and with that predict the metastability
risk and mitigate it.

Figure 2.11: Single stage synchronizer receiver clock dynamically changing [12]

[12] proposes to that end the use of 3 different phases shifted receiver clocks as well
as in situ error detection to predict future metastability. This information is used to
choose a clock which is not affected by metastability and therefore minimize potential
errors. As can be seen by following the red path in Figure 2.11. By doing so, the
use of a single receiver flip-flop as a receiver is possible. Thus, enabling a lower
data transfer latency and power consumption.[12] This approach requires additional
external resources with possible repercussions on hardware designs, such as the phase
shifted clocks. Furthermore, it is a very complex design.

18

2 Theoretical basis

2.2.3 CDC Detection

The detection of CDC issues is a challenging task, primarily due to the inconsistency
in the error characteristics exhibited by a hardware system. As previously stated, the
statistical error referenced in equation 2.1 is characterized by an occurrence probability
that renders its identification challenging.

For this reason, and to circumvent the production of multiple ASIC units or debug
embedded systems, it is preferable to identify structures that could potentially induce
violations at an early stage of the design process. The detection is therfore typically
conducted prior to synthesis, after all functions were implemented.

It is common practice to employ software tools such as Questa from Siemens, Spyglass
from Synopsys, or the Conformal CDC checker from Cadence for detecting CDC viola-
tions. These tools support the common languages VHDL and Verilog. The detection
methods employed by those tools often work in tandem and can be differentiated be-
tween static and dynamic methods. Static methods check the crossing and its struc-
ture to identify problematic areas, whereas dynamic simulations run, as the name
suggests, a simulation where the resulting signal timeline is checked for violations.
[11]

2.2.3.1 Static Verification

Static verification can be divided into two distinct parts. The initial check of signals
that cross the clock domain boundary, including the assessment of whether synchro-
nizers are employed there, is one such part. Another part is the evaluation of whether
signals reconverge after crossing the clock domain boundary. [11] Secondly, assertion
or formal methods are employed. These methods utilise the properties and mathemat-
ical methods of Linear Temporal Logic to ascertain whether the property is untrue at
any point. If the property is false, this would indicate an error. [13] In other words,
the property represents the intended behavior. [14] [15]

Assertion are capable of verifying boolean properties over explicit time domains, en-
compassing synchronous and asynchronous clocks, as well as delays. This enables the
assessment of the functionality of the developer in comparison to a specific behavior,

19

2 Theoretical basis

indicating that it is not solely utilized for CDC but also for general verification. The
limitation of assertion is that it is designed to handle only Boolean values, i.e., 1 and
0. While this is sufficient for typical applications, it is unable to model metastability,
where the value lies between those two values, as described in Section 2.2.1. This
limitation on the otherwise powerful tool’s capabilities with regard to CDC violations
is noteworthy. [14]

The primary advantage of assertion-based verification is the capacity to validate the
functionality as intended of the IP-core in the presence of potential random delays,
which may be attributed to CDC-related issues that can cause signal delays. This
can even occur when synchronizers are employed, as illustrated in Section 2.2.2.1.
To integrate these considerations into the analysis, assertion-based techniques utilize
pseudorandom delays that induce delays at the crossing. These delays can occur
sporadically to emulate CDC behavior.

2.2.3.2 Simulation Based Verification

Simulations are designed to emulate the behavior of the IP-core, though they may
be executed at varying levels, depending on the test bench. Some may simulate
the signal timings and ascertain whether the sampling clock edges are closer than a
previously defined threshold, which would indicate a CDC violation. Other simulators
may perform a Spice simulation at the flip-flop level to identify metastable phenomena.
Such an undertaking would necessitate a profound understanding of the specific silicon
technology employed. [11]

Nevertheless, simulations can accurately detect issues that may be overlooked by
static methods due to the fact that they do not go through the same operations. One
disadvantage is the discrepancy between reality and simulation due to a multitude
of unpredictable parameters, including induced power due to EMC, manufacturing
tolerances, and available power supply due to other function blocks on the integrated
circuit (IC). These factors alter the precise switching time and probability set up and
hold time violations. Additionally, simulations necessitate a prolonged runtime due
to the extensive computation of each step and signal. Furthermore, a test bench is
required to interact with the IP-core and checks all possible inputs. [11]

20

2 Theoretical basis

2.3 Space Wire

SpaceWire is a high-speed, low-power, and standardized serial communication pro-
tocol designed specifically for use in spacecraft and satellite systems. The European
Space Agency (ESA) developed SpaceWire in collaboration with academic institutions
and international partners. It facilitates efficient and reliable data transfers between
various on-board components, including sensors, instruments, processors, downlink
telemetry, and mass-memory units. It is employed by numerous international space
agencies, including NASA, ESA, JAXA, and Roskosmos, for a multitude of missions,
such as Bepi-Colombo and the James Webb Space Telescope. [16]

SpaceWire employs a bidirectional, full-duplex data link with a peer-to-peer connec-
tion and the option of utilizing routing switches to establish a communication network.
With a high data rate of 2 to 200 Mbps in both directions, and the potential for data
rates of up to 400 Mbps through the use of matched impedance connectors. The
signal is transmitted for each direction, over a twisted pair cable with differential
signals. Those differential signals are a data signal and a strobe signal. The strobe
signal changes states when ever the data signal does not. This approach allows for the
recovery of clock information and the implementation of a redundant transmission in
the event that the clock frequency is known. The clock information can be obtained
by XOR-ing the data and strobe signal, as illustrated in Figure 2.12. [16]

Figure 2.12: SpaceWire differential Signals and clock corollation

SpaceWire data is transmitted in packages, with a fixed format depicted in Figure
2.13. In the event that a SpaceWire network with routers is in operation, the package
commences with the destination address. In the case of a point-to-point connection,
this address is not a required component. In a network context, the package either

21

2 Theoretical basis

contains the recipient port identity (or node) or the path information the package must
traverse, since the network and all participants are known. The subsequent element
of the package is the cargo, which represents the transmitted data. The cargo frame
can contain any number of bytes, as long as the receiver is able to buffer and process
them. If this is not the case, a flow control process is initiated where the sender stops
transmitting the cargo. In consequence, SpaceWire is not subject to size limitations
and permits uninterrupted data transfer. The final frame marks the conclusion of the
package and is the end-of-package marker (EOP/EEP). Dependent if an error was
detected during transit (EEP) or not (EOP). [16]

Figure 2.13: SpaceWire Packet Format [16]

2.3.1 SpaceWire Network

The process of establishing a link between two nodes is referred to as link initialization.
The link initialization procedure is first performed in order to establish a connection.
A state machine controls the progression through the following states: The ErrorReset
state, the initial state, it is also the state to which the controller returns after an error
has occurred. The ErrorWait state enables the Rx, which then switches to ready after
a set time of 12.8 µs. The Started state is then archived, where a Null message is
sent. The Connecting state is then reached, where control tokens can also be sent.
After the necessary tokens have been exchanged, the Run state is reached, where the
nominal data exchange takes place.

Once the link is established, data is sent as packets across the network. The packets
are transmitted asynchronously, meaning they are not constrained by a global clock.
Instead, each link operates independently at its own negotiated speed. This flexibility
allows nodes with different processing capabilities to communicate efficiently.

In complex SpaceWire networks with multiple nodes, routers facilitate the flow of data
between nodes that are not directly connected. SpaceWire routers forward packets
based on the address header information, ensuring that data reaches its intended des-

22

2 Theoretical basis

tination. The address header can either have a path or a logical address, as mentioned
before briefly.

Figure 2.14: SpaceWire Path Addressing [16]

The most effective method for comprehending the path addressing system is through
the use of an analogy that compares it to providing directions to a person navigating
a network of roundabouts. Where an instruction is embedded for each roundabout
or router, the instruction indicates which exit or port the package must take. The
exit or path instructions are listed within the package. Upon selecting the exit, the
corresponding instruction is discarded by the router, as it is no longer required. This
concept is visualized in Figure 2.14. This is possible due to the fact that the network
topology is known to the designer. An exit or port may be assigned an address within
the range of 0 to 31, as a SpaceWire router is capable of supporting a maximum of
31 ports. [16]

In contrast, logic addressing employs the destination address to determine the req-
uisite path. This pathfinding is accomplished by embedding routing tables into all
routers that are aware of the direction toward the destination. If we revert to the
roundabout analogy, it can be argued that at each roundabout (router), multiple
signs are displayed indicating the direction to all potential destinations, as depicted
in Figure 2.15. This approach offers the benefit of requiring only a single address byte,
but it needs the use of routing tables for each router. The logical addresses can span

23

2 Theoretical basis

Figure 2.15: SpaceWire Logical Addressing [16]

a range of 32 to 255, ensuring that both addressing types are clearly distinguishable.
[16]

2.3.2 Structure

SpaceWire can be divided into several layers. The first layer, which is responsible
for the mechanical and electrical connection, has clear specifications regarding PCB
tracks cables, shielding and their impedance, to ensure low EMC, high data rate and
no error operations.

The encoding and decoding layer pulls the bus high and low, as well as serializing and
deserializing the 10 bit token, of which a package is consisting of. The token carries 8
bit of data as well as a parity bit, to validate the message integrity and a data-control
flag that indicates that the data slot has a control message to be interpreted by the
receiver. The token is depicted in the Figure 2.16. [16]

The packages are build by the data layer, which also establishes the connection, by
controlling the flow of information, error handling and broadcasts.

A typical SpaceWire IP-core is divided into multiple clock domains to offer the ability
to transmit and receive at different data rates. The Figure 2.17 is a typical structure

24

2 Theoretical basis

Figure 2.16: SpaceWire Token [16]

for this. While the encoding layer is typically part of the transmitting and receiving
clock domain, in the Figure clk2 and clk3. The data layer is part of the computational
module, making it easy for other functions to access it. This specific architecture
recovers the receiver clock, from the received strobe and data signal. In doing so,
insuring that the frequency and phase match at all time. [17] This is one possibility,
another is to have a separate clock that controls the receiver domain, creating an
independence from the transmitted clock signal that is more susceptible to glitches,
e.g. EMC induced noise.

Figure 2.17: Nominal SpaceWire Clock Domains [17]

25

3 Used IP-Core & Tool

Now that we have reviewed the basics of SpaceWire and CDC issues and mitigation
options, such as synchronizers and detection capabilities, it is time to put this knowl-
edge to work. To do this, it is necessary to examine the IP-core that has suspected
CDC problems and the capabilities of the CDC detection tool that will be used for
CDC analysis.

3.1 The SpaceWire ip-Core

The SpaceWire IP-core has been employed in a number of development projects,
during a code review some anomalies have been identified. Although the IP-core
works initially, such anomalies can manifest randomly, which would be consistent
with the occurrence of CDC errors and should be analysed. The aforementioned
IP-core is open-source gateware, which is available to the public.

The SpaceWire IP-core incorporates both a fast and generic mode, enabling the at-
tainment of a higher transmission rate through the utilization of the fast mode. For
a CDC analysis, the fast mode is the only relevant component, as it employs separate
clock domains to enhance the data rates, consequently increasing the respective clock
speeds at the receiving and transmitting ports of the IP-core.

The IP-core is divided into multiple smaller blocks, each of which performs a specific
function. This approach reduces the overall complexity of the design, while also fa-
cilitating better maintainability through the enablement of reuse. The various blocks
are illustrated in Figure 3.1. Furthermore, this methodology facilitates the develop-
ment process by enabling the simulation and testing of specific components, thereby
improving the debugging process.

26

3 Used IP-Core & Tool

Figure 3.1: Block Diagram of the SpaceWire ip-Core [18]

The spwstream represents the top-level entity within the IP-core, wherein all sub-
ordinate entities are instantiated and the connecting ports (in and outgoing) of the
IP-core are defined. A fundamental component is the spwlink, which serves as a finite
state machine for controlling the connection. The data is conveyed in a FIFO scheme
and stored in the spwram blocks for receiving (RX) and transmitting (TX) data. The
transmitted data is converted into a SpaceWire-specific bit stream, as described in
Section 2.3, and sent by the spwxmit and spwxmit_fast blocks. The receiver com-
prises two blocks: the spwrecv and the spwrecfront_generic or spwrecfront_fast. The
spwrecfront_fast is primarily responsible for decoding the incoming bit stream into
interpretable SpaceWire tokens, the tokens are then interpreted by the spwrecv into
data and subjected to an integrity check, with the corresponding parity bit. [18]

The fast mode of the IP-core utilizes three distinct clocks, the main clock or system
clock (sysclk) and the two faster ones for the receiving (rxclk) and transmitting do-
main (txclk). Those are used by spwrecfront_fast and spwxmit_fast respectively,
additionally to the sysclk. To synchronize those clock domains, the IP-core employs
two synchronizing structures, that are explained in the following subsections.

27

3 Used IP-Core & Tool

3.1.1 2FF IP-core Synchronizer

The SpaceWire IP-core uses a 2FF synchronizer for a large portion of signals, namely
status and ... signals, which is a common practice for single signals. It is a separate
function block, in order to be able to be implemented where needed. This is done
by declaring the function block as a component, with the existing ports and assign-
ing the connecting signals. The assignment is done as depicted in VHDL-code 3.1.
Where a specific component is created with a corresponding structure, in this case the
component is syncrx_reset with the specific structure or function of the synchronizer
(syncdff) and the signals are assigned. While the left signals related to the synchro-
nizer component the right ones are the connected signals. For instance, the clk is part
of the dff component, this can be seen in the VHDL-code 3.2, and is connected to the
rxclk, our clock signal.

Code 3.1: component assignment example
1 syncrx_reset : s yncd f f
2 port map (c l k => rxc lk , r s t => r . rxd i s , d i => ’1 ’ , do =>

syncrx_rstn) ;

The ip-Core synchronizer follows the core principles as explained in Section 2.2.2.1,
by using two flip-flops, as can be seen in VHDL-code 3.2. By using it as a component
the use of an assignable clk is needed, therfore the clk signal can be assigned to either
of the three clocks sysclk, txclk or rxclk.

Code 3.2: IP-core 2FF synchronizer
1 en t i t y syncd f f i s
2 port (
3 c l k : in s td_log i c ;
4 r s t : in s td_log i c ;
5 di : in s td_log i c ;
6 do : out s td_log i c
7) ;
8 end en t i t y syncd f f ;
9 a r c h i t e c t u r e syncdf f_arch o f syncd f f i s

10 begin
11 do <= syncd f f_ f f 2 ;
12 proce s s (c lk , r s t) i s

28

3 Used IP-Core & Tool

13 begin
14 i f r s t = ’1 ’ then
15 −− asynchronous r e s e t
16 syncd f f_ f f 1 <= ’ 0 ’ ;
17 syncd f f_ f f 2 <= ’ 0 ’ ;
18 e l s i f r i s ing_edge (c l k) then
19 −− data synchron i za t i on
20 syncd f f_ f f 1 <= di ;
21 syncd f f_ f f 2 <= syncd f f_ f f 1 ;
22 end i f ;
23 end proce s s ;
24 end a r c h i t e c t u r e syncdf f_arch ;

The synchronizer differs slightly from the in Section 2.2.2.1 described, by using a reset
signal to pull the internal and outgoing signals to ’0’. As well as attribute declaration
to remove unwanted or erroneous optimization during synthesis, that can be seen in
the full syncdff code in the appendix A.3. These attributes are specific for the Xilink
synthesis tool, since the IP-core was developed for a Xilinx FPGA specifically the
Spartan-3. [18] For instance, the use of shift-registers is disabled, which often are
fixed silicone structures and have different behavior than two flip-flops. Furthermore,
register duplication is disabled where additional flip-flops are used by the synthesizing
tool, to improve the signal timing by duplicating the function in different parts of the
FPGA and thus decreasing the signal path. This additional elements and changed
paths, could have adverse effects for the synchronizer, because the structure can be
changed. 2.2.2.1

3.1.2 FIFO IP-core Synchronizer

The IP-core employs a FIFO synchronizer to facilitate the transfer of received and
transmitted data across the clock domain boundary. Furthermore, the FIFO serves
as a buffer, this is also a primary function that is used in the IP-cores generic mode.
The generic Receiver does not use the FIFO, because the received data can be directly
relayed to the spwrecv, spwlink and lastly the user blocks, without the need to store
the messages.

29

3 Used IP-Core & Tool

The FIFO component is a scalable solution, due to the use of the generic type abits
and dbits, that allow the use of a changeable signal in this case the s_mem is used
as a register size, as can be seen in the VHDL-code excerpt 3.3. It employs a package
signal type to generate static ram blocks, that can be interpenetrated as such from
the synthesizer.

Code 3.3: IP-core FIFO excerpt
1 a r c h i t e c t u r e spwram_arch o f spwram i s
2 type mem_type i s array (0 to (2∗∗ ab i t s − 1)) o f
3 s td_log ic_vector (dbits −1 downto 0) ;
4 s i g n a l s_mem: mem_type ;
5 begin
6 proce s s (r c l k) i s −− read proce s s
7 begin
8 i f r i s ing_edge (r c l k) then
9 i f ren = ’1 ’ then

10 rdata <= s_mem(to_integer (unsigned (raddr))) ;
11 end i f ;
12 end i f ;
13 end proce s s ;

The IP-cores FIFO incorporates both a read and a write portion with potentially
separated clock domains as well as an enable signal. The read portion can be seen
in the VHDL-code 3.3 and is very similar to the write portion with the only real
difference being the signal assignment on enable activation being toward the register.
The FIFO component works exactly as described in the Section 2.2.2.3 and is therefore
suited for data transmission over clock domain boundaries. Although, the graycode
counter is not included in this component to be used more freely in a none CDC
manner.

30

3 Used IP-Core & Tool

3.2 Questa CDC Tool

Questa CDC is a tool used for finding CDC Violations and verifying hardware descrip-
tion level designs (e.g. VHDL or Verilog designs) integrity in this aspect. Developed
by Siemens EDA and being part of a verification suite that contains a collection of
formal-based functional verification applications. Focusing on automated analyses
and providing a graphical user interface (GUI), to enable user friendly debugging of
detected CDC issues. The Questa CDC suite contains three applications:

• Questa CDC

• Questa Gate-CDC

• Questa ResetCheck

These applications are specialized for certain use cases, for instance the Gate-CDC
specializes in synthesized code, where a gate level netlist was generated. Similar to the
ResetCheck, where reset domain crossing is being analyzed. Lastly, the Questa CDC
application is the most prominent one, that includes besides a normal CDC analyses,
a transfer protocol checker and a method of injecting meta stability effects. The
CDC application can further be divided into a static, protocol and FX-metastability
injection methods.[19]

The static method, which starts with the report-clocks phase of CDC, is dedicated to
the detection of clock trees within the design. During this analysis, the tool identifies
all signals that drive clock storage elements and attempts to connect these clocks in
order to map out the design’s clock trees. It is very important for the CDC static
analysis to be conducted accurately, that the identification of clock trees and the
grouping together of those associated with the same clock domains is correct. Only
those paths that traverse the boundaries of distinct clock domains are identified as
such and subjected to further analysis. The examination of these CDC signal path
crossings and their corresponding CDC schemes, which encompass the presence or
absence of synchronizers, is then conducted. These CDC schemes are subsequently
ranked according to their severity, either in accordance with the CDC report scheme
directive or by default settings. [19]

31

3 Used IP-Core & Tool

CDC protocol verification represents a dynamic extension of static CDC analysis,
thereby enhancing the thoroughness of clock domain crossing evaluations. This pro-
cess comprises two parallel components: simulation using CDC protocol assertions
and formal analysis based on CDC protocol properties. The simulation component
employs CDC protocol assertions to actively monitor and verify correct behavior dur-
ing the design’s execution, identifying any protocol violations in real time. Meanwhile,
the formal analysis component utilizes CDC protocol properties to rigorously prove or
disprove the correctness of clock domain crossings through mathematical verification
methods. The formal methods are additional to already used ones, that check the
synchronizers. The additional ones check the signal functions of the IP-core. [19]

The CDC-FX metastability extension enhances the simulations of the compiled de-
sign with metastability injection logic, which emulates the behavior of a hardware
implementation experiencing random metastability effects. The introduction of this
additional logic results in the simulation of potential metastability events, thereby
emulating the unpredictable nature of real-world hardware conditions. While end-to-
end tests may pass under standard simulation conditions, they can potentially fail
when subjected to these metastability effects unless the design has been appropri-
ately "metastability hardened." This process of hardening is critical to ensure that
the design can reliably handle metastability in actual hardware, thereby preventing
potential failures in clock domain crossings and improving the overall robustness of
the system. [19]

32

4 CDC Violations & Recovery

After reviewing the basics of digital electronics and the problems of CDC, SpaceWire,
and the specific IP-core and its synchronizers, as well as synchronizers in general, it
is time to perform the CDC analyses. Beginning with the setup and continuing with
the analyses of the detected violations as well as potential changes to the IP-core to
correct issues.

In the context of CDC analyses, it is only the Questa CDC application that is being
utilized, given that the IP-core is in the register transfer level. Consequently, the
Gate-CDC can be excluded from consideration. Moreover, the ResetChecker can be
disregarded, as the sole reset incorporated into the IP-core is utilized exclusively for
the entire IP-core, rather than during normal operation and the IP-core works. There-
fore, it is highly unlikely that the sporadic data errors stem from the reset. The reset
primarily sets all registers back to their default values. Given the time constraints, it
is not feasible to implement all the possible CDC analysis methods, as they require a
significant amount of time for initial setup and learning how to employ them. The dif-
ferences between the methods are considerable. For example, the protocol verification
requires formal verification expertise and a detailed understanding of the IP-core’s
internal workings to define the necessary properties. In contrast, metastability injec-
tion necessitates an entire counterpart for simulation, enabling the IP-core to interact
with the surrounding environment. Considering the diverse analytical techniques, the
static analysis offers comprehensive coverage with a relatively straightforward setup.
Consequently, the static analysis serves as the optimal initial approach, providing
good detection results, as demonstrated in the subsequent analyses. Furthermore, it
builds a foundation for subsequent methods to be employed at a later time if deemed
necessary.

33

4 CDC Violations & Recovery

4.1 Setup

To perform a correct analysis, the setup is a crucial step. For an analysis, to work
correctly, the setup includes:

• prepare the IP-core

• creating a Makefile

• include all necessary IP-core files

• define clock signals

• define clock domains of signals that the tool is unable to infer

For a formal verification, an additionall constraint file is necessary where all the pos-
sible properties and constrains are defined. A simulation would also require a whole
counterpart, to and from which the transmissions are sent, as well as a simulated
main computational element, where all the received messages originate from and all
delivered messages are sent to.

Since the IP-core has two operating modes, fast and generic, it is important to do
the proper selection in the IP-core. Furthermore, the system and transmission clock
frequencies need to be defined, in order to enable the fixed SpaceWire signal timings,
e.g., during link handshake. It is essential for the correct function of the IP-core that
the transmission and receiver clock frequency is higher than the system clock. [18]

The makefile (A.5) is used to quickly start the analysis after it is setup, since it
holds the necessary commands and executes them in sequence on activation. The
commands of the makefile is configured to start by removing any previous results, to
avoid outdated results, although this becomes only relevant from the second execution
onward. Secondly, the logical VHDL description is mapped to a physical configuration,
i.e. forming simulated signal paths, beginning at the device under test which is the
top entity. Then it is compiled into a working design. Lastly, the CDC analyses is
performed, with the directives specified taken into account. [19]

The next step is the filelist in which all necessary blocks for the IP-core are defined
with their paths. This is important for the tool to find the location of the file to be able

34

4 CDC Violations & Recovery

to link them together, especially if they are distributed between different directories.
The filelist for this project is depicted in the appendix A.6.

Similar to the IP-core, the tool must be aware of all clock signals and their respective
period or frequency in order to function correctly. If wanted, one can impose user
constrains on the CDC analyses, that are also included in the directives file. The
basic setup has been done at this point, although if the analysis is run, multiple
errors are detected. These errors are caused by signals, which clock domain can not
be inferred by the tool and therefore need to be defined manually in the directives
file, this results in the finished directives file (A.7). After this is done, the analyses
can be run successfully.

Figure 4.1: Detected Errors

The CDC check results are illustrated in Figure 4.1. Six initial violations were identi-
fied, which were classified into three distinct categories: Single Source Reconvergence
of synchronizers, a Multi-bit signal across the clock domain boundary, and a FIFO
pointer mismatch. Additionally, to the violations, which are likely to be problematic
and require further examination, the tool identifies proven crossings that are deemed
safe and crossings that warrant further assessment. These evaluation crossings should
be subjected to manual examination, as they may potentially cause CDC errors, al-
though this is unlikely. Some marked evaluations are connected to violations and can
help find the CDC error inducing part.

35

4 CDC Violations & Recovery

4.2 Single Source Reconvergence of synchronizers

The violation that is detected the most is reconvergence, more specifically Single
Source Reconvergence. That refers to a situation where a signals from one clock
domain is passed through multiple synchronization paths and then reconverges in
another clock domain. Even if each path individually uses proper synchronization
techniques, like a 2FF synchronizer, the reconvergence point can introduce timing
issues, that are resulting from CDC induced delays and therefore classified as CDC
violations.

Figure 4.2: Simple Reconvergence Structure

Figure 4.3: Reconvergence Signals

36

4 CDC Violations & Recovery

For example, considering a two bit signal S in clock domain A. This signal is sent to
clock domain B, where it is synchronized by two separate paths, P1 and P2. One path
for each bit. After crossing the clock domain boundary, these two paths reconverge at
a logic element in clock domain B. In the Figure 4.2 depicted example, the signal is
synchronized with two 2FF synchronizers, for each bit, one. The signal reconverges in
an and logic block. If there are differences in the delays due to metastability, of one of
the paths (P1 or P2), the signals may not align properly at the reconvergence point.
This can lead to inconsistent data being latched into the downstream logic, causing
functional errors. This signal delay and the resulting problems are visualized in Figure
4.3. The second signal bit (S2) suffers a delay caused by metastability after taking
the second synchronizer path P2. This delay results in an unexpected and erroneous
signal (SReconverged) after reconvergence. Even though S2 still correctly represents the
signal changes in the B clock domain, just a cycle delayed.

This demonstrates how a small delay can cause multi bit signals to lose their integrity,
and how small deviations from assumed signal changes can have a large impact on
the resulting logic.

4.2.1 FIFO Violation

The first reconvergence violation is depicted in Figure 4.4, in which signals originating
from the txclk domain reconverge after some binary logic blocks and multiplexers
reconverge and are saved in the register r. Specifically, the signals txflip0 and txflip1
which are used to indicate to the system clock domain that a token was pulled to
the transmission clock domain. This indication frees a token slot, in the system clock
domain, that functions as a buffer memory. The tokens are a single 10 bit SpaceWire
message, as described in Section 2.3.

37

4 CDC Violations & Recovery

Figure 4.4: First Violation’s Logic Circuit

As previously mentioned, reconvergence errors appear when multiple signals are de-
pendent on one another in time, i.e. have a meaning together like a two bit signal.
Therefore, the first step of analyzing the violation is to decern if the two signals have
a temporal dependency. For that, the following points need to be checked.

• is there essentially a two/multi bit signal?

• does the clock domain boundary crossing have a synchronizer?

• does it have an effect if one or both are delayed for a few cycles?

• is this effect caused by the delay accounted for?

The two txflip signals work independent from each other, indicating the status of the
corresponding token space, i.e. transmitted or waiting to be transmitted. Therefore,
the answer for the first point is a single bit signal. Secondly, checking the transit of the
clock domain boundary. Where 2FF synchronizers were employed. These synchroniz-
ers are partly visible in the logic circuit diagram in Figure 4.4, on the left side. The
synchronizers are here a good choice because both signals work independently. Which
was the answer for the first point. The effects a delay induced due to metastability
would have on the function needs to be determined. In this case, one of two outcomes
could appear. One, both signals are delayed that results in a blocked buffer and a
delayed delivery of tokens. Two, one of the signals is delayed. That would change the
order of delivery, since the non delayed token is able to be transmitted. This switch

38

4 CDC Violations & Recovery

in token delivery is for applications that only require a single byte neglectable or if
the packages do not need to have a defined order to them. For packages that require a
defined token order, the corresponding ordering information would need to be inside
the transmitted token. This imposes a restriction in the usage of the IP-core. In the
case of delayed token delivery, the IP-core sends a "NULL" message, as described in
Section 3.1, and is therefore not critical. Furthermore, this is only relevant for very
large frequency differences, since the time to send a token must be less than the delay
added to the time it takes for the token to cross the clock domain boundary and for
the status signals to change.

The NULL message is a form of control code in which is used to keep the data link
active, in the event that no data or control messages are sent and ensure a connection
i.e. enabling disconnect detection. [16] The composition can be seen in the Figure
4.5.

Figure 4.5: SpaceWire Null Message[16]

To conclude, by evaluating the three points, the CDC violation can be ignored if the
token order is not a strict requirement or the frequency differences of both clocks are
small.

4.2.2 Reset Violation

This violation was detected due to the reset signal rst, resetting the flip-flop in the tx-
clock domain of three 2FF synchronizers, as depicted in Figure 4.6. Since it is part of
the reconvergence violations, which would affect the txen, sysflip1 and sysflip0 signal,
if metastability was to occur on the rst signal. Furthermore, the reset signal there-

39

4 CDC Violations & Recovery

fore crosses the clock domain boundary without a synchronizer and would therefore
constitute as an CDC violation.

Figure 4.6: Second Violation/ reset violation

A reset signal constitutes a special case when it comes to CDC issues. Assuming a reset
synchronizer would be implemented, this synchronizer would often have a reset port
on their own, presenting us with the same problem. Furthermore, this approach would
need the reset to be pulled to the corresponding value for long enough to propagate
through the synchronizer. In this case it would be enough to simply pull the reset for
long enough to settle even in the event of metastability occurring. Notably, the reset
does not use a synchronizer due to those reasons.

The main problem with resets is not the activation, but the release, where the logic
starts to operate again. It is important that the functions start at the same time.
Otherwise, CDC problems can cause delays in the initial signal changes of individual
signals. These signals usually form a larger logic circuit that experiences issues similar

40

4 CDC Violations & Recovery

to reconvergence errors. In the case of the SpaceWire IP-core, this problem is reduced
by using a state machine as the primary control instance. In order to enter the next
operating state, a number of conditions must be met, allowing any delayed signals
and logic to catch up and resynchronize. Due to those reasons, the reset violation
warrants no changes.

4.2.3 Pointer Crossing bitcnt & headptr

The SpaceWire IP-core uses a FIFO synchronizer for the received data. This FIFO
consists of multiple memory blocks, that are referenced with an address pointer, which
points to one of tree memory registers, each of them being one block, for data transfer.
This pointer allows for continuous operation by switching between the write and read
dependency, for the FIFO memory, accordingly. This dependency on both clock
domains means that this pointer needs to be synchronized in a fitting manner. The
synchronization was implemented in the IP-core as a 2FF synchronizer for each bit of
the pointer, as depicted in Figure 4.7, which can result in erroneous behavior, due to
delay caused by metastability as described in Section 2.2.2.2.

Figure 4.7: Pointer Error Diagram

41

4 CDC Violations & Recovery

Furthermore, the implemented pointer increments normally and not via graycode,
what is a major risk. With graycode the 2FF Synchronizer would be a good solution
as mentioned in Section 2.2.2.3. Therefore to fix this issue, a graycode counter should
be substituted for the regular one.

Code 4.1: Graycode Implementation
1 case gray_cntr_head i s
2 when "00" | "10" =>
3 vrx . headptr (0) := (not r rx . headptr (0)) ;
4 when "01" =>
5 vrx . headptr (1) := not rrx . headptr (1) ;
6 when "11" =>
7 vrx . headptr (2) := not rrx . headptr (2) ;
8 gray_cntr_head <= (othe r s => ’0 ’) ;
9 when othe r s =>

10 gray_cntr_head <= (othe r s => ’0 ’) ;
11 end case ;
12 gray_cntr_head <= gray_cntr_head + 1 ;

A possible implementation of a graycounter is depicted in the VHDL-Code 4.1. It
works by using a case statement and an additional counter signal, gray_cntr_head.
By negating the individual bits of the pointer in the appropriate order.

vrx.headptr
000 −→ 001 −→ 011 −→ 010 −→ 110 −→ 111 −→ 101 −→ 100

gray_cntr_head
00 −→ 01 −→ 10 −→ 11 −→ 00 −→ 01 −→ 10 −→ 11

Table 4.1: Gray code Counter Incrementation

The archived gray code incrementation is depicted in Table 4.1, while the order in
which the bits need to be negated is archived with regularly incrementing the counter
signal gray_cntr_head in conjunction with the case statement. The same pattern
was put at the system clock counter to match the adjusted counter at the rxclock
domain.

The same violation was also detected for the bitcnt signal and got the same adjust-
ment. The bitcnt signal is used to detect activity on the SpaceWire bus. It increments

42

4 CDC Violations & Recovery

whenever the rxclock domain receives new bits. This is done because the system clock
domain monitors the synchronized bitcnt signal to determine whether it has increased
since the previous system clock cycle, and therefore needs to prepare to receive the
data.

4.3 Multi-bit signal across clock domain boundary

This violation describes essentially the same issue as the pointer crossing bicnt and
headptr. Where the multibit pointer signals are transmitted with only an 2FF syn-
chronizer. After implementing the graycode counter, as described in Section 4.2.3
and running the analyses again, the violation does not show again and is therefore
resolved. It is important to note that this type of false positive, where a non existent
violation is detected, is a common occurrence in violation detection tools. These tools
are designed with a conservative approach, often identifying a higher number of po-
tential violations. This conservative approach is intentional, aiming to ensure that all
potential errors, especially those that might be missed (false negatives), are flagged
for review. While this can lead to the identification of non-issues (false positives), it
is a necessary trade-off to prevent critical undetected errors that could compromise
the integrity of the design if left unaddressed.

43

4 CDC Violations & Recovery

4.4 FIFO pointer mismatch

The FIFO pointer mismatch violation occurs within the FIFO synchronizer. In the
potential violation depicted in Figure 4.8, both the txclock and the sysclock signal
control the s_mem, and the outgoing signal based on both is detected to be the
violation, since it is a synchronizer it is not uncommon to have two clock domains
converging.

Figure 4.8: FIFO violation

The violation is likely attributable to the utilization of a memory array of the mem_type,
as previously referenced in Section 3.1.2, which is identified by the CDC tool as a sin-
gle coherent signal array, despite its actual composition being separate blocks. These
blocks can be read and written to independently with the corresponding clock, al-
though only one of each of the read and write operations can occur simultaneously.
Given that multiple blocks are employed, it is necessary for the address pointer to
be different in order to access the FIFO. Only when this condition is met can the
write operation be initiated. Consequently, the mismatch represents a desired state
for access operations. This allows us to ignore the violation, as the same portion of
the synchronizer memory cannot be accessed by both clock domains.

44

4 CDC Violations & Recovery

4.5 Verification

Since CDC violations appear irregular, testing with hardware is very difficult and
may not even yield results even if a CDC violation is present, especially for complex
elements such as this. Due to this reason, this is being omitted and only the tool
handling is tested.

In order to verify that the tool was correctly setup and violations can be safely de-
tected. A violation inducing construct was embedded into the IP-core. This is done to
be separate to the IP-cores function and therefore does not influence its workings.

The construct consists of some generic logic in the system and txclock domain. With
signals that correspond to those domains, as can be seen in the VHDL-Code 4.2. The
logic incorporates combinatoric and sequential elements with the xor and if statements
respectfully.

Code 4.2: Induced violation
1 −−induced v i o l a t i o n
2 s i g n a l induced_vio lat ion : std_ulogic_vector (2 downto 0) ;
3 s i g n a l induced_violat ion_tx : s td_ulog ic ;
4

5 begin
6

7 proce s s (c l k) i s
8 begin
9 i f r i s ing_edge (c l k) then

10 . . .
11 induced_vio la t ion <= std_ulogic_vector (unsigned (

induced_vio la t ion) + 1) ;
12 induced_violat ion_out <= induced_violat ion_tx ;
13 end i f ;
14 end proce s s ;
15

16 proce s s (t x c l k) i s
17 begin
18 i f r i s ing_edge (tx c l k) then
19 i f induced_violat ion_tx = induced_vio la t ion (2) then
20 induced_violat ion_tx <= (not induced_violat ion_tx) xor

induced_vio la t ion (0) ;

45

4 CDC Violations & Recovery

21 end i f ;
22 end i f ;
23 end proce s s ;

It is important to have a connection between an major port i.e. out of the ip core
and the violating inducing part. Because the tool only registers violations that have
an effect on the output, because it traces the signal paths starting from the inputs
and ending on the IP-core outputs. Therefore, the verification construct does need a
connection to the output port, that can be seen in the VHDL-Code 4.3.

Code 4.3: Port declaration
1 port (
2 . . .
3 induced_violat ion_out : out std_ulog ic
4) ;

After running the CDC analyses, two violations were detected by the tool, proving
the setup was done right. One violation for each signal flow direction, as can be seen
in Figure 4.9.

Figure 4.9: Induced Violation

The detected violations are the xor combinatoric in line 20 of VHDL-code 4.2 and the
directs signal assignment in line 12.

46

5 Discussion

The aim for this paper was to examine a SpaceWire IP-core for CDC violations.
Furthermore, found problems should be corrected to facilitate the IP-cores usability
and reliability. The performed CDC analyses has found a total of six CDC potential
violations.

One out of those six violations could be safely ignored. One created some usage
restrictions. One additional could be ignored, if the reset signal pulls low long enough
and the last three described the same issue. The issue concerned the address pointer
of the FIFO synchronizer employed by the SpaceWire IP-core, that is used to transfer
the received and transmitted data from the receiver clock domain to the system clock
domain where the data is interpreted and used. This issue could be resolved by
replacing the address pointer incrementing scheme from a linear counting scheme
(1,2,3,4,...) to a graycode scheme, as described in Section 2.2.2.2.

The changes done to the IP-core are based on optimal synchronizer schemes, that are
described in Section 2.2.2. Improving the signal integrity. Therefore, the results indi-
cate a better performance of the IP-core in regards to CDC relating issues, enabling
better use for future terrestrial research projects in the department.

The analyses were done via a static analyses, even though other methods are available
like simulation, which results are potentially able to reduce false positives, although
the overhead also increases drastically. With the gray code correction, the reliability
of the IP-core could be increased. In addition, a limitation could be identified that
the IP-core is only suitable for single bytes, packets where the order of the tokens
is irrelevant, or it must be encoded in the transmitted byte. This restriction is only
applicable when the clock frequencies are far apart. If the IP-core appears to not work

47

5 Discussion

properly, other verification methods can be used, or the problems could be caused by
non CDC issues.

The initial installation and execution of the tool encountered delays due to unforeseen
issues with the virtual machine. To address these challenges, a Linux machine was
subsequently utilized. The primary issue was the prolonged loading, compiling, and
input response times, which significantly impacted the usability and efficiency.

48

6 Conclusion

6.1 Summary

In this thesis, we explored the principles of digital electronics with a focus on FPGA-
based systems. From this understanding, we explored the principal of metastability,
with a focus of clock domain crossing and the arising issues from this, as well as
methods to mitigating them, e.g. synchronizers and the avoidance of CDC if possible.
A brief examination of VHDL, the language used by the IP-core, was also conducted,
to be able to understand its intricate workings.

In addition, we examined the operation of SpaceWire networks and how the IP-core
manages its clock domain boundary crossings. To ensure robust CDC handling, we
used the Questa CDC tool for a static analysis and identified six potential CDC
violations. After examining the tool and its setup. Upon further investigation, we
determined that only four violations were relevant, as the tool tends to over-report
violations to minimize false negatives, as automatic code analyzers often do.

One violation was reported, the same problem for two different signals. An additional
violation was reported for the same problem. These violations are is part of the FIFO
synchronizer used by the SpaceWire IP-core to pass messages across the clock domain
boundary, to the transmission and from the receiver domain. The solution was to
replace the linear pointer incrementation with a gray code incrementation scheme,
which should reduce missing and scrambled SpaceWire tokens. The last violation
could be partially ignored, but it creates a usage restriction of the IP-core. Where the
order of two tokens could be changed, changing the bit stream. This risk can either
be accepted for applications where this is neglected, or the sequence must be encoded
in the token.

49

6 Conclusion

In conclusion, a CDC analysis could be successfully performed and several issues be
found and corrected if possible. The IP-core has even after the corrections some usage
restriction. Due to those I would advise against use in critical parts of a application
and limiting the difference of the clock frequencies, that control the different clock
domains.

6.2 Outlook

The adjusted IP-core can be used in a variety of development projects in the DLR, with
some restrictions. That could be initially be identified. In any case, the knowledge
about the IP-core and its limitations could be increased.

It is also possible to apply other CDC analysis methods to the IP-core. For which
this bachelor thesis builds a good basis. These methods are mentioned in the section
3.2 and include simulation and extending the use of formal analysis with user defined
properties.

50

Bibliography

[1] V. Taraate, Digital Logic Design Using Verilog Coding and RTL Synthesis,
2nd ed. Springer Nature Singapore Pte Ltd., 2022, isbn: 978-981-16-3198-6.

[2] P. J. Ashenden, The Designer’s Guide to VHDL, 2nd ed. Morgan Kaumann
Publishers, 2002.

[3] J. J. P. Meseguer, “Design and optimization of a space camera with application
to the phi solar magnetograph,” Ph.D. dissertation, Technischen Universität
Carolo-Wilhelmina, 2013, isbn: 978-3-942171-72-4. [Online]. Available: http:
//dnb.d-nb.de/.

[4] M. W. Winfried Gehrke, Digitaltechnik Grundlagen, VHDL, FPGAs, Mikrocon-
troller, 8th ed. Springer-Verlag GmbH, 2022, isbn: 978-3-662-63953-5.

[5] R. B. Frank Kessel, Entwurf von digitalen Schaltungen und Systemen mit HDLs
und FPGAs. Oldenbourg Wissenschaftsverlag, 2006, isbn: 978-3-486-57556-9.

[6] K. Borchers, “Decentralized and pulse-based clock synchronization in spacewire
networks for time-triggered data transfers,” Ph.D. dissertation, Universität Würzburg,
2020. [Online]. Available: https://elib.dlr.de/140212/.

[7] H. Foster. “The 2022 wilson research group functional verification study.” (Oct. 16,
2022), [Online]. Available: https://blogs.sw.siemens.com/verificationhorizons/
2022/10/16/part- 1- the- 2020- wilson- research- group- functional-

verification-study-2/. acessed: 06.07.2024.

[8] M. Bartik, “Clock domain crossing — an advanced course for future digital de-
sign engineers,” in 2018 7th Mediterranean Conference on Embedded Computing
(MECO), 2018, pp. 1–5. doi: 10.1109/MECO.2018.8406004.

51

http://dnb.d-nb.de/
http://dnb.d-nb.de/
https://elib.dlr.de/140212/
https://blogs.sw.siemens.com/verificationhorizons/2022/10/16/part-1-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2022/10/16/part-1-the-2020-wilson-research-group-functional-verification-study-2/
https://blogs.sw.siemens.com/verificationhorizons/2022/10/16/part-1-the-2020-wilson-research-group-functional-verification-study-2/
https://doi.org/10.1109/MECO.2018.8406004

Bibliography

[9] S. Hatture and S. Dhage, “Multi-clock domain synchronizers,” in 2015 Inter-
national Conference on Computation of Power, Energy, Information and Com-
munication (ICCPEIC), 2015, pp. 0403–0408. doi: 10.1109/ICCPEIC.2015.
7259493.

[10] N. Karimi, Z. Kong, K. Chakrabarty, P. Gupta, and S. Patil, “Testing of clock-
domain crossing faults in multi-core system-on-chip,” in 2011 Asian Test Sym-
posium, 2011, pp. 7–14. doi: 10.1109/ATS.2011.68.

[11] A. B. Chong, “Clock domain crossing verification challenges,” in 2021 2nd In-
ternational Conference on Electronics, Communications and Information Tech-
nology (CECIT), 2021, pp. 383–387. doi: 10.1109/CECIT53797.2021.00075.

[12] C. Lin, W. He, Y. Sun, et al., “A metastability risk prediction and mitiga-
tion technique for clock-domain crossing with single-stage synchronizer in near-
threshold-voltage multivoltage/ frequency-domain network-on-chip,” IEEE Jour-
nal of Solid-State Circuits, vol. 59, no. 2, pp. 616–625, 2024. doi: 10.1109/JSSC.
2023.3283961.

[13] Y. Tao, “An introduction to assertion-based verification,” in 2009 IEEE 8th
International Conference on ASIC, 2009, pp. 1318–1323. doi: 10.1109/ASICON.
2009.5351246.

[14] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, The Power of Assertions
in SystemVerilog. Springer, 2010, isbn: 978-1-4419-6599-8.

[15] S. Chalana, S. Mitra, S. Bharath, R. Bhimireddy, S. K. Manickam, and S. Ku-
mar, “Enhancing coverage of clock domain crossing assertion verification leverag-
ing formal,” in 2023 IEEE Women in Technology Conference (WINTECHCON),
2023, pp. 1–6. doi: 10.1109/WINTECHCON58518.2023.10277198.

[16] “Ecss-e-st-50-12c rev.1,” European Cooperation for Space Standarisation, Tech.
Rep., 2019. [Online]. Available: https://ecss.nl/standard/ecss-e-st-
50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-

2019/.

[17] J. Akhundov, “Implementation of the global physical time for the domain model
of the virtual path of the dlr hand-arm system,” Chemnitz University of Technol-
ogy, Tech. Rep., Jun. 2013. [Online]. Available: https://elib.dlr.de/87115/.

52

https://doi.org/10.1109/ICCPEIC.2015.7259493
https://doi.org/10.1109/ICCPEIC.2015.7259493
https://doi.org/10.1109/ATS.2011.68
https://doi.org/10.1109/CECIT53797.2021.00075
https://doi.org/10.1109/JSSC.2023.3283961
https://doi.org/10.1109/JSSC.2023.3283961
https://doi.org/10.1109/ASICON.2009.5351246
https://doi.org/10.1109/ASICON.2009.5351246
https://doi.org/10.1109/WINTECHCON58518.2023.10277198
https://ecss.nl/standard/ecss-e-st-50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/
https://ecss.nl/standard/ecss-e-st-50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/
https://ecss.nl/standard/ecss-e-st-50-12c-rev-1-spacewire-links-nodes-routers-and-networks-15-may-2019/
https://elib.dlr.de/87115/

Bibliography

[18] J. van Rantwijk, “Spacewire light version 20110709,” Chemnitz University of
Technology, Tech. Rep., 2013. [Online]. Available: https://opencores.org/
projects/spacewire_light.

[19] S. EDA, Siemens eda questa® cdc user guide, 2nd, Available at https://

example.com/manual.pdf, Siemens Digital Industries Software, Example City,
CA, 2022.

53

https://opencores.org/projects/spacewire_light
https://opencores.org/projects/spacewire_light
https://example.com/manual.pdf
https://example.com/manual.pdf

Appendix

A.1 Full VHDL example code

Code A.1: VHDL example Full-adder
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5 en t i t y example i s −−FUll_adder
6 port (
7 cary : in std_ulog ic ;
8 X : in std_ulogic_vector (1 downto 0) ;
9 Y : out std_ulogic_vector (1 downto 0) ;

10 c lk_i : in s td_ulog ic ;
11 r s t_i : in s td_ulog ic
12) ;
13 end en t i t y example ;
14

15 a r c h i t e c t u r e r t l 1 o f example i s
16 s i g n a l s a f e : s td_ulogic_vector (1 downto 0) ;
17 begin
18 p1 : p roce s s (c lk_i)
19 begin
20 i f (r i s ing_edge (c lk_i)) then
21 i f (r s t_i = ’1 ’) then
22 Y <= "00" ;
23 sa f e<= "00" ;
24 e l s e
25 s a f e (0)<= cary xor (X(0) xor X(1)) ;
26 s a f e (1)<= (X(1) and X(0)) or ((X(0) xor X(1)) and cary) ;
27 Y<=sa f e ;

54

Appendix

28 end i f ;
29 end i f ;
30 end proce s s p1 ;
31

32 end a r c h i t e c t u r e r t l 1 ;

Code A.2: VHDL example Full-adder test-bench
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4

5 en t i t y tb i s
6 end tb ;
7

8 a r c h i t e c t u r e r t l o f tb i s
9

10 component example i s
11 port (
12 cary : in std_ulog ic ;
13 X : in std_ulogic_vector (1 downto 0) ;
14 Y : out std_ulogic_vector (1 downto 0) ;
15 c lk_i : in s td_ulog ic ;
16 r s t_i : in std_ulog ic
17) ;
18 end component example ;
19

20 s i g n a l s ig_cary : s td_ulog ic := ’ 0 ’ ;
21 s i g n a l sig_X : std_ulogic_vector (1 downto 0) := "00" ;
22 s i g n a l sig_Y : std_ulogic_vector (1 downto 0) := "00" ;
23 s i g n a l s ig_clk_i : s td_ulog ic := ’ 0 ’ ;
24 s i g n a l s ig_rst_i : s td_ulog ic := ’ 1 ’ ;
25 s i g n a l cnt : i n t e g e r := 0 ;
26

27 f o r i_example : example use en t i t y work . example (r t l 1) ;
28

29 begin
30 i_example : example
31 port map (
32 cary => sig_cary ,
33 X => sig_X ,

55

Appendix

34 Y => sig_Y ,
35 c lk_i => sig_clk_i ,
36 r s t_i => sig_rst_i
37) ;
38

39 p_rst_gen : p roce s s
40 begin
41 wait f o r 50 ns ;
42 s ig_rst_i <= ’ 0 ’ ;
43 end proce s s p_rst_gen ;
44

45 p_clk_gen : p roce s s
46 begin
47 wait f o r 10 ns ;
48 s ig_clk_i <= ’ 1 ’ ;
49 wait f o r 10 ns ;
50 s ig_clk_i <= ’ 0 ’ ;
51 end proce s s p_clk_gen ;
52

53 p_stim : p roce s s (s ig_clk_i)
54 begin
55 i f (r i s ing_edge (s ig_clk_i)) then
56 i f (s ig_rst_i = ’1 ’) then
57 e l s e
58 cnt <= cnt + 1 ;
59 i f cnt = 7 then
60 sig_X <= "01" ; end i f ;
61 i f cnt = 14 then
62 s ig_cary <= ’ 1 ’ ; end i f ;
63 i f cnt = 21 then
64 sig_X <= "11" ; end i f ;
65 i f cnt = 28 then
66 sig_X <= "00" ; end i f ;
67 end i f ;
68 end i f ;
69 end proce s s p_stim ;
70 end a r c h i t e c t u r e r t l ;

56

Appendix

A.2 Relevant IP-core codes

Code A.3: syndff
1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3

4 en t i t y syncd f f i s
5 port (
6 c l k : in s td_log i c ; −− c l o ck (d e s t i n a t i on domain

)
7 r s t : in s td_log i c ; −− asynchronous r e s e t ,

ac t ive−high
8 di : in s td_log i c ; −− input data
9 do : out s td_log i c −− output data

10) ;
11 −− Turn o f f r e g i s t e r r e p l i c a t i o n in XST.
12 a t t r i b u t e REGISTER_DUPLICATION: s t r i n g ;
13 a t t r i b u t e REGISTER_DUPLICATION of syncd f f : e n t i t y i s "NO" ;
14 end en t i t y syncd f f ;
15

16 a r c h i t e c t u r e syncdf f_arch o f syncd f f i s
17 −− f l i p −f l o p s
18 s i g n a l syncd f f_ f f 1 : s td_ulog ic := ’ 0 ’ ;
19 s i g n a l syncd f f_ f f 2 : s td_ulog ic := ’ 0 ’ ;
20 −− Turn o f s h i f t −r e g i s t e r e x t r a c t i on in XST.
21 a t t r i b u t e SHIFT_EXTRACT: s t r i n g ;
22 a t t r i b u t e SHIFT_EXTRACT of syncd f f_ f f 1 : s i g n a l i s "NO" ;
23 a t t r i b u t e SHIFT_EXTRACT of syncd f f_ f f 2 : s i g n a l i s "NO" ;
24 −− −− Te l l XST to p lace both f l i p −f l o p s in the same s l i c e .
25 −− a t t r i b u t e RLOC: s t r i n g ;
26 −− a t t r i b u t e RLOC of syncd f f_ f f 1 : s i g n a l i s "X0Y0" ;
27 −− a t t r i b u t e RLOC of syncd f f_ f f 2 : s i g n a l i s "X0Y0" ;
28

29 −− −− Te l l XST to keep the f l i p −f l o p net names to be used in t iming
c on s t r a i n t s .

30 −− a t t r i b u t e KEEP: s t r i n g ;
31 −− a t t r i b u t e KEEP of syncd f f_ f f 1 : s i g n a l i s "SOFT" ;
32 −− a t t r i b u t e KEEP of syncd f f_ f f 2 : s i g n a l i s "SOFT" ;
33 begin
34 −− second f l i p −f l o p d r i v e s the output s i g n a l

57

Appendix

35 do <= syncd f f_ f f 2 ;
36 proce s s (c lk , r s t) i s
37 begin
38 i f r s t = ’1 ’ then
39 −− asynchronous r e s e t
40 syncd f f_ f f 1 <= ’ 0 ’ ;
41 syncd f f_ f f 2 <= ’ 0 ’ ;
42 e l s i f r i s ing_edge (c l k) then
43 −− data synchron i za t i on
44 syncd f f_ f f 1 <= di ;
45 syncd f f_ f f 2 <= syncd f f_ f f 1 ;
46 end i f ;
47 end proce s s ;
48 end a r c h i t e c t u r e syncdf f_arch ;

Code A.4: spwram
1 −−
2 −− Synchronous two−port RAM with separa te c l o ck s f o r read and wr i t e

por t s .
3 −− The syn th e s i z e r f o r X i l i nx Spartan−3 w i l l i n f e r Block RAM fo r t h i s

en t i t y .
4

5 l i b r a r y i e e e ;
6 use i e e e . std_logic_1164 . a l l ;
7 use i e e e . numeric_std . a l l ;
8

9 en t i t y spwram i s
10 g ene r i c (
11 ab i t s : i n t e g e r ;
12 db i t s : i n t e g e r) ;
13 port (
14 r c l k : in s td_log i c ;
15 wclk : in s td_log i c ;
16 ren : in s td_log i c ;
17 raddr : in std_log ic_vector (ab i t s −1 downto 0) ;
18 rdata : out std_log ic_vector (dbi ts −1 downto 0) ;
19 wen : in s td_log i c ;
20 waddr : in std_log ic_vector (ab i t s −1 downto 0) ;
21 wdata : in std_log ic_vector (dbit s −1 downto 0)) ;
22 end en t i t y spwram ;

58

Appendix

23

24 a r c h i t e c t u r e spwram_arch o f spwram i s
25 type mem_type i s array (0 to (2∗∗ ab i t s − 1)) o f
26 s td_log ic_vector (dbits −1 downto 0) ;
27 s i g n a l s_mem: mem_type ;
28 begin
29 −− read proce s s
30 proce s s (r c l k) i s
31 begin
32 i f r i s ing_edge (r c l k) then
33 i f ren = ’1 ’ then
34 rdata <= s_mem(to_integer (unsigned (raddr))) ;
35 end i f ;
36 end i f ;
37 end proce s s ;
38 −− wr i t e p roce s s
39 proce s s (wclk) i s
40 begin
41 i f r i s ing_edge (wclk) then
42 i f wen = ’1 ’ then
43 s_mem(to_integer (unsigned (waddr))) <= wdata ;
44 end i f ;
45 end i f ;
46 end proce s s ;
47 end a r c h i t e c t u r e ;

A.3 makefile and filelist

A.5: makefile
1

2

3 # Sta t i c CDC
4 ##
5 run_vl: c l ean compile_vl cdc debug
6 run_vh: c l ean compile_vh c l o ck cdc debug
7

8 ###### Def ine Var iab l e s ###############
9 VLIB = ${QHOME}/ share /modeltech/ linux_x86_64/ v l i b

59

Appendix

10 VMAP = ${QHOME}/ share /modeltech/ linux_x86_64/vmap
11 VLOG = ${QHOME}/ share /modeltech/ linux_x86_64/ vlog
12 VCOM = ${QHOME}/ share /modeltech/ linux_x86_64/vcom
13

14 DUT = spwstream
15 ###### Compile Design ################
16 compi le_vl :
17 $ (VLIB) work
18 $ (VMAP) work work
19 $ (VLOG) −f s c r i p t s / f i l e l i s t _ v l
20

21 compile_vh:
22 $ (VLIB) work
23 $ (VMAP) work work
24 $ (VCOM) −f r t l / f l i s t . v h
25

26 ###### Generate a Clock Report ###########
27 c l o c k :
28 qv e r i f y −od Output_Results −c −do " \
29 do r t l / d i r e c t i v e s . t c l ; \
30 cdc setup −d $ (DUT) −cdc_report cd c . r p t ; \
31 cdc run −d $ (DUT) ; \
32 cdc generate r epor t cd c_de ta i l . r p t ; \
33 e x i t "
34

35 ###### Run CDC Analys i s ###################
36 cdc :
37 qv e r i f y −od Output_Results −c −do " \
38 do r t l / d i r e c t i v e s . t c l ; \
39 cdc run −d $ (DUT) ; \
40 cdc generate r epor t cd c_de ta i l . r p t ; \
41 e x i t "
42

43 ###### Debug Resu l t s ######################
44 debug:
45 qv e r i f y Output_Results/ cdc.db &
46

47 ###### Clean Data #########################
48 c l e a n :
49 qver i fy_c l ean

60

Appendix

50 \rm −rf work mode l s im . in i ∗ . w l f ∗ . l o g rep lay∗ t r a n s c r i p t ∗ .db
51 \rm −rf Output_Results t r a n s c r i p t . cmd . t c l mal_cmds.tcl
52 \rm −rf myProj_SVA myProj_SVA.zpf cd c_de ta i l . r p t
53

54 #######################################
55 # Regre s s i ons
56 #######################################
57

58 REGRESS_FILE_LIST = \
59 Output_Results/ cd c . r p t
60

61 r e g r e s s i o n : c l ean compile_vl cdc
62 @rm −f r e g r e s s _ f i l e _ l i s t
63 @echo "# This f i l e was generated by make" > r e g r e s s _ f i l e _ l i s t
64 @/bin / l s −1 $ (REGRESS_FILE_LIST) >> r e g r e s s _ f i l e _ l i s t
65 @chmod −w r e g r e s s _ f i l e _ l i s t
66

67 (15 downto 12) <= (othe r s => erg (32)) ;
68 end i f ;

A.6: filelist.vh
1 r t l /spwpkg . vhd
2 r t l / spwrecv . vhd
3 bench/vhdl / spwlink_tb . vhd
4 r t l / s t r eamtes t . vhd
5 r t l / spwl ink . vhd
6 r t l /spwram . vhd
7 r t l / spwrecv f ront_fast . vhd
8 r t l / spwrecv f ront_gener i c . vhd
9 r t l /spwxmit . vhd

10 r t l / spwxmit_fast . vhd
11 r t l / syncd f f . vhd
12 r t l / spwstream . vhd

A.7: directives.tcl
1 # Def ine c l o c k s
2 n e t l i s t c l o ck c l k −period 50
3 n e t l i s t c l o ck tx c l k −period 40
4 n e t l i s t c l o ck rxc l k −period 40

61

Appendix

5

6 # Add CDC con s t r a i n t s
7 cdc reconvergence on
8 cdc p r e f e r en c e reconvergence −depth 1 −divergence_depth 1
9

10 # not i n f e r r e d s i g a n l s
11 n e t l i s t port domain spw_si −clock rxc l k −posedge
12 n e t l i s t port domain spw_di −clock rxc l k −posedge
13 n e t l i s t port domain rxread −clock c l k
14 n e t l i s t port domain txdata −clock c l k
15 n e t l i s t port domain t x f l a g −clock c l k
16 n e t l i s t port domain txwr i t e −clock c l k
17 n e t l i s t port domain time_in −clock c l k
18 n e t l i s t port domain c t r l_ in −clock c l k
19 n e t l i s t port domain t ick_in −clock c l k
20 n e t l i s t port domain txd ivcnt −clock c l k
21 n e t l i s t port domain l i n k d i s −clock c l k
22 n e t l i s t port domain l i n k s t a r t −clock c l k
23 n e t l i s t port domain au to s t a r t −clock c l k

A.4 Overview of the used AI-based Tools

TODO tabelle sauber machen

Tool Description of usage
Deepl Translation of singular words, grammatical and syntax checks

throughout the whole paper
ChatGPT introductory text SpaceWire, theoretical basis, Single Source

Reconvergence of synchronizers
Table A.1: Usage of AI-Tools

62

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Theoretical basis
	Field Programmable Gate Array
	Digital Processing
	FPGA Structure
	Example VHDL & Signal Time

	Clock Domain Crossing
	Metastability
	Synchronizers
	2 Flip-Flop Synchronizer
	Gray code Synchronizer
	Asynchronous FIFO
	Single Stage Synchronizer

	CDC Detection
	Static Verification
	Simulation Based Verification

	Space Wire
	SpaceWire Network
	Structure

	Used IP-Core & Tool
	The SpaceWire ip-Core
	2FF IP-core Synchronizer
	FIFO IP-core Synchronizer

	Questa CDC Tool

	CDC Violations & Recovery
	Setup
	Single Source Reconvergence of synchronizers
	FIFO Violation
	Reset Violation
	Pointer Crossing bitcnt & headptr

	Multi-bit signal across clock domain boundary
	FIFO pointer mismatch
	Verification

	Discussion
	Conclusion
	Summary
	Outlook

	Bibliography
	Appendix
	Full VHDL example code
	Relevant IP-core codes
	makefile and filelist
	Overview of the used AI-based Tools

