
 

 

 

 

 

Probabilistic Modelling of the Conceptual Design Phase in 

Automotive Engineering 

Charbel Mallaha, Christoph David b, Marko Alderc 

a German Aerospace Center, Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany, 

Charbel.Mallah@dlr.de  
b German Aerospace Center, Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany, 

Christoph.David@dlr.de 
c German Aerospace Center, Institute of System Architectures in Aeronautics, Hein-Sass-Weg 22, 21129 

Hamburg Germany, Marko.Alder@dlr.de 

 

Abstract 

The multidisciplinary nature of the vehicle design process and the increasing demand for developing environmentally sustainable 

transport systems present a challenge to the automotive industry. These challenges are associated with uncertainties that are often 

neglected in the conceptual design phase of road vehicles. To address such uncertainties, a probabilistic approach can be adopted. 

More precisely, one can make use of the so called Sobol’ indices. These are used within the context of variance-based global 

sensitivity analysis to quantify the uncertainties of a system’s outputs caused by the uncertainties of its inputs. For this purpose, 

this paper aims to achieve the following goals: 

 
1. Quantification of output uncertainties in the conceptual design phase based on the Sobol’ indices. Within this context, 

the research plug-in hybrid electric vehicle “Interurban Vehicle” (IUV), designed at the German Aerospace Centre 

(DLR1), is considered. 

 

2. Probabilistic, digital and parametric modelling of the IUV based on multidisciplinary design analysis (MDA).  

 

Overall, this paper concludes that probabilistic modelling does not only enable the quantification of uncertainties, but also helps to 

understand the underlying complex mechanisms of the considered system and support the decision-making process in the 

conceptual design phase of road vehicles.  

 
Keywords:  uncertainty quantification, Sobol’ indices, plug-in hybrid electric vehicle, conceptual design phase, automation, digitization, 

multidisciplinary design analysis (MDA) 

1. Introduction 

1.1. Problem setting 

Nowadays, the world is witnessing an exponential growth in technological advances that are revolutionizing almost 

every major industry. As a result, the complexity of products is increasing to a large extent. Road vehicles serve as a 

good example of this transformation. During the last couple of decades, vehicles evolved from being mainly a 

mechanical product to an increasingly interconnected system involving heterogeneous stakeholders as well as 

multidisciplinary requirements and constraints. In addition to this increasing complexity of the vehicle architectures, 

the pursuit of developing environmentally and economically sustainable transport systems as well as the resulting 

regulatory changes present a common challenge to the automotive industry. To address these challenges, important 
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decisions should be made in the early phase of the vehicle design, also known as the concept phase or conceptual 

design phase. This phase is crucial, as it establishes the core design, performance criteria and the majority of the costs 

during the later stages. Therefore, it is essential to pinpoint the design factors, such as material parameters, operational 

conditions, etc., that have the greatest impact on the final design [18]. However, such factors are subjected to 

uncertainties that are often neglected in the conceptual design phase. In general, there are two distinct types of 

uncertainties, namely aleatory and epistemic [9]. On one hand, aleatory uncertainties arise from the intrinsic 

randomness of the system or process considered, like, for instance, the variability of material properties in 

manufacturing processes. Such uncertainties cannot be reduced by acquiring additional information or improving 

models. On the other hand, epistemic uncertainties stem from a lack of information or data and can be reduced by 

obtaining additional information or improving models [13]. Moreover, Kennedy and O’Hagan, 2001 [16] classified 

uncertainties in a more precise manner. They identified six types of uncertainties [15]: 1) parametric variability, 2) 

parameter uncertainty, 3) model inadequacy, 4) interpolation uncertainty, 5) numerical uncertainty and 6) 

experimental variability.  Within the scope of this publication, emphasis is placed on uncertainties of the vehicle 

design parameters, i.e., parametric variability2 and parametric uncertainty3. Efficiency of vehicle components and 

gravimetric energy densities serve as good examples for such vehicle design parameters. Accounting for such 

uncertainties in the conceptual design phase requires a shift from deterministic designing to a probabilistic one. In 

contrast to deterministic approaches, probabilistic ones can be utilized to analyze various design scenarios. 

Consequently, this enhances the robustness of the design concept by ensuring that it fulfills the requirements under a 

variety of conditions [22]. Furthermore, by analyzing different scenarios vehicle designers can extrapolate from 

current technological trends to create designs that incorporate possible future advancements. However, the 

interdisciplinary nature of the conceptual design phase, as well as the complex interconnections between the various 

engineering disciplines involved, render the integration of a probabilistic framework challenging.  

1.2. State of the art and research gap 

Within this context, sensitivity analysis (SA) can play a crucial role in accounting for uncertainties of the vehicle 

design parameters and thus establish a probabilistic framework for the conceptual design phase. In general, SA is 

referred to as the study that examines how the outputs of a system are connected to, and affected by the inputs of that 

system [25]. I.e., SA techniques quantify the impact of the input parameters on the outputs of the considered system. 

There are various ways how to conduct SA. Broadly speaking, methods of SA can be categorized into two main groups 

[33]: 

 

1. Local SA (LSA) examines the local impact of a single input parameter on the system’s output by varying 

the considered input parameter and fixing the remaining input parameters at a specific operating or 

design point. Such methods do not assign probability distributions to the input parameters [28]. The 

“one-factor-at-a-time” technique serves as a good example for such local approaches.  

 

2. Global SA (GSA) asses the sensitivity of the system’s output with respect to the variation of the entire 

input parameter space, rather than taking only a single design point into consideration as was the case 

using LSA.  

 

To clarify the difference between LSA and GSA, the simulation of a vehicle’s energy consumption is considered. The 

energy consumption depends on some input parameters, such as a specific driving cycle, vehicle’s mass, aerodynamic 

drag coefficient, etc. Conducting an LSA, one might examine how small variations in, for instance the vehicle’s mass 

affect the vehicle’s energy consumption, while holding the remaining inputs constant. On the other hand, a GSA 

involves varying each input parameter across its entire plausible range and measuring how much each parameter 

impacts the vehicle’s energy consumption. Therefore, GSA plays an important role in determining which parameters 

have the greatest impact and which ones should remain unchanged. For this reason, GSA techniques are suitable for 

 

2 Parametric variability points to the variation in the design variables and/or noise variables [15]. 
3 Parameter uncertainty is related to fixed and non-measurable parameters of a simulation model (e.g. fracture coefficient) [15]. 



 

the initial design phase, since in the early design phases, it is often challenging to determine which parameters exert 

the greatest influence and which should remain constant [18]. However, there is not a unique way to conduct GSA. 

Razavi et al., 2021 [25] categorize GSA into five main groups: 1) derivative-based approach, 2) distribution-based 

approach, 3) variogram-based approach, 4) regression-based approach and 5) response surface-assisted GSA. 

Within the scope of this paper only the distribution-based approach is considered. Distribution-based GSA examines 

the distributional properties of the output. Most commonly, distribution-based GSA involves partitioning the variance 

of the output into portions which are then attributed to the corresponding inputs [12, 18]. This assumes that the variance 

is a reliable measure of uncertainty. Such approaches are also known as “variance-based GSA”. One of their key 

characteristics is their independence from the considered model or system. That is, conducting the analysis does not 

depend on the model’s characteristics (linear, nonlinear, stationary, etc.) [28]. Typical representative of distribution-

based GSA or variance-based GSA is the Sobol’ method [31]. For a more comprehensive literature review regarding 

SA, it is referred to Razavi et al., 2021 [25]. 

 

To address the challenging task of incorporating uncertainties in the vehicle design process, several attempts were 

made, especially within the context of vehicle dynamics simulations. 

 

In the work of Song et al., 2023 [32], SA was conducted on the input parameters of a nonlinear five-degree-of-freedom 

seated human model [2]. The main objective was to quantify the output uncertainties of the ride comfort with respect 

to the input uncertainties of the model’s stiffness parameters. Here, the input uncertainties were quantified by assigning 

probability density functions (PDFs) to the input stiffness parameters. Within this context, Song et al., adopted a local 

approach for the SA. Each uncertain input parameter was varied separately, while keeping the other uncertain inputs 

constant. Subsequently, polynomial chaos expansion (PCE) [36] was used as a surrogate model to efficiently compute 

the output of the human model, i.e., the ride comfort, and characterize its uncertainties. 

 

Brandt et al., 2022 [6] analyzed the crosswind stability of a vehicle by examining various crosswind gust profiles. For 

this purpose, Brandt et al., integrated vehicle dynamics models, such as the single-track model [30], with aerodynamic 

ones following a one-way-coupling approach. Here, uncertainties of input parameters from both disciplines (vehicle 

dynamics and aerodynamics), such as wheel-base, vehicle mass and lift coefficients were considered. Within this 

context, the input uncertainties were quantified using parameter intervals chosen based on existing vehicle 

specifications as well as vehicle types. To quantify the output uncertainties of the vehicle’s crosswind stability, the 

main effect of the inputs on the crosswind stability was computed, i.e., how each input affects the output. Moreover, 

the effect of the inputs’ interactions on the output was also studied based on response surface methodology (RSM) 

[5], which aims at developing a mathematical model based on statistical techniques. 

 

Danquah et al., 2021 [8] examined the uncertainties of the energy consumption of an electric vehicle based on the 

Worldwide Harmonized Light Vehicle Test Procedure (WLTP). In order to compute the energy consumption, an open- 

source vehicle dynamics simulation was used, which can be found in [7]. PDFs as well as intervals were assigned to 

the input parameters, such as the vehicle mass, aerodynamic drag coefficient, tire pressure, etc., to quantify their 

uncertainties. Based on these intervals and PDFs, the simulation was performed repeatedly to quantify the 

uncertainties of the energy consumption stemming from the input uncertainties. Moreover, the simulated energy 

consumption was validated by experimental measurements, in which a prototype vehicle was placed on a chassis 

dynamometer. Subsequently, the error between the simulated and experimental energy consumption was computed, 

with the objective of quantifying the uncertainties of the simulation model used. 

  

Schmeiler et al., 2016 [28] made use of various techniques to conduct SA on input parameters of vehicle dynamics 

simulations. More precisely, three simulations were considered. Two of them are based on the single-track model, 

which examines the lateral dynamics of a road vehicle. The third simulation is based on a commercial high-fidelity 

black-box model. The sensitivity of the yaw rate, roll angle and rollover risk were analyzed with respect to simulation 

input parameters such as mass, inertia, position of center of gravity, cornering stiffness, etc. For this purpose, 

distribution-based GSA, represented by the Sobol’ method [31] as well as surface-assisted GSA, represented by PCE 

were used. Moreover, regionalized SA (RSA) was applied, which can be linked to GSA approaches. The main 



 

objective of RSA is to set a condition on the output space (for instance, an upper limit) and categorize the outputs that 

satisfy this condition as behavioral, otherwise as non-behavioral [24]. 

 

Wu et al., 2015 [37], analyzed the uncertainties of simulation input parameters within the context of vehicle vertical 

dynamics. To be more precise, a four-degree-of-freedom vehicle roll dynamics model was considered. Here, Wu et 

al. quantified input uncertainties by assigning PDFs to the suspension’s stiffness parameters. Moreover, an approach 

was proposed to also considered parameter intervals, as it is sometimes challenging to determine the PDF of certain 

input parameters, such as the vehicle’s payload capacity. Within this context, surface-assisted GSA, represented by 

PCE combined with interval analysis [21] were implemented to characterize the output uncertainty of the suspension’s 

deformation. 

 

Within the context of road vehicles, SA techniques are well-established and have been extensively studied. However, 

to the author’s knowledge, their usage is limited to specific vehicle dynamics models, rather than considering the 

whole conceptual phase of road vehicles. For this reason, this paper aims on answering the following research 

questions: 

 

• How can a probabilistic approach be adopted with the objective of quantifying uncertainties in the 

multidisciplinary conceptual design phase of road vehicles? 

 

• How can the collaboration regarding computational tools across the engineering teams involved in the 

multidisciplinary conceptual design phase of road vehicles be enhanced? 

1.3. Contribution and outline 

With the objective of answering the research questions stated above, this paper aims at providing a framework that 

incorporates a probabilistic approach in the conceptual design phase of road vehicles. Specifically, it employs the so 

called Sobol’ indices (see Chapter 2) used within the context of variance-based GSA in order to:  

 

• quantify the uncertainties of the outputs of interest, which are caused by the uncertainties of the considered 

design parameters reflecting possible technological improvements, 

• identify the most influential design factors on the final vehicle concept and  

• help in understanding the underlying mechanisms and interactions between the design factors governing the 

behavior of the vehicle concept. 

 

As a result, the decision-making process in the conceptual phase is enhanced. With aim of digitizing and automating 

the conceptual design phase and improving the exchange of computational tools across the distinct engineering teams 

involved, a digital design workflow is built using the multidisciplinary design analysis and optimization (MDAO) 

workflow design accelerator (MDAx) and is then executed in the process integrating open-source software RCE, short 

for remote component environment (see Chapter 3). In order to show that this approach is applicable to the state-of-

the-art vehicle concepts, the conceptual design phase of the research vehicle “Interurban Vehicle” (IUV) is considered 

(see Chapter 4). The IUV is a plug-in fuel cell electric vehicle conceptualized at the German Aerospace Centre (DLR4) 

in Stuttgart, Germany. To reduce the complexity of the problem at hand, the IUV’s design workflow was reduced to 

include the following disciplines: vehicle performance, engine, fuel cell, energy storage, mission, mass, operating 

costs and well-to-wheel processes. Finally, the results of the IUV’s probabilistic conceptual design phase with regard 
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to the Sobol’ indices are discussed and the impact of the design factors on the vehicle concept as well as their 

interactions are analyzed (see Chapter 5).   

2. Fundamentals of GSA 

In contrast to deterministic approaches, in a probabilistic framework, inputs and outputs are regarded as random 

variables [10]. Let 𝑓: ℝ𝑑  ↦  ℝ be a computational model such that: 

𝑌 = 𝑓(𝑿). (1) 

Here, 𝑌 ∈ ℝ represents a scalar uncertain output with an unknown PDF and 𝑿 = [𝑋1, 𝑋2, ⋯ , 𝑋𝑑]
T ∈ ℝ𝑑 denotes the 

random vector of 𝑑 ∈ ℕ>0 uncertain input parameters. Each input parameter 𝑋𝑖  for 𝑖 ∈ {1,2,⋯ , 𝑑} is assigned a known 

PDF to reflect the uncertainties, to which it is subjected. The main objective of GSA is to assess the uncertainty of the 

output 𝑌 with respect to the variation of the input parameters 𝑿. 

2.1. Variance-based GSA 

Variance-based GSA assumes that the variance is a reliable indicator of uncertainty. For this reason, 𝑓(𝑿) is 

decomposed into finite orthogonal components based on the high dimensional model representation (HDMR) 

technique (see [31] for further details). Subsequently, applying the law of variance and under the assumption that the 

uncertain input parameters 𝑿 = [𝑋1, 𝑋2, ⋯ , 𝑋𝑑]
T are independent, the output variance 𝕍[Y] is written as: 

 

𝕍[𝑌] =  ∑𝕍[𝔼[𝑌|𝑋𝑖]]

𝑑

𝑖=1

 + ∑ 𝑊𝑖,𝑗 + ⋯ + 𝑊𝑖,𝑗,...,𝑑
1≤𝑖<𝑗≤𝑑

, (2) 

where 

𝑊𝑖,𝑗  =  𝕍 [𝔼[𝑌|𝑋𝑖,𝑗]] −  𝕍[𝔼[𝑌|𝑋𝑖]]  −  𝕍 [𝔼[𝑌|𝑋𝑗]] . (3)  

 

Here, 𝕍[⋅] and 𝔼[⋅] denote the variance and the expected value operators, respectively. The contributions of the input 

parameters 𝑿 to the uncertainty of the output 𝑌 is then quantified using the sensitivity measures, also known as the 

Sobol’ indices. These are acquired by dividing both sides of Eq. 2 by 𝕍[Y]. Here, three major Sobol’ indices are 

defined: 

 

1. The first-order Sobol’ index 𝑆𝑖 measures the main effect of an input parameter 𝑋𝑖 on the output uncertainty 

and is described as follows: 

𝑆𝑖 =
𝕍[𝔼[𝑌|𝑋𝑖]]

𝕍[𝑌]
. (4) 

 

2. The second-order Sobol’ index 𝑆𝑖,𝑗 measures the interaction effect between the 𝑖-th and 𝑗-th input parameter, 

𝑋𝑖 and 𝑋𝑗  (𝑖, 𝑗 ∈ {1,2,⋯ , 𝑑}), on the output uncertainty and is described by: 

𝑆𝑖,𝑗 =
𝕍 [𝔼[𝑌|𝑋𝑖,𝑗]]

𝕍[𝑌]
. (5) 

 

3. The total Sobol’ index 𝑆𝑇𝑖 measures the main effect of 𝑋𝑖 as well as its interaction effect with the other input 

parameters 𝑿~𝑖. Here, ~𝑖 denotes the indices of all input parameters except the index 𝑖. 𝑆𝑇𝑖 is defined as 

follows: 

𝑆𝑇𝑖 = 1 − 
𝕍[𝔼[𝑌|𝑿~𝑖]]

𝕍[𝑌]
 =   𝑆𝑖  + ∑ 𝑆𝑖,𝑗 + ⋯ + 𝑆𝑖,𝑗,…,𝑑

𝑑

𝑗=1,𝑗≠𝑖

(6) 

 



 

Figure 1: Global sensitivity analysis  

From Eq. 6, one can deduce that the difference 𝑆𝑇𝑖  −  𝑆𝑖  is an indicator for the interaction effect of the 𝑖-th input 

parameter with the remaining input parameters on the output uncertainty. 

2.2. Numerical approximation of variance-based GSA 

The calculation of the Sobol’ indices based on Eq. 4, 5 und 6 requires solving multiple integrals stemming from the 

variance 𝕍[⋅] and expected value 𝔼[⋅] operators. This is only possible if an analytical function is given to compute the 

output 𝑌. Even in this case, solving such multiple integrals can be an exhausting task. As a remedy, one can make use 

of sampling-based approaches, more precisely, Monte-Carlo methods to estimate the value of multiple integrals. 

Within the scope of this paper, only one Monte-Carlo based approach is considered, namely the Sobol’ method [31]. 

More precisely, the implementation of this approach in the Python library SALib [14] is used. Here, there are three 

main steps (see Figure 1) 

 

i. The input parameters are randomly sampled based on the PDFs assigned to them. To reduce clustering 

and gaps in the input parameter space, low-discrepancy sequences such as the Sobol’ sequence are used 

for sampling. In this paper, the Saltelli's sampling scheme is considered. It enhances the Sobol’ sequence 

to lower the error rates in the Sobol’ index calculations [11, 26].  

 

ii. The model 𝑓 is evaluated at each sample point.  

 

iii. The Sobol’ indices 𝑆𝑖, 𝑆𝑖𝑗  and 𝑆𝑇𝑖 are computed by making use of estimators for 𝕍[⋅] and 𝔼[⋅] (see [31] 

for further details). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Multidisciplinary conceptual design phase 

Due to the complex system architecture of road vehicles, there are multiple disciplines involved in the conceptual 

design phase. Each of these disciplines has its own set of computational tools that encapsulate domain-specific 

expertise. This presents challenges for cross-team collaboration, particularly in the integration of computational tools 

during the conceptual design phase, and prompts the following question:   

 

• How can the methodologies and computational tools of the involved disciplines be fused into an integrated 

design process?  

 



 

Figure 2: Framework to digitize and automate the conceptual design phase of road vehicles (MDAx: multidisciplinary design analysis 

and optimization workflow design accelerator RCE: remote component environment) 

In order to tackle the above-mentioned problem, a framework is needed that aims at digitizing and automating the 

conceptual design phase of road vehicles. For this purpose, the framework in figure (2) is considered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MDAx to RCE 

The framework presented in Figure 2 facilitates the involvement of  discipline experts across various locations in the 

design process [1]. The open-source software remote component environment (RCE) [4], developed primarily at DLR, 

serves as a good example for such a process integrating framework. RCE allows designers to build automated 

workflows consisting of several analysis modules, i.e. computation tools. The workflow is then executed in an 

automated manner. More precisely, each computational tool, hosted on its respective server, is invoked, and the 

necessary data is exchanged automatically [4]. However, the process of building such a workflow can become a 

tedious task, especially if the workflow at hand is a complex one. Even with a complex workflow in place, 

implementing modifications, verifying tool couplings and ensuring proper tool functionality will remain a time-

consuming process. For this purpose, the multidisciplinary design analysis and optimization (MDAO) workflow 

design accelerator, abbreviated as MDAx, comes into play. To simplify the process of modeling complex engineering 

workflows, Risueño et al. [23] introduced MDAx in 2020. MDAx is a user-friendly tool, which enables the user to 

easily build and modify an engineering workflow using drag and drop operations. More precisely, the user can define 

computational tools and specify the corresponding input and output parameters for each tool. The workflow is then 

automatically modeled in the form of an extended design structure matrix (XDSM) [17]. Figure 3 illustrates an XDSM 

representation of a workflow model. The computational tools of the involved disciplines are placed on the XDSM 

diagonal. The data connection between these tools is represented by the thick gray lines. More precisely, the input 

parameters of each computational tool are placed on the vertical line connected to this tool, whereas the output 

parameters are placed on the horizontal line. Additionally, MDAx provides some verification functionalities. To be 

more precise, it checks if the system requires any parameters before it can provide them and if the same parameters 

are being provided by more than one tool [23]. Finally, after modeling the workflow, the XDSM can be exported to a 

process integration software, such as RCE, where the workflow execution is carried out.  

  [20] 

 

[20] 



 

Figure 3: XDSM representation of a workflow model 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Implementation: interurban vehicle 

4.1. Interurban vehicle (IUV) 

The Interurban Vehicle (IUV) is a vehicle concept developed within the DLR “Next Generation Car” project. The 

development of the IUV concept focuses on four key pillars: comfort, performance, safety and sustainability. These 

four elements define the high-level multidisciplinary requirements of the IUV. 

Passenger comfort is addressed by specifications such as driving automation at an automation degree of SAE (Society 

of Automotive Engineers) level 4, a flexible interior and an ergonomic entrance concept. To ensure an ergonomic 

entrance, a wide entry way to the vehicle was established by relinquishing the b-pillar from being a fixed part of the 

IUV’s body-in-white. This poses some challenges with respect to the IUV’s passive safety. More precisely, the IUV’s 

body-in-white has to be modified to maintain the vehicle’s structural integrity despite the missing b-pillar. 

In terms of performance, a total driving range of up to 1000km is defined. The challenge of enabling such long ranges 

for a five-seater vehicle is addressed by using hydrogen and a high voltage battery as energy sources combined with 

the development of lightweight structures for weight reduction. A zero-emission powertrain is achieved with an 

electrified driving system extended by a hydrogen-powered fuel-cell system.  

Considering the above, there are several design questions that should be addressed in the conceptual design phase. 

For instance: 

 

• How should the IUV’s powertrain be configured in terms of the energy ratio between the battery and the 

hydrogen tank, to meet the required driving range?  

 

• Which material and structural concept should be adopted for the IUV’s body-in-white such that the 

multidisciplinary requirements, sustainability, performance, safety and comfort standards are met?  

4.2. IUV’s design workflow 

To answer the above questions, a design workflow is developed. Its objective is to generate a consistent gravimetric 

and volumetric/geometric vehicle concept that meets the defined high-level requirements.  Within the context of this 

paper, this is achieved by means of a parametric model. Such parametric models allow varying vehicle configurations, 

i.e. vehicle parameters, with the aim of examining various design concepts and conducting sensitivity analysis. After 

evaluating the vehicle concepts, the selected concept establishes the necessary boundary conditions and requirements 

for the subsequent detailed development process. More precisely, the design process of electrified road vehicles, such 

as the IUV, involves defining numerous design parameters that are, either directly or indirectly, interconnected. 

Moreover, vehicle designers must take into consideration multidisciplinary requirements and constraints, such as 

range, maximum speed, ride comfort, safety, etc. For instance, when targeting a specific driving range, the sizing of 

the electric drive system is heavily influenced by the vehicle's energy consumption. The electric drive system includes 

batteries, motors, transmission and, in the case of a fuel cell vehicle, the fuel cell system and hydrogen tanks, whose 

dimensions should be defined such that the needed energy is supplied. The vehicle’s energy consumption, in turn, 

strongly depends on the total vehicle mass, which is the sum of all vehicle components including the electric drive 



 

system. Moreover, considering the packaging of the electric drive system, it is evident that the vehicle’s overall size 

is strongly dependent on the volume of the individual components, such as the battery. For instance, to cover a higher 

driving range, a larger battery can be considered to increase the energy supply. Therefore, this increase in the battery 

volume necessitate an increase in the vehicle’s overall size to accommodate these larger components. If, in this case, 

the vehicle’s height is increased, then the aerodynamic drag coefficient changes drastically. Subsequently, the 

aerodynamic drag coefficient impacts the vehicle's energy consumption and requires adjustments to the sizing of the 

electric drive system. These interactions between the vehicle parameters are mimicked by the design workflow, which 

in turn consists of computational tools of each of the engineering disciplines (domains) involved in the conceptual 

design phase.  Table 1) lists the requirements, constraints, design variables and evaluation criteria used for the design 

workflow of the IUV. Here, it is important to differentiate between design parameters and design variables. Design 

variables are design parameters that are varied to generate distinct vehicle concepts. 

Table 1: IUV’s design workflow: high-level multidisciplinary requirements, constraints, design variables and evaluation criteria used in the 

conceptual design phase of the IUV 

Design object                       Electrified road vehicle concept  

High-level 

requirements 
• Driving performance (acceleration, top speed, range) 

• Comfort (noise, vibration, harshness, bending and torsional stiffness) 

• Safety (crash load cases) 

• Sustainability (sustainable materials, sustainable energy sources) 

Constraints • Max. outer dimensions  

• Min. interior dimensions  

• Max. curb weight 

Design variables • Powertrain configuration (e.g. Energy storage ratio battery/hydrogen tank) 

• Material concept of vehicle structure (body in white) 

Evaluation criteria • Costs (Acquisition Cost, Operating Cost, Total Cost of Ownership) 

• Energy consumption (Tank-to-wheel, Well-to-wheel) 

Workflow builder MDAx 

Workflow executor RCE 

4.3. IUV’s simplified design workflow 

Within the scope of this paper, the IUV’s design workflow, summarized in Table 1, is simplified with the aim of 

reducing the complexity of the considered system. To be more precise, the constraints, comfort and safety 

requirements as well as the material and structural concept are not taken into consideration as design variables. 

Furthermore, rather than taking all types of costs into account, only the operating costs are used as an evaluation 

criterion in addition to the energy consumption (see Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: IUV's simplified design workflow: high-level multidisciplinary requirements, constraints, design variables and evaluation criteria used in 

the conceptual design phase of the IUV 

Design object Electrified road vehicle concept  

High-level 

requirements 

Name   Symbol Value Unit 

Acceleration time 

from 0 to 100 km/h 

𝑡0−100 8.4 s 

Top speed 𝑣max 180 km/h 

Cruise speed 𝑣cont 160 km/h 

Range 𝑅 1000 km 

Constraints − 

Design variables Name Symbol Distribution Unit 

Energy storage ratio 𝑥 𝒰[0.1,0.9] − 

Fuel cell efficiency 𝜂fc 𝒰[0.4,0.6] − 

Gravimetric energy density of 

hydrogen including tank 
𝜌G,h2,tank
𝐸  𝒰[1400,1600] Wh/kg 

Gravimetric energy density of 

battery  
𝜌G,batt
𝐸  𝒰[250,300] Wh/kg 

Evaluation criteria Name     Symbol            Unit 

Operating cost 𝐶op               €/km 

Tank-to-wheel energy 

consumption 

𝐸ttw                kWh/km 

Well-to-wheel energy 

consumption 

𝐸wtw               kWh/km 

Workflow builder MDAx 

Workflow executor RCE 

 

Four design variables are considered for the IUV’s simplified design workflow (see Table 2): 

 

• The energy storage ratio 𝑥 ∈ (0,1), i.e., the ratio of the energy stored in the battery to that stored in the 

hydrogen tank is considered as a design variable. If 𝑥 =  0, then the energy is being solely supplied from the 

hydrogen tank, i.e. the vehicle is a purely hydrogen-powered one. Whereas, 𝑥 =  1 means that the energy is 

being completely supplied from the battery. Thus, the vehicle is purely an electric one. Varying 𝑥 allows the 

vehicle designer to examine various scenarios regarding the IUV’s energy mix. For this purpose, 𝑥 is assigned 

a uniform PDF 𝒰[0.1,0.9] with a lower bound of 0.1 and an upper bound of 0.9. Since the IUV is a hybrid 

road vehicle, the extreme cases, i.e. 𝑥 =  0 and 𝑥 = 1 are excluded. 

 

• The fuel cell efficiency 𝜂fc is defined as the ratio of electricity generated to the amount of hydrogen used by 

the fuel cell [3]. 𝜂fc strongly depends on the type of fuel cell technology used. Typically,   

𝜂fc varies between 40% and 60% [27, 35]. In order to account for various fuel cell technologies,  

𝜂fc is assigned a uniform PDF ranging between 0.4 and 0.6: 𝒰[0.4,0.6]. 

 

• 𝜌G,h2,tank
𝐸   is the gravimetric energy density of hydrogen including the tank used for storage. In other words, 

𝜌𝐸,h2,tank denotes the amount of energy stored per unit mass of the storage system, i.e., hydrogen and tank. 

Within the context of this paper, a variation ranging between 1400 and 1600 Wh/kg is considered. For this 

reason, 𝜌G,h2,tank
𝐸  is a assigned a uniform PDF: 𝒰[1400,1600] Wh/kg. 

 

• 𝜌G,batt
𝐸  is the gravimetric energy density of the entire battery pack including casings, cooling systems, etc. 

Lithium-ion batteries are currently a well-established technology in electrified vehicles [29]. For such battery 

systems, Thielmann et al. [34] have provided a forecast of  

𝜌G,batt
𝐸  for the years 2025 and 2030. Thielmann et al. predicted that  

𝜌G,batt
𝐸  can reach approximately 300 Wh/kg by the year 2030. To consider such future developments of 



 

battery energy systems, this forecast is adopted within the scope of this paper. More precisely,  

𝜌G,batt
𝐸  is assigned a uniform distribution 𝒰[250,300] Wh/kg. 

 

Two main evaluation criteria (output parameters) are used to evaluate the IUV concepts (see Table 2): 

 

• Operating costs 𝐶op refers to the costs needed to supply the IUV with energy, i.e., hydrogen and 

electricity. 

 

• Energy consumption of the IUV is an essential metric for economic and ecological reasons. The 

energy consumption impacts strongly the operating costs as well as the greenhouse gas emissions. 

Here, two types of energy consumption are considered: 

 

 

o Tank-to-wheel energy consumption 𝐸ttw refers to the energy consumed from the time the 

energy source, in the IUV’s case electricity and hydrogen, is loaded to the vehicle until it 

is converted to set the vehicle in motion.  

 

o Well-to-wheel 𝐸wtw considers on the other hand the energy needed to produce and 

transport electricity and hydrogen in addition to the energy consumption of the vehicle. In 

other words, 𝐸wtw provides an overview of all energy-consuming processes involved from 

the energy source (well) to the wheels of the vehicle.  

 

The IUV’s simplified design workflow consists of the following engineering disciplines/domains: vehicle 

performance, engine, fuel cell, mission, energy storage, mass, cost and lastly well-to-wheel energy consumption. 

4.4. Disciplines 

In general, the computational tool of each discipline can be mathematically represented as follows: 

 

𝒚discp  =  𝒇discp(𝒅discp, 𝒄discp, 𝒛discp). (7) 

 

Here, 𝒚𝑑𝑖𝑠𝑐𝑝 represents the vector containing the outputs computed and 𝒇𝑑𝑖𝑠𝑐𝑝: 𝒅𝑑𝑖𝑠𝑐𝑝 , 𝒄𝑑𝑖𝑠𝑐𝑝, 𝒛𝑑𝑖𝑠𝑐𝑝 ↦ 𝒚𝑑𝑖𝑠𝑐𝑝 denotes 

the vector containing the functions executed by the computational tool of the considered discipline. 𝒅𝑑𝑖𝑠𝑐𝑝 is defined 

as the vector including the design variables that are used as inputs for the considered computational tool; 𝒄𝑑𝑖𝑠𝑐𝑝 

corresponds to the vector containing the constants that are used as inputs for the considered computational tool. 𝒛𝑑𝑖𝑠𝑐𝑝 

denotes the vector composed of the linking outputs, i.e., the outputs computed by other computational tools but needed 

as inputs for the considered computational tool. 

Vehicle performance 

Within the scope of this discipline, the objective is to determine the power needed considering different scenarios: 1) 

𝑃0−100 needed to accelerate the IUV from 0 to 100 km/h within the required time 𝑡0−100  =  8.4 s, 2) 𝑃𝑣max  needed to 

maintain the required maximum speed 𝑣max  =  180 km/h, 3) 𝑃𝑣cont 
 needed to maintain the required cruise (continuous) 

speed 𝑣cont  =  160 km/h and 4) 𝑃max that should be supplied by the vehicle’s engine. 

Table 3: Vehicle performance - equations 

𝑃0−100  =  (
1

2
𝜌air𝑐d𝐴𝑣rated

2

⏟        
aerodynamic drag force

 + 𝑚𝑔𝑐r⏟  
rolling force

  + 𝑚𝑒i𝑎max⏟    
inertial force

 )𝑣rated 
(8) 

𝑚 = 𝑚cw  +  𝑚payload, (9) 



 

𝑎max  =  𝑘𝑎mean  = 𝑘
𝛥𝑣0 − 100

𝑡0−100
 = 𝑘

100 km/h

𝑡0−100
, 𝑘 >  1  (10) 

𝑒i  = 1 +  
𝐽pt,red

𝑚𝑟dyn
 

(11) 

𝑃𝑣max/cont
= (

1

2
𝜌air𝑐d𝐴𝑣max/cont

2

⏟            
aerodynamic drag force

+ 𝑚𝑔𝑐r⏟  
rolling force

)𝑣max/cont 

 

(12) 

𝑃max  =  max(𝑃0−100, 𝑃𝑣max) (13) 

 

In Table 3, 𝜌air refers to the air density at room temperature; 𝑐𝑑 denotes the drag coefficient; 𝑐𝑟 represents the rolling 

resistance coefficient; 𝐴 is the vehicle’s frontal area and 𝑣rated denotes the maximum vehicle speed at which the 

engine is still delivering maximum torque. Additionally, 𝑚 refers to the vehicle’s mass, which is the sum of the 

vehicle’s curb weight 𝑚cw and the mass of some payload 𝑚payload (see Eq. 9);  

𝑎max quantifies the maximum acceleration within the speed range 0 to 100 km/h (see Eq. 10);  

𝑒i accounts for the contribution of rotating components to the inertial resistance by taking into consideration the 

powertrain’s reduced moment of inertia 𝐽pt,red and the dynamic wheel radius 𝑟dyn (see Eq. 11). Lastly, 𝑔 denotes the 

Earth’s gravity. The function executed by the computational tool of this discipline is denoted by 𝒇vp. The outputs, 

linking outputs, constants and design variables are listed in Table 4. 

Table 4: Vehicle performance - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚vp 𝑃0−100, 𝑎max, 𝑒i, 𝑃𝑣max
, 𝑃𝑣cont

, 𝑃max 

𝒛vp 𝑚cw 

𝒄vp 𝜌air, 𝑐d, 𝐴, 𝑔, 𝑐r, 𝑘, 𝑡0−100, 𝑟dyn , 𝐽pt,red, 𝑣rated, 𝑣max, 𝑣cont, 𝑚payload 

𝒅vp − 

Engine 

The sizing of the engine is determined as follows: 

Table 5: Engine discipline - equations 

𝑃eng  =  𝑃max (14) 

𝑚eng  =  
𝑃eng

𝜌G,eng
𝑃  =  

𝑃max

𝜌G,eng
𝑃  

(15) 

𝑉eng  =  
𝑃eng

 𝜌V,eng
𝑃  =  

𝑃max

 𝜌V,eng
𝑃  

(16) 

 

In Table 5, the engine’s power 𝑃eng, mass 𝑚eng and volume 𝑉eng are determined empirically based on the gravimetric 

and volumetric power density of the engine, 𝜌G,eng
𝑃  and 𝜌V,eng

𝑃 , respectively. The function executed by the 

computational tool of this discipline is denoted by 𝒇eng. The outputs, linking outputs, constants and design variables 

are listed in Table 6. 

 

 

 



 

Table 6: Engine - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚eng 𝑃eng, 𝑚eng, 𝑉eng 

𝒛eng 𝑃max 

𝒄eng 𝜌G,eng
𝑃 , 𝜌V,eng

𝑃  

𝒅eng − 

Fuel cell 

The sizing of the IUV's fuel cell is determined in a similar manner to that of the engine. 

Table 7: Fuel cell - equations 

𝑃fc  =  𝑃𝑣cont
  (17) 

𝑚fc  =  
𝑃fc

𝜌G,fc
𝑃  =  

𝑃𝑣cont
𝜌G,fc
𝑃  

(18) 

𝑉fc  =  
𝑃fc

𝜌V,fc
𝑃  =  

𝑃𝑣cont
𝜌V,fc
𝑃  

(19) 

 

The fuel cell’s power 𝑃fc, mass 𝑚fc and volume 𝑉fc are determined empirically based on the and gravimetric 𝜌G,fc
𝑃  and 

volumetric power density. Since the fuel cell is used as a secondary energy source and typically not for acceleration, 

it is assumed that the fuel cell’s power should correspond to 𝑃𝑣cont and not 𝑃max. 

The function executed by the computational tool of this discipline is denoted by 𝒇fc. The outputs, linking outputs, 

constants and design variables are listed in Table 8. 

Table 8: Fuel cell - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚fc 𝑃fc, 𝑚fc, 𝑉fc 

𝒛fc 𝑃𝑣cont
 

𝒄fc 𝜌G,fc
𝑃 , 𝜌V,fc

𝑃  

𝒅fc − 

Mission 

To compute the IUV’s tank-to-wheel energy consumption, a simple model of an electric drive system is considered. 

For this purpose, the open-source Modelica simulation tool OpenModelica is used. The model aims at computing the 

IUV’s energy consumption for a given driving cycle 𝒞. Within the context of this paper, the WLTP driving cycle is 

used. The model consists mainly of a battery, electric drive and a gear. Here, the electric drive consists of an electrical 

machine, converter and controller. The electric drive is a map-based one, i.e., its efficiency is defined at different 

operating points, which are characterized by a torque and rotational speed. Additionally, the braking force as well as 

the drag force are modeled. For further details regarding the model, it is referred to [19]. One of the limitations of this 

model is that the fuel cell is not considered as a part of the electric drive system. However, by considering the IUV’s 

mass, the fuel cell is taken indirectly into consideration. The contribution of the fuel cell in regards to the IUV’s energy 

mix impacts the IUV’s mass through the design variable 𝑥. To compute the IUV’s tank-to-wheel energy consumption 

𝐸ttw, the energy delivered by the battery 𝐸batt(𝑡) is needed. 𝐸batt(𝑡) varies with time 𝑡 depending on the driving cycle 

used. Typically, Ettw is given in kWh/km. As a result, the energy needed to cover the required range 𝐸𝑅
ttw can be 

computed.  

 



 

Table 9: Mission - equations 

𝐸ttw  =  
𝐸batt(𝑡f)

𝑑𝒞 
 

(20) 

𝐸𝑅
𝑡𝑡𝑤  =  𝐸ttw𝑅 (21) 

In Table 9, 𝑡𝑓 denotes the final time and 𝑑𝒞 represents the distance traveled by the IUV based on the driving cycle 𝒞.  

The function executed by the computational tool of this discipline is denoted by 𝒇mission. The outputs, linking outputs, 

constants and design variables are listed in Table 10. 

Table 10: Mission - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚mission 𝐸batt(𝑡f), 𝐸
ttw 

𝒛mission 𝑚cw 

𝒄mission 𝜌air, 𝑐d, 𝐴, 𝑔, 𝑐r, 𝑟dyn, 𝐽ed,red, 𝑚payload, 𝒞, 𝑆𝑂𝐶min, 𝑆𝑂𝐶max, 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 , 𝛽batt 

𝒅mission − 

 

In Table 10, 𝐽ed,red denotes the electric drive’s reduced moment of inertia; 𝑆𝑂𝐶min, 𝑆𝑂𝐶max and 𝑆𝑂𝐶init represent the 

minimal, maximal and initial state of charge of the battery, respectively; 𝛽batt denotes battery’s efficiency. 

Energy storage 

Within the scope of this discipline, the aim is to determine the appropriate sizing, i.e., the mass and volume of the 

battery (𝑚batt and 𝑉batt) and hydrogen tank (𝑚tank and 𝑉tank), such that the required range 𝑅 is covered. Moreover, 

the contribution of each energy source (𝐸batt
ttw  and 𝐸tank

ttw ) to the vehicle’s energy consumption is computed. 

Table 11: Energy storage - equations 

𝐸̅batt  =  
𝐸𝑅
𝑡𝑡𝑤

𝛽batt
𝑥 

(22) 
𝐸̅tank  =

𝐸𝑅
𝑡𝑡𝑤

𝜂fc
(1 − 𝑥) 

(23) 

𝑚batt  =  
𝐸̅batt

𝜌G,batt
𝐸  =  

𝐸ttw𝑅

𝜌G,batt
𝐸 𝛽batt

𝑥 
(24) 

𝑚tank  =
  𝐸̅tank

𝜌G,h2,tank
𝐸  =  

𝐸ttw𝑅

𝜌G,h2,tank
𝐸 𝜂fc

(1 − 𝑥) 
(25) 

𝑉batt  =  
𝐸̅batt

𝜌V,batt
𝐸  =  

𝐸ttw𝑅

𝜌V,batt
𝐸 𝛽batt

𝑥. 
(26) 

𝑉tank =  
 𝐸̅tank

𝜌V,h2,tank
𝐸  =   

𝐸ttw𝑅

𝜌V,h2,tank
𝐸 (1 − 𝑥) 

(27) 

𝐸batt
ttw  =  

𝐸ttw

𝛽batt
𝑥 

 

(28) 
𝐸tank
ttw  =  

𝐸ttw

𝜂fc
(1 − 𝑥) 

(29) 

 

In Table 11, 𝜌G,batt/h2,tank
𝐸  and 𝜌V,batt/h2,tank

𝐸  denote the gravimetric and volumetric energy density of the battery 

energy system/hydrogen including tank; 𝑥 denotes the energy storage ratio of battery to hydrogen tank (design 

variable); 𝜂fc and 𝛽batt represent the efficiency of the fuel cell and battery, respectively. 

The function executed by the computational tool of this discipline is denoted by 𝒇𝐞𝐬. The outputs, linking outputs, 

constants and design variables are listed in Table 12. 

Table 12: Energy storage - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚es 𝐸̅batt, 𝑚batt, 𝑉batt, 𝐸batt
ttw , 𝐸̅tank, 𝑚tank, 𝑉tank, 𝐸tank

ttw  

𝒛es 𝐸ttw 

𝒄es 𝛽batt, 𝜌V,batt
𝐸 , 𝜌V,h2,tank

𝐸 , 𝑅 

𝒅es 𝑥, 𝜌G,batt
𝐸 , 𝜂fc, 𝜌G,h2,tank

𝐸  



 

Well-to-Wheel 

The purpose of this discipline is to compute the well-to-wheel energy consumption of the IUV 𝐸wtw. In other words, 

the energy consumption, from the production of hydrogen and electricity to their usage during driving, is considered. 

Table 13: Well-to-wheel - equations 

𝐸wtw =  
𝐸tank
ttw

𝜂h2
𝑤𝑡𝑤  +  

𝐸batt
ttw

𝛽el
wtw 

(30) 

𝐸wtw = 
𝐸ttw

𝜂h2
wtw𝜂fc

(1 − 𝑥)  +   
𝐸ttw

𝛽el
wtw𝛽batt

𝑥 
(31) 

 

In Table 13, 𝜂h2
wtw and 𝛽el

wtw denote the well-to-wheel efficiency of hydrogen and electricity, respectively. 

The function executed by the computational tool of this discipline is denoted by 𝒇𝐰𝐭𝐰. The outputs, linking outputs, 

constants and design variables are listed in Table 14. 

Table 14: Well-to-wheel - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚wtw 𝐸wtw 

𝒛wtw 𝐸tank
ttw , 𝐸batt

ttw  

𝒄wtw 𝛽el
wtw, 𝜂h2

wtw, 𝛽batt 

𝒅wtw 𝑥, 𝜂fc 

Mass 

Within the scope of this computational tool, the vehicle’s curb weight 𝑚cw is calculated by simply adding the mass 

of the vehicle’s components as follows: 

Table 15: Mass - equations 

𝑚cw  =  𝑚eng  +   𝑚tank  +  𝑚fc  + 𝑚batt  +  𝑚fix 

           =  
𝑃max

𝜌G,eng
𝑃  +   

𝐸ttw𝑅

𝜌G,h2,tank
𝐸 𝜂fc

(1 − 𝑥)  + 
𝑃𝑣cont
𝜌G,fc
𝑃  +  

𝐸ttw𝑅

𝜌G,batt
𝐸 𝛽batt

𝑥 +   𝑚fix 

(32) 

 

To account for masses of remaining vehicle components (body in white, wheels, etc.), which are not considered in the 

vehicle’s curb weight, a fixed mass denoted by 𝑚fix is used in Eq. 32.  

The function executed by the computational tool of this discipline is denoted by 𝑓mass. The outputs, linking outputs, 

constants and design variables are listed in Table 16. 

Table 16: Mass - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚mass 𝑚cw 

𝒛mass 𝑃max, 𝑃𝑣cont
, 𝐸ttw 

𝒄mass 𝜌G,eng
𝑃 , 𝜌G,fc

𝑃 , 𝛽batt, 𝑚fix, 𝑅 

𝒅mass 𝑥, 𝜂fc, 𝜌G,h2,tank
𝐸 , 𝜌G,batt

𝐸  

 



 

Cost 

Within the context of this paper, the operating costs are computed based on the vehicle’s tank-to-wheel energy 

consumption as well as the electricity and hydrogen prices. 

Table 17: Costs - equations 

𝐶ℎ2  =  𝑐ℎ2
𝐸tank
ttw

𝜌G,h2
𝐸  =  𝑐ℎ2

𝐸ttw

𝜌G,h2
𝐸 𝜂fc

(1 − 𝑥) 
(33) 

𝐶el  =  𝑐𝑒𝑙𝐸batt
ttw = 𝑐𝑒𝑙

𝐸ttw

𝛽batt
𝑥 

(34) 

𝐶op = 𝐶h2  +  𝐶el  =  𝑐h2
𝐸ttw

𝜌G,h2
𝐸 𝜂fc

(1 − 𝑥)  +  𝑐el
𝐸ttw

𝛽batt
𝑥 

(35) 

 

In Table 17, 𝐶ℎ2  and 𝐶el denote the vehicle’s hydrogen costs and electricity costs, respectively. Typically, the costs of 

hydrogen gas supplied for hydrogen-fueled vehicles in Europe is given in € per unit mass (𝑐ℎ2), whereas the electricity 

costs are typically given in € per unit energy and denoted (𝑐el). 𝜌G,h2
𝐸  represents the gravimetric energy of hydrogen. 

The function executed by the computational tool of this discipline is denoted by 𝒇c. The outputs, linking outputs, 

constants and design variables are listed in Table 18. 

Table 18: Costs - outputs, linking outputs, constants and design variables 

Vector Vector components 

𝒚c 𝐶op 

𝒛c 𝐸ttw 

𝒄c 𝜌G,h2
𝐸 , 𝛽batt, 𝑐h2 , 𝑐el 

𝒅c 𝑥, 𝜂fc 

 

4.5. Numerical implementation 

The design variables used in the IUV’s simplified design workflow are collected in vector 𝒅 =  𝒅vp ∪ 𝒅eng ∪ 𝒅fc ∪

𝒅mission ∪ 𝒅es ∪ 𝒅mass ∪ 𝒅c  = [𝜂𝑓𝑐, 𝜌G,batt
𝐸 , 𝜌G,h2,tank

𝐸 , 𝑥 ] ∈ ℝ1×4. Similarly, all of the constants are represented by 

vector 𝒄 =  𝒄vp ∪ 𝒄eng ∪ 𝒄fc ∪ 𝒄mission ∪ 𝒄es ∪ 𝒄mass ∪ 𝒄c. To conduct the variance-based GSA, 𝑁 samples of the 

design variables 𝒅 are generated based on the PDFs of the design variables (see Table 2). Here, the Sobol’ sequence, 

which is implemented in the Python library SALib [11, 14] (see Section 2.2), is used for sampling. The constants 𝒄 

are replicated 𝑁 times. The IUV’s design workflow is modeled in MDAx and executed in RCE as follows: 

 

𝒚𝑖 = 𝒇
RCE(𝒅𝑖 , 𝒄𝑖 , 𝒛𝑖). (36) 

 

Here, 𝑖 = {1,2,⋯ ,𝑁} denotes the sample index, where 𝑁 = 20480. 𝒚 and 𝒛 denote the vectors containing the outputs 

and linking outputs computed by the various disciplines, respectively. They are expressed as follows:  𝒚 =  𝒚vp ∪

𝒚eng ∪ 𝒚fc ∪ 𝒚mission ∪ 𝒚es ∪ 𝒚mass ∪ 𝒚c and 𝒛 =  𝒛vp ∪ 𝒛eng ∪ 𝒛fc ∪ 𝒛mission ∪ 𝒛es ∪ 𝒛mass ∪ 𝒛c. The function 

𝒇RCE encodes the RCE execution of the computational tools. Within the context of this paper, a vehicle concept, 

denoted by 𝒱𝑖, is defined to be the set of all vehicle parameters as well as the computational tools connecting these 

parameters together.  

 

𝒱𝑖 = {𝒚𝑖 , 𝒅𝑖 , 𝒄𝑖 , 𝒛𝑖 , ℱ }, (37) 

  

where ℱ =  { 𝒇vp, 𝒇eng, 𝒇fc, 𝒇mission, 𝒇es, 𝒇wtw, 𝒇c } , denotes the set of all computational tools. 



 

Figure 4: Distribution of the IUV's evaluation criteria (tank-to-wheel energy consumption 𝐸ttw, well-to-wheel energy 

consumption 𝐸wtw and operating costs 𝐶op). 20480 samples are considered. 

The evaluation criteria used for the IUV’s simplified design workflow (see Table 2), i.e. the outputs considered for 

the variance-based GSA are denoted by 𝒚𝑖
𝐺𝑆𝐴  ∈ ℝ𝑁×3 and expressed as follows: 

 

𝒚𝑖
𝐺𝑆𝐴 = [𝐸𝑖

ttw, 𝐸𝑖
wtw, 𝐶op,𝑖  ]. (38) 

 

Here, 𝐸ttw denotes the tank-to-wheel energy consumption, 𝐸wtw represents the well-to-wheel energy consumption 

and 𝐶op denotes the operating costs. 

5. Results 

After sampling the design variables and executing the IUV’s simplified design workflow, the outputs considered for 

the variance-based GSA 𝒚𝑖
𝐺𝑆𝐴 (see Eq. 38) are examined. The resulting output’s PDFs are illustrated in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation of the outputs 𝒚𝑖
𝐺𝑆𝐴 as a function of the design variables 𝒅𝑖  (𝑖 = {1,2,⋯ ,20480}) is illustrated in Figure 

5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5: The relation between the outputs (operating costs 𝐶op, well-to-wheel energy consumption 𝐸wtw and tank-to-wheel energy 

consumption 𝐸ttw) and design variables (fuel cell efficiency 𝜂fc, gravimetric energy density of hydrogen including tank 𝜌G,h2,tank
𝐸 , 

gravimetric energy density of the battery 𝜌G,batt
𝐸  and energy storage ratio 𝑥) and their respective PDFs. 20480 samples are considered. 



 

On the vertical and horizontal axis of Figure 5, the outputs and the design variables are plotted with their PDFs, 

respectively. The colors in the plots encode the density of the outputs in a given region of the design variable. Yellow 

shaded data points refer to a high-density region, whereas the purple color represents a low-density region. Such 

scatter plots are useful to recognize some trends and correlations between the design variables and outputs. It is 

important to mention that observed output fluctuations in the scatter plots, despite the constant value of the design 

variable on the x-axis, is attributed to the variation in the other design variables that are not held constant. Some key 

insights can be derived from Figure 5: 

 

• Although the design variables are uniformly distributed, the outputs produced are not uniformly distributed. Such 

phenomena can be caused by nonlinear relations and the fact that the design variables of the design workflow are 

interconnected. 

 

• The first column in Figure 5 represents the relation between the fuel cell efficiency 𝜂fc and the outputs. It is 

evident that 𝜂fc is strongly correlated to the operating costs 𝐶op. More precisely, one observes a decreasing 

tendency of 𝐶op, which agrees well with Eq. 35. Similarly, the well-to-wheel energy consumption 𝐸wtw decreases 

as 𝜂fc increases, which also confirms the expected tendency described by Eq. 31. However, comparing the plots 

of 𝐶op and 𝐸wtw, it becomes evident that 𝐶op has a stronger correlation with 𝜂fc and demonstrates a different 

behavior, especially for 𝜂fc ∈ [0.45, 0.50]. Upon analyzing Eq. 31 and 35, one realizes that they share a similar 

form. Consequently, it is reasonable to anticipate that the outputs 𝐸wtw and 𝐶op would exhibit comparable 

behavior; however, this expectation is not fully realized due to the differing coefficients of the summands (see 

Table 19).  

             Table 19: Comparison of equations for 𝐸wtw and 𝐶op 

 

 

 

 

 

 

In contrast to 𝐸wtw and 𝐶op, the tank-to-wheel energy consumption 𝐸ttw is poorly correlated to 𝜂fc. This can be 

attributed to the limitation that the mission simulation (see Section 4.4) does not consider the fuel cell to be a part of 

the electric drive system. 

 

• Examining the second and third columns in Figure 5, it becomes evident that the gravimetric energy densities of 

hydrogen, including tank, and the battery, 𝜌G,h2,tank
𝐸  and 𝜌G,batt

𝐸 , exhibit a weak correlation with the outputs. 

Taking a closer look at 𝐸ttw, one realizes that correlation between 𝜌G,batt
𝐸  and 𝐸ttw is stronger than that of 

𝜌G,h2,tank
𝐸  with 𝐸ttw. To get a better understanding of this phenomena, one must examine closely the impact 

of 𝜌G,batt
𝐸  and  𝜌G,h2,tank

𝐸  on the vehicle’s curb weight 𝑚cw, as 𝑚cw is an input to the mission simulation, which 

computes 𝐸ttw. Since 𝜌G,h2,tank
𝐸  > 𝜌G,batt

𝐸 , a smaller mass of hydrogen is needed to deliver an equivalent amount 

of energy compared to the mass of a battery. Therefore, the contribution of 𝜌G,batt
𝐸  to 𝑚cw is more impactful than 

that of 𝜌G,h2,tank
𝐸 , which agrees well with Eq. 32. A visual representation of the relation between the design 

variables and 𝑚cw is illustrated in Figure 6 in a similar manner to Figure 5. 
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Figure 7: The variation of the battery's mass 𝑚batt, the hydrogen tank's 

mass 𝑚tank and the IUV’s curb weight 𝑚cw as a function of the energy 

storage ratio 𝑥. 25 samples are drawn from 20480 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

• The last column in Figure 5 illustrates the relation between the energy storage ratio 𝑥 and the outputs. A strong 

correlation is seen between the outputs and 𝑥. A key observation is the contrasting trends of 𝐸ttw and 𝐸wtw. As 

𝑥 increases, 𝐸ttw exhibits an upward trend, while 𝐸wtw demonstrates a downward trend.  

 

𝐸ttw: 

To get a better understanding of the 𝐸ttw trend, one must examine closely the impact of 𝑥 on the curb weight 𝑚cw 

(see Figure 6). An increase in 𝑥 leads to a greater energy extraction from the battery, while reducing the energy drawn 

from the hydrogen tank. Consequently, this requires an increase in the size of the battery and a reduction in the size 

of the hydrogen tank, thereby resulting in an increase in the battery’s mass 𝑚batt and a corresponding decrease in the 

hydrogen tank’s mass 𝑚tank. This line of reasoning agrees well with Eq. 24 and 25. From these equations, one can 

additionally deduce that as 𝑥 increases, the rate, at which 𝑚batt increases, is higher than the rate at which 𝑚tank 

decreases. This is due to the fact that the energy density of hydrogen including tank is higher than that of the battery 

(𝜌G,h2,tank
𝐸  >  𝜌G,batt

𝐸  ). For this reason, as x increases, the sum of 𝑚tank and 𝑚batt increases, thus leading to an increase 

in 𝑚cw (see Eq. 32). In other words, the vehicle is heavier, which increases its energy consumption 𝐸ttw. Figure 7 

illustrates this interplay between 𝑚tank, 𝑚batt and 𝑚cw as a function of 𝑥. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐸wtw: 

Intuitively, one expects that 𝐸wtw and 𝐸ttw would have a similar behavior, since the well-to-wheel energy 𝐸wtw 

accounts for the entire energy lifecycle including the energy consumption during the vehicle’s operation 𝐸ttw. 

However, closely examining Eq. 31, it becomes evident that 𝐸wtw does not only depend on 𝐸ttw, but also on the 

Figure 6: The relation between curb weight 𝑚cw and the design variables (fuel cell efficiency 𝜂fc, gravimetric energy density of 

hydrogen including tank 𝜌G,h2,tank
𝐸 , gravimetric energy density of the battery 𝜌G,batt

𝐸  and energy storage ratio 𝑥). 20480 samples 

are considered. 



 

infrastructure’s efficiency and the efficiency of the vehicle’s energy systems, i.e., the well-to-wheel efficiency of 

hydrogen 𝜂h2
wtw, electricity 𝛽el

wtw, the fuel cell’s efficiency 𝜂fc and the battery’s efficiency 𝛽batt.  Here, it is assumed 

that  𝛽el
wtw >  𝜂h2

wtw and 𝛽batt > 𝜂fc. In other words, the electric-powered system is more efficient than the hydrogen-

fueled one. For this reason, as 𝑥 increases, the dependency on the electric-powered system increases, thus, resulting 

in a decrease in  𝐸wtw. 

 

Sobol’ Indices 

 

In order to quantify the uncertainties of the outputs, i.e. operating costs 𝐶op, tank-to-wheel energy consumption 𝐸ttw 

and well-to-wheel energy consumption 𝐸wtw caused by the uncertainties of the design variables, i.e. fuel cell 

efficiency 𝜂fc, gravimetric energy densities 𝜌G,h2,tank
𝐸 , 𝜌G,batt

𝐸  and energy storage ratio 𝑥, the Sobol’ indices come into 

play. Figure 8 visualizes the notion of the output uncertainties using as an example the relation between the outputs 

and 𝜂fc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scattered data points in Figure 8 represent 1000 samples drawn from 20480 samples. Additionally, the mean of 

each output for a constant 𝜂fc is computed over the remaining varying design variables 𝜌G,h2,tank
𝐸 , 𝜌G,batt

𝐸  and 𝑥. The 

shaded area in Figure 8 illustrates the range between the mean plus one standard deviation 𝜎[⋅] and the mean minus 

one 𝜎[⋅]. Since 𝜎[⋅]   =  𝕍[⋅]2 and the variance 𝕍[⋅] is regarded as a measure for uncertainties within the context of 

variance-based GSA, the shaded area is considered to be an illustration of the output uncertainties for a constant 𝜂fc. 

However, interesting is the quantification of the output uncertainties considering all design variables: 

 

The uncertainties of which design variables contribute the most to the output uncertainties? In other words, which 

design variables are the most influential on the outputs? 

 

To answer these questions, the first-order and total Sobol’ indices, 𝑆𝑖 and 𝑆T𝑖, of all outputs are represented in Figure 

9. Here, 𝑖 denotes the index of the design variables 𝜂fc, 𝜌G,ℎ2,𝑡𝑎𝑛𝑘
𝐸 , 𝜌G,𝑏𝑎𝑡𝑡

𝐸  and 𝑥. It is to be noted that the error bars in 

Figure 9 represent a confidence level of 95%. In other words, there is a 95% probability that the calculated values of 

𝑆𝑖/T𝑖 fall within the range indicated by the error bars. 

 

 

 

 

 

 

 

Figure 8: The variation of operating costs 𝐶op, tank-to-wheel energy consumption 𝐸ttw and well-to-wheel energy consumption 𝐸wtw as a 

function of the design variable fuel cell efficiency 𝜂fc. The mean is computed based on 20480 samples. Additionally, 1000 data points are 

illustrated. 
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Figure 9: First-order 𝑆𝑖 and total order Sobol' indices 𝑆T𝑖 of the outputs: tank-to-wheel energy consumption 𝐸ttw (a), well-to-wheel energy 

consumption 𝐸wtw (b) and operating costs 𝐶op (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 9 (a), it becomes evident that the energy storage ratio 𝑥 is the most influential design variable with respect 

to the tank-to-wheel energy consumption 𝐸ttw. This agrees well with the scatter plots of 𝐸ttw (see Figure 5, upper 

row). The fact that 𝑥 exhibits the greatest impact on 𝐸ttw, while the effect of the fuel cell efficiency 𝜂fc and gravimetric 

energy densities, 𝜌G,h2,tank
𝐸  and 𝜌G,batt

𝐸  is minimal, suggests that any technological improvements regarding the fuel 

cell and battery have a much lower impact on the vehicle’s tank-to-wheel energy consumption in comparison to the 

vehicle’s energy storage configuration. However, since within the mission simulation (see Section 4.4) the fuel cell 

was not modelled, an extension of the simulation is required to get more accurate results regarding the impact of the 

fuel cell efficiency on the tank-to-wheel energy consumption. Moreover, since 𝑆𝑖  −  𝑆T𝑖  ≈  0, one can assume that 

the interaction between the design variables, 𝜂fc, 𝜌G,h2,tank
𝐸 , 𝜌G,batt

𝐸  and 𝑥, has a negligible effect on the sensitivity of 

𝐸ttw. 

Taking a closer look at Figure 9 (b), one realizes that the impact of the gravimetric energy densities, 𝜌G,h2,tank
𝐸  and 

𝜌G,batt
𝐸 , on the well-to-wheel energy consumption 𝐸wtw is negligible. The most impactful design variables are the 

energy storage ratio 𝑥 followed by the fuel cell efficiency 𝜂fc. This indicates that although 𝑥 exhibits the dominant 

influence on the sensitivity of 𝐸wtw, improvements in 𝜂fc can reduce 𝐸wtw. What is particularly evident is the slight 

difference between 𝑆𝑖 and 𝑆T𝑖 for both 𝑥 and 𝜂fc, which implies that there exists an interaction between 𝑥 and 𝜂fc. This 

interplay, which affects the sensitivity of 𝐸wtw, aligns well with Eq. 31, which shows that 𝑥 and 𝜂fc influence 

(a) (b) 

(c) 



 

Figure 10: The variation of the well-to-wheel energy consumption 𝐸wtw as a function of fuel cell efficiency 𝜂fc and the energy storage ratio 𝑥. 

1000 samples are drawn from 20480 samples. 

simultaneously the first summand of 𝐸wtw. To get a better understanding of this interplay and its impact on 𝐸wtw, 

Figure 10 illustrates 𝐸wtw as a function of 𝑥 and 𝜂fc. The colors in Figure 10 (a) and (b) represent the variation of 𝑥 

and 𝜂fc, respectively. Examining Figure 10 (a), it becomes evident that for small values of 𝑥 (blue dots, 𝑥 <  0.5) the 

impact of 𝜂fc on 𝐸wtw is bigger. In other words, the rate at which 𝐸wtw decreases, as 𝜂fc increases, is bigger for small 

𝑥 values. This is due to the fact that, for small 𝑥 values, the vehicle’s reliance on the hydrogen-powered system is 

greater. Thus, the impact of the fuel cell becomes greater. Shifting the attention to Figure 10 (b), one can deduce that 

for small 𝜂fc values (blue dots, 𝜂fc  <  0.5), 𝐸
wtw is greater, which is consistent with intuitive expectations. Moreover, 

for all 𝜂fc values, as 𝑥 increases, 𝐸wtw tend to converge to a single value region. This is attributed to the increase in 

the vehicle’s reliance on the electric system. Thus, the impact of the fuel cell becomes smaller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 (c) shows as well no significant impact of the gravimetric energy densities, 𝜌G,h2,tank
𝐸  and 𝜌G,batt

𝐸 , on the 

operating costs 𝐶op. In contrast to 𝐸wtw, the most influential design variable with respect to 𝐶op is the fuel cell 

efficiency 𝜂fc followed by the energy storage ratio 𝑥. A key observation is that for 𝑥, 𝑆T𝑖  ≫  𝑆𝑖 and 𝑆𝑖  ≈  0.  

The fact that 𝑆𝑖  ≈  0 indicates that 𝑥 does not directly impact 𝐶op. Moreover, since 𝑆T𝑖  ≫  𝑆𝑖 , one deduces that 𝑥 

influences 𝐶op indirectly. More precisely, 𝑥 impacts 𝐶op through its interaction, particularly with the fuel cell 

efficiency 𝜂fc since 𝑆𝑖  −  𝑆T𝑖  ≠  0, for both 𝑥 and 𝜂fc. To gain a deeper insight into the interaction between 𝑥 and 𝜂fc 

and their impact on 𝐶op, Figure 11 (a) and (b) represent 𝐶op as a function of 𝜂fc and 𝑥, respectively. From Figure 11 

(a) it becomes evident, the impact of 𝜂fc on 𝐶op diminishes for high 𝑥 values (red dots), which is as well attributed to 

the increase in the vehicle’s reliance on the electric system. Thus, the impact of 𝜂fc becomes smaller. Additionally, 

Figure 11 (b) shows that to understand the relation between 𝐶op and 𝑥, the values of 𝜂fc should be taken into 

consideration as well. As x increases, 𝐶op increases for high 𝜂fc values (red dots, 𝜂fc  >  0.5), while 𝐶op decreases for 

low 𝜂fc values (blue dots, 𝜂fc  <  0.5).  
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Figure 11: The variation of the well-to-wheel energy consumption 𝐶op as a function of fuel cell efficiency 𝜂fc and the energy storage ratio 𝑥. 1000 

samples are drawn from 20480 samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Summary and Outlook 

Within the context of this paper, a framework was provided to integrate a variance-based global sensitivity analysis 

(GSA) in the multidisciplinary conceptual phase of road vehicles. To ensure the applicability of this framework, the 

conceptual design phase of the so called “Inter-urban vehicle” (IUV) was examined. The IUV is a research plug in 

fuel cell electric vehicle, which is conceptualized at German Aerospace Centre (DLR5). With the aim of digitizing and 

automating the conceptual design phase, a digital vehicle design workflow was modeled using the multidisciplinary 

design analysis and optimization workflow design accelerator, abbreviated as MDAx. To guarantee an efficient 

exchange of computational tools between the engineering teams involved in the conceptual phase, the vehicle design 

workflow was executed in the open-source software RCE, short for remote component environment. Within the 

context of this paper, the energy storage ratio 𝑥, fuel cell efficiency 𝜂fc and the gravimetric energy densities of the 

battery as well as hydrogen including tank, 𝜌G,batt
𝐸  and 𝜌G,h2,tank

𝐸 , were regarded as design variables. The uncertainties 

of the design variables, which can be due to future technological advancements or different vehicle configurations, 

were quantified using probability distribution functions (PDF). Based on these PDFs, the design variables were 

sampled using the Sobol’ sequence. Subsequently, the resulting design workflows were executed in the process-

integrating software RCE. Here, the tank-to-wheel 𝐸ttw and well-to-tank energy consumption 𝐸wtw as well as the 

operating costs 𝐶op were considered as quantities of interest (outputs) for the subsequent GSA, where the Sobol’ 

indices of the outputs were computed based on the Sobol’ method. It was shown that the Sobol’ indices did not only 

quantify the uncertainties of the outputs, but also helped to identify which design factors are the most influential on 

the final vehicle design. Additionally, Sobol’ indices helped in comprehending the intricate mechanisms of the system 

under consideration, which facilitates the decision-making process in the conceptual design phase of road vehicles.  

 

An important factor that was not considered in this paper is the computational time. Since the Sobol’ method require 

a large number of samples to achieve an acceptable accuracy, a high computational effort was needed to evaluate the 

IUV’s design workflows. For this reason, further investigations can be conducted with the objective of applying 

surrogate models, that can replace the IUV’s design workflow while reducing the computational effort required.  

What was also not considered in this paper, are uncertainties related to the computational tools used for the design 

workflow, such as, uncertainties due to numerical errors. Within the context of upcoming work, the framework 

presented in this paper can be extended to include such uncertainties. Future research could also include extending the 
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IUV’s design workflow to account for additional engineering domains, which are involved in the conceptual design 

phase, such as aerodynamics, lateral dynamics, packaging, etc.  

Finally, different methods could be investigated in future work with the aim of evaluating the large number of vehicle 

concepts resulting from sampling. Subsequently, the values of the design variables yielding to the optimal vehicle 

concept can be selected based on the evaluation method chosen. 
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