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Abstract
Choosing the right system architecture for the problem at hand is challenging due to the large
design space and high uncertainty in the early stage of the design process. Formulating the
architecting process as an optimization problemmay mitigate some of these challenges. This
work investigates strategies for solving system architecture optimization (SAO) problems:
expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems
that may be subject to hidden constraints. Imputation ratio, correction ratio, correction frac-
tion, and max rate diversity metrics are defined for characterizing hierarchical design spaces.
This work considers two classes of optimization algorithms for SAO: multi-objective evo-
lutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new
Gaussian process kernel is presented that enablesmodeling hierarchical categorical variables,
extending previous work on modeling continuous and integer hierarchical variables. Next,
a hierarchical sampling algorithm that uses design space hierarchy to group design vectors
by active design variables is developed. Then, it is demonstrated that integrating more hier-
archy information in the optimization algorithms yields better optimization results for BO
algorithms. Several realistic single-objective and multi-objective test problems are used for
investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization
problem. This work shows that the developed BO algorithm can effectively solve the problem
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with one order of magnitude less function evaluations than NSGA-II. The algorithms and
problems used in this work are implemented in the open-source Python library SBArchOpt.

Keywords Architecture optimization · Bayesian optimization · Hierarchical ·
Multi-objective · Mixed-discrete · Hidden constraints

List of symbols
ch Hidden constraint
cv,l Value constraint l
CR Correction ratio (d subscript: discrete CR; c subscript: continuous CR)
CRF Correction fraction
DoE Design of experiments
fm Objective function m
gk Inequality constraint k
HV Hypervolume
IR Imputation ratio (d subscript: discrete IR; c subscript: continuous IR)
kdoe DoE multiplier
PLS Partial least squares regression
KPLS Kriging with PLS
MRD Maximum rate diversity
ncv Number of value constraints
n f Number of objectives
ng Number of inequality constraints
nact Number of active design variables in a design vector
nbatch Batch size for infill points
ncorr,discr Number of correct discrete design vectors
ndoe Design of experiments size
ninfill Total number of infill points generated
nkpls PLS components for KPLS
nparallel Maximum number of parallel evaluations
nvalid,discr Number of valid discrete design vectors
nx Number of design variables
nxc Number of continuous design variables
nxd Number of discrete design variables
nx,grp Number of design variables in a sampling group
Nfe Number of function evaluations
N j Number of options for discrete variable j
j Rate diversity of discrete variable j
ŝ Uncertainty estimate by a surrogate model
TSFC Thrust-specific fuel consumption
w Group weight for sampling
x Design vector
xact Active design variables in a design vector
xc,i Continuous design variable i
xcorr Design vector to be corrected
xd, j Discrete design variable j
xvalid,discr Valid discrete design vectors
ŷ Function value estimate by a surrogate model
δi Activeness function for design variable i
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1 Introduction

System architecture is an important aspect of any engineered system. It conceptually defines
how the system meets its stakeholder expectations by specifying the components the system
consists of, how these components fulfill system functions, and how the components are
related to each other [1]. Designing a system architecture is anything but trivial, involving
requirements analysis, interviewing stakeholders, defining the top-level functions the system
should fulfill, identifying appropriate technologies for fulfilling these functions, managing
complexity, and working with disciplinary experts to come up with a solution [2]. This
process is challenged by the fact that due to the combinatorial nature of architecture deci-
sions, it is infeasible to enumerate, analyze, and compare over every possible architecture
alternatives [3]. Additionally, engineering teams might be biased towards known solutions,
preventing them to consider the full range of possibilities [4], mainly due to the time it takes to
analyze one architecture alternative. System Architecture Optimization (SAO) is an emerging
field, where these challenges are addressed by combining numerical optimization techniques
with quantitative performance evaluation of architecture alternatives to automatically (but not
exhaustively) search the design space for the best architecture(s) for the problem at hand [5].
To turn an architecting process into an architecture optimization problem, several conditions
must be satisfied [6]:

• Architectural decisions need to be formally specified in an architectural design space
model, such that a computer program can reason about them, try out different combina-
tions of decisions, and explore promising architecture candidates automatically.

• It should be possible to quantitatively evaluate the performance of each architecture so
that architecture candidates can be compared to each other objectively, by implementing a
computational framework that can handle all possible architectures and captures relevant
(physical) phenomena with sufficient details.

• Appropriate numerical optimization algorithmsmust be available to solve the architecture
optimization problem efficiently.

Past work on SAO has explored variousmethods for modeling architectural design spaces,
such as using feature models [7], function-means trees [8], morphological matrices [9, 10],
and various graph-based models [11, 12]. The reader is referred to [13] for a more compre-
hensive overview of architecture design space modeling methods. Quantitative evaluation
of architecture candidates can be implemented using Multidisciplinary Design Analysis and
Optimization (MDAO) techniques, which enables integrating the diverse and coupled engi-
neering disciplines usually involved in system architecting problems [14]. Recent effort in
coupling system architecting with MDAO [15–17] is further extended with the capability to
automatically modify the MDAO workflow for each architecture candidate generated during
the SAO loop [18–20].

This work focuses on the last point in the list above: numerical optimization algorithms
that can handle all challenges of architecture optimization problems, namely mixed-discrete,
hierarchical, constrained, multi-objective design spaces with expensive, black-box eval-
uation functions. Previous work in this area has mostly focused on the application of
evolutionary algorithms [5, 21, 22], as these provide good performance in mixed-discrete,
multi-objective, constrained design spaces. Surrogate-Based Optimization (SBO) algorithms
have been applied for SAO by Bussemaker et al. [6, 23] to support the expensive nature
of physics-based multidisciplinary evaluation functions. SBO has also found application to
optimization problems featuring mixed-discrete, hierarchical, multi-objective design spaces
and expensive evaluation functions in the field of hyperparameter optimization [24, 25].
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This work contributes to the application of global optimization algorithms for solving SAO
problems by improving several aspects of both evolutionary and BO algorithms:

• The definition of metrics for quantifying the level of hierarchy in hierarchical design
spaces;

• Specifically for BO: new Gaussian Process (GP) kernels for modeling hierarchical cate-
gorical variables;

• The definition of three classes of test problems for supporting research into and devel-
opment of optimization algorithms for SAO;

• A new algorithm for sampling hierarchical design spaces;
• A comparison between various a-priori correction algorithms; and
• An overview and comparison of various strategies for integrating information about the

hierarchical design space into optimization algorithms.

This paper continues with a more detailed introduction of the challenges posed by archi-
tecture optimization in Section 2, and a discussion of appropriate optimization algorithm
classes and their implementations in Section 3. Kernels for modeling categorical variables in
hierarchical GP models are presented in Section 4. Section 5 develops and investigates new
sampling and correction algorithms for hierarchical design spaces, and Section 6 discusses
and compares different levels of hierarchy integration in optimization algorithms. The devel-
oped strategies are applied to a jet engine architecture optimization problem in Section 7 and
Section 8 concludes this paper.

2 Characteristics of architecture optimization problems

Optimization is the automation of a design task: the goal is to find one or more design vectors
x, representing specific design points, that minimize (or maximize) one or more objective
functions f (x), while satisfying design constraints g(x) ≤ 0 [26]. The design vectors (or
design points) x are composed of one value for each design variable x . Note thatmaximization
of an objective function is enabled by negating the objective function value, and therefore we
treat minimization as the default in the rest of this work. In the context of SystemArchitecture
Optimization (SAO), a design point x represents an architecture instance. Compared to for
example theworkbyFrank et al. [21],we treat the terms “architecture instance”, “architecture
alternative”, and “design point” as synonymous meaning one possible design vector in the
architecture design space.

2.1 Design space characteristics

SAOproblems aremixed-discrete: both continuous anddiscrete design variables can be part of
the problem formulation [21, 27]. Continuous design variables xc can take any value between
some lower bound xc and some upper bound xc (inclusive). Discrete design variables xd can
only take one from a finite set of values, encoded as an index between 0 and N j−1 (inclusive),
with N j representing the number of possible discrete values for discrete design variable xd, j .
Discrete variables can either be of integer, ordinal or of categorical type: for integer and
ordinal variables the order of the values is relevant, for categorical values no notion of value
order exists [28]. The difference between integer and ordinal variables is that integer values
operate between twobounds and the variable can take any integer value between these bounds,
whereas ordinal variables can take any value of a specified list of integer values. Examples
of continuous design variables are wing sweep and engine bypass ratio, an example of an
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integer variable is the number of seat rows in an aircraft cabin (e.g. between 20 and 40), an
example of an ordinal variable is the number of engines for an aircraft (e.g. 1, 2 or 4; order is
relevant), and an example of a categorical variable is aircraft power source (there is no order
between kerosene, hydrogen and electricity). In the context of discrete architecture choices,
function-to-component allocation and component connection are categorical choices, and
component or system instantiations are integer or ordinal choices [29].

SAO design spaces feature strong interaction between decisions, in the sense that some
decisions might affect which other decisions remain to be taken and/or which options remain
available for other decisions. For example, consider the Apollo mission architecture prob-
lem analyzed by Simmons [11]: the decision whether or not a lunar-orbit-rendezvous or
earth-orbit-rendezvous maneuver will be performed is only relevant if an architecture with
a lunar module is selected. Another example from the same architecture problem is crew
assignment: the lunar module can have 1, 2 or 3 crew members, except if there are only 2
crewmembers in the commandmodule, in which case the lunar module can only contain 1 or
2 crew members. In the launch vehicle design problem by Pelamatti et al. [30], the number
of stages is a decision (1 to 3), as well as several decisions such as fuel type and dimensions
for each of the stages: it follows that if a one-stage architecture is selected, the decisions
regarding the second and third stages do not have to be considered. Machine learning hyper-
parameters tuning problems also exhibit such interactions between design variables [24]. In
general, decisions constraining available options of other decisions is a common theme in
architecture optimization, for example defined using an incompatibility matrix [31]. These
interactions between design variables create a hierarchical structure in the design space [32],
with design variables higher up in the hierarchy determining which variables lower in the
hierarchy are active or inactive, and/or which options are available for active design variables.
The property of being active or inactive is called activeness [6], and is defined through the
activeness function δi (x) [33], which returns a 1 indicating active or 0 indicating inactive
for design variable xi . Variables that may be inactive are denoted as conditionally active. In
architecture optimization problems often only discrete design variables determine the active-
ness of other design variables, however in the general case also continuous variables could
determine activeness as in thework byZaefferer & Horn [32]. Hierarchical design spaces
are also known as conditional design spaces [24] as design variables can be conditionally
active, design spaces with tree-structured dependencies [22, 34, 35], and variable-size design
spaces [36, 37] as inactive design variables can also be seen as artifacts of a locally-reduced
size of the design space.

Inactive design variables do not influence the performance of the design and are therefore
irrelevant for objective and constraint evaluations. If an optimizer is not aware of this, it
can however still generate design vectors with different values for inactive design variables,
resulting in the possibility of multiple design vectors representing the same design (i.e. the
design vector to designmapping is no longer one-to-one) and therefore the same objective and
constraint values, and thereby wasting computational resources or preventing the optimizer
from finding the optimum. To mitigate this, each inactive design variable can be assigned a
canonical value, for example 0 for discrete variables and mid-bounds for continuous vari-
ables [32]. The process of replacing inactive design variables with canonical values is called
design vector imputation [32, 38], and the resulting design vector is called an imputed or
canonical design vector. Restricting option availability of active variables lower in the hier-
archy is done using value constraints, also known as enumeration constraints in the context
of architecture optimization [39] or configuration constraints in product line engineering [7,
40]. According to the taxonomy by Le Digabel & Wild [41] value constraints are non-
quantifiable (it is only know whether they are violated, not by how much), unrelaxable (a
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design point with a failed value constraint does not represent anything that can be evaluated),
a-priori (they can be corrected without running an evaluation), and known (they are derived
from the design space definition). The process of ensuring value constraints are satisfied by
modifying a design vector is called correction.

A result of design variable hierarchy is that it is not possible to compute the number of
discrete design options and continuous variables from the design variable definitions alone:
for a non-hierarchical design space, the number of valid discrete design points nvalid,discr is
equal to the Cartesian product of all discrete values

∏
N j . For hierarchical design spaces,

however, the number of valid discrete design points can be much lower than that. For exam-
ple, for the suborbital vehicle design problem of Frank et al. [21] there are 2.8 million
total combinations of discrete variables, however there are only 123 thousand (4.4% of 2.8
million) valid designs.Ying et al. [42] report 423 thousand unique neural networks in a Carte-
sian design space of 510 million design vectors, a difference of a ratio 1206. To highlight
such differences, we distinguish between the declared discrete design space, given by the
aforementioned Cartesian product, and the valid discrete design space, given by the number
of valid discrete design vectors nvalid,discr. Correction combined with imputation moves a
design point from the declared design space to the valid design space: correction ensures a
design point is made correct, imputation ensures that correct non-canonical design points
are made canonical and thereby valid (correct and canonical). The principles of correction
and imputation are visualized in Fig. 1. A hypothetical source-to-target assignment prob-
lem is shown where 1 or 2 energy consumers are assigned to 1 or 2 energy sources. Two
hierarchical interactions arise: if there is only one source, then both consumers have to be
assigned to that source (a value constraint), and if there is only one consumer, the source
choice for the second consumer is not active (hierarchical activation). To move from the
declared (Fig. 1 step 1) to valid design space, first design vectors are corrected (step 2) and
then inactive design variables are imputed (step 3). The valid design space (step 4) contains
the unique remaining design vectors. For this example, the declared design space (step 1)
consists of 16 design vectors, whereas the valid design space (step 4) only consists of 8 design
vectors, demonstrating this discrepancy typical for hierarchical optimization problems. The
combined operations of correction and imputation can be implemented in an optimization
problem using a repair operator [39, 43, 44]. Table 3 provides an overview of relevant design
point statuses in the context of SAO.

2.1.1 Imputation and correction ratio

Due to hierarchy, the valid design space might be much smaller than the declared design
space. Since this might pose a challenge to optimization algorithms we now introduce a
metric to quantify this discrepancy: the ratio between the declared and valid (see Table 3)
discrete design space sizes is defined as the discrete imputation ratio IRd :

IRd =
∏nxd

j=1 N j

nvalid,discr
(1)

where nvalid,discr is the number of valid discrete design vectors, and N j is the number of
options for discrete variable j . An imputation ratio of 1 indicates a non-hierarchical problem,
values higher than 1 indicate hierarchy: for the suborbital vehicle design problem in [21],
the imputation ratio is 2.8e6/123e3 = 22.8. The higher the value, the more invalid (non-
canonical and non-corrected) vectors would be generated in a random search, and therefore
the more difficult it is for an optimization algorithm to search the design space if this effect
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Fig. 1 Illustration of correction and imputation in hierarchical design spaces, showing how the Cartesian
product of all discrete values relates to the set of correct, imputed, and valid design vectors. Correction (step
2) modifies design variables such that value constraints are satisfied. Imputation (step 3) assigns canonical
values to inactive design variables. δi represents the activeness function of design variable xi

is not considered. Variability factor [45] as used in software product line engineering is the
reciprocal of discrete imputation ratio. The continuous imputation ratio IRc is defined as
follows:

IRc = nvalid,discr · nxc
∑nvalid,discr

l=1

∑nxc
i=1 δi (xd,l)

(2)

where δi (xd,l) is the activeness function for continuous variable i for valid discrete design
vector xd,l , nvalid,discr the number of valid discrete design vectors, and nxc the number of
continuous design variables. A value of 1 indicates that all continuous variables are always
active. A higher value indicates that for some discrete design vectors one or more continuous
variables are inactive. Note that this formulation assumes that only discrete design variables
determine activeness of continuous design variables. The overall imputation ratio for a given
optimization problem is given by the product of the two:

IR = IRd · IRc (3)

To give an example, the simple engine architecture benchmark problem from [46] has
nvalid,discr = 70 valid discrete vectors, however the Cartesian product of its discrete design
variables indicates 216 declared discrete vectors, resulting in a discrete imputation ratio of
IRd = 216/70 = 3.09. The problem also contains 9 continuous design variables, of which
7.14 are active on average as seen over all discrete design vectors, which result in a con-
tinuous imputation ratio of IRc = 9/7.14 = 1.26. The overall imputation ratio therefore is
IR = 3.09 · 1.26 = 3.89. To compare, the example problem from Fig. 1 has an imputation
ratio of IR = IRd = 16/8 = 2.
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Table 1 Example set of valid
design vectors, showing inactive
variables in red. x0 has 4 possible
values (N0 = 4); similarly for x1:
N1 = 3

Similarly to the discrepancy between the declared and valid design space sizes, we can also
quantify the discrepancy between the declared and correct (see Table 3) design spaces sizes.
This can help determine how much of the design space hierarchy is due to value constraints
that need correction, as opposed to design variable activeness. We define the correction ratio
CR as:

CRd =
∏nxd

j=1 N j

ncorr,discr
(4)

CRc = ncorr,discr · nxc
∑ncorr,discr

l=1

∑nxc
i=1 δi (xd,l)

(5)

CR = CRd · CRc (6)

where CRd is the discrete correction ratio, ncorr,discr the number of correct discrete design
vectors, and CRc the continuous correction ratio. The impact of the need of correction to the
design space hierarchy can be quantified by the correction fraction CRF:

CRF = logCR

log IR
(7)

CRF varies between 0% and 100%, where 0% indicates no hierarchy is due to correction
(CR = 1) and 100% indicates all hierarchy is due to correction (CR = IR, and there is no
hierarchy due to activeness). The valid design vectors shown in Table 1 represent a design
space with a declared size of 12 (N0 · N1 = 4 · 3 = 12), however nvalid,discr = 6, and
therefore IR = IRd = 12/6 = 2.0. Additionally, the example has ncorr,discr = 10, because
the inactive design variables can take any declared value and still represent a correct (but
not necessarily valid) design vector. Therefore, CR = CRd = 12/10 = 1.2. From this,
CRF = log 1.2/ log 2.0 = 26%, indicating that 26% of the design space hierarchy is due to
the need for correction, while the other 74% are due to activeness and the need for imputation.

2.1.2 Rate diversity

In addition to the potentially large gap between declared and valid design space sizes, there
might also be a discrepancy in how often individual discrete values appear in all possible
discrete design vectors, as also noted by Crawley et al. [1]. They mention that for a par-
titioning problem of 10 elements, where the goal is to choose the best subset of elements
from the available set, there are 115 thousand possibilities to choose from, however 88% of
those possibilities are made up of the size-4, -5, and -6 subsets. This means that all other
sizes are represented much less in the total number of possibilities. This observation can
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Table 2 Rate diversity RD of the
simple turbofan architecting
problem from [46]. The
maximum rate diversity MRD
values are underlined. Only
discrete variables are shown, as
rate diversity does not apply to
continuous variables

x1 x4 x11 x13 x14 x15

Inactive − − 20% 20% 7.1% 7.1%

x j = 0 20% 7.1% 40% 40% 35.7% 35.7%

x j = 1 80% 28.6% 40% 40% 35.7% 35.7%

x j = 2 − 64.3% − − 21.4% 21.4%

RDall 60% 57.1% 20% 20% 28.6% 28.6%

RD 60% 57.1% 0% 0% 15.4% 15.4%

be extended to design variable values too: for the realistic engine architecting benchmark
problem of Bussemaker et al. [46], there are a little over 142 thousand valid architectures,
however only 27 of those (about 0.02%) represent a pure jet engine architecture; the rest are
turbofan architectures. Therefore there is a large gap between how often the two possible
values of this design variable appear in all discrete design vectors. This gap can be quantified
by the rate diversity RD j , which is defined for each discrete design variable xd, j , and the
max rate diversity MRD, which is defined on the problem level:

Rates j = {
Rate( j, δ j = 0),Rate( j, 0), ..,Rate( j, N j − 1)

}
(8)

RD j = maxRates j − min Rates j (9)

MRD = max
j∈1,..,nxd

RD j (10)

with j the index of the discrete design variable, δ j = 0 denoting the case when design
variable j is inactive, and Rate( j, value) returning the relative occurrence rate of that value
in all discrete design vectors. Rate diversity RD j then represents the difference between the
most and least occurring values for a given discrete design variable j , and max rate diversity
MRD the maximum of all rate diversities. Rate diversity and max rate diversity are normally
defined without the inactive case Rate( j, δ j = 0) included. If the inactive case is included,
the subscript "all" is added to denote all cases and values are considered. Table 2 shows
occurrence rates, the rate diversity and maximum rate diversities of the simple turbofan
benchmark problem from [46]. The rate diversity of the choice between pure jet and turbofan
architectures x0 is not as extreme as for the aforementioned realistic benchmark, however
there is still a rate diversity of 60% as only 20% of possible discrete design vectors represent
a jet engine architecture. The example problem from Fig. 1 has two variables (x0 and x3)
where one value occurs 2 of 8 times (25%) and the other therefore 75%, which results in an
max rate diversity of MRD = 50%.

Imputation ratio IR (Equation 3), correction ratio CR (Equation 6) and max rate diversity
MRD (Equation 10) can be useful for quantifying how large the impact of hierarchy is for a
given problem.

2.2 Solution space characteristics

The objective and design constraint functions f (x) and g(x), also known as the evalua-
tion functions, are black-box functions: their behavior is not known in advance because the
architecture optimization method can be applied to design any system. As a consequence,
the evaluation functions exhibit non-linear, non-smooth (the function may contain disconti-
nuities or gaps) and multi-modal behaviors (there may be multiple local minima; this also
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implies that the function is non-convex), and gradients cannot be assumed to be available
(also due to the mixed-discrete nature of the problem, see below) [1]. Evaluation functions
are assumed to be deterministic: repeated function calls with the same inputs yield the same
outputs. In many cases the evaluation performed to obtain the objective and design constraint
values is expensive in terms of time and/or computational resources, due to the use of physics-
based simulations and Multidisciplinary Design Analysis and Optimization (MDAO [14])
approaches. The consequence of this is that the time to perform one evaluation can be orders
of magnitude more than the time for one iteration of the optimization algorithm, and there-
fore the focus should be on reducing the amount of evaluations, rather than speeding up the
optimization algorithm itself [47].

When designing a system architecture, needs and goals of system stakeholders often con-
flict with each other [1] and the associated architecting problem thus becomes a trade-off
between these conflicting goals. In general, therefore, the SAO problem should be considered
to be a multi-objective optimization problem [5]: the problem will have multiple conflicting
objective functions f to minimize at the same time. Due to this conflicting nature, however,
it becomes impossible to define one design point as optimal; rather, multi-objective opti-
mization results in a set of Pareto-optimal design points [48]. This so-called Pareto-set is
comprised of design points that are not dominating each other: a design point xa dominates
a design point xb if fm(xa) ≤ fm(xb) for all m and fm(xa) < fm(xb) for at least one m.
The consequence of this is that within the Pareto-set, no design point is better than any other
design point, and that if you want to improve one or more of the objective values by moving
from one point to another, you will also always make at least one other objective value worse.
The Pareto-front contains the objective values of the points in the Pareto-set. The challenge
that multi-objective optimization algorithms face is to simultaneously progress towards the
Pareto-front and maintain sufficient diversity along the Pareto-front [49].

Design constraints g(x) can arise from physical (e.g. maximum material stresses or tem-
peratures) or operational limitations (e.g. maximum take-off field length, maximum wing
span), for example. Solving constrained optimization problems means that a design point
can only be considered optimal if all the design constraints are satisfied. Equality constraints
can be eliminated by design variable substitution, by non-linearly solving implicit residual
equations within the evaluation function [26], or by using dedicated infill functions and GP
models for BO [50]. However, in this work, only inequality constraints are considered. We
assume that the design constraints are QRSK in the taxonomy of Le Digabel & Wild [41]:
quantifiable (the degree of feasibility can be quantified), relaxable (a violated constraint is still
meaningful to the optimizer), simulation-based (to know whether the constraint is satisfied,
an evaluation must be run), and known (the constraint is defined in the problem formulation).
Design points where one or more design constraints are violated are called infeasible, as
opposed to feasible if all constraints are satisfied.

Simulations used for evaluating architecture performance can fail, for example due to an
unstable system of equations, infeasible underlying physics, or infeasible geometric param-
eterization [51]. Any problem that employs simulation could include a so-called hidden
constraint (also known as unknown, unspecified, forgotten, virtual, and crash constraints [41,
52]): a constraint that manifests itself through failed evaluations. The objective f and design
constraint g function outputs are assigned NaN (Not a Number) values when a hidden con-
straint is violated. We assume that hidden constraints are deterministic, resulting in the same
status when repeatedly evaluating the same design point. Additionally, finding out about if
the hidden constraint is violated takes at least as long as completing a successful evaluation
takes, if not longer [52]. The region of the design space where the hidden constraint is vio-
lated is called the failed region consisting of failed design points, the region where this is not
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Table 3 Possible statuses of design points and regions. In order for any of the conditions to be met, conditions
and operations above have to be met and performed as well

Status if condition is ... Performed
Condition met not met operations

Any x in Cartesian product of xd values Declared

All value constraints satisfied (cv,l (x) = 0) Correct Invalid Correction

x is canonical Valid Non-canonical Imputation

Hidden constraint satisfied (ch(x) = 0) Viable Failed Evaluation

All design constraint satisfied (gk (x) ≤ 0) Feasible Infeasible Optimization

Optimality achieved Optimal Non-optimal Optimization

the case is called the viable region consisting of viable points. The failed region can span a
large part of the design space: Krengel & Hepperle report up to 60% for a wing design
problem [53], and for an airfoil design problem Forrester et al. report up to 82% failed
points [51].

2.3 Problem formulation

Combining all relevant behavioral aspects, an SAO problem can be formulated as:

minimize fm(x, δ(x)), m = 1, 2, . . . , n f

w.r.t. xc,i ≤ xc,i ≤ xc,i i = 1, 2, . . . , nxc
xd, j ∈ {0, .., N j − 1} j = 1, 2, . . . , nxd

subject to gk(x, δ(x)) ≤ 0, k = 1, 2, . . . , ng
cv,l(x) = 0 l = 1, 2, . . . , ncv
ch(x) = 0

(11)

where fm(x, δ(x)) represents the multiple objective functions to be minimized, x the design
vector consisting of nxc continuous and nxd discrete design variables, and δ(x) the activeness
function representing design space hierarchy. Continuous design variable xc,i bounds are
represented by xc,i and xc,i , and N j is the number of discrete options for the discrete variable
xd, j . The inequality design constraint k is given by gk(x, δ(x)). The unrelaxable value and
hidden constraints are defined by the functions cv,l(x) and ch(x), respectively, both returning
1 if the constraint is violated and 0 otherwise. Considering all types of constraints, the design
points and regions can have several different non-exclusive statuses as explained in the
previous sections and summarized in Table 3.

3 Algorithms for system architecture optimization

This section discusses optimization algorithms for solving SAO problems. First, appropriate
classes of algorithms are discussed in Section 3.1: Multi-Objective Evolutionary Algorithms
(MOEA) and Bayesian Optimization (BO) algorithms. Section 3.2 then provides details of
the BO algorithm used in this work not related to design space hierarchy. The implementation
of optimization algorithms in the SBArchOpt library is discussed in Section 3.3.
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Table 4 Behavior of architecture optimization problems and needed algorithm capabilities

Space Property Capability needs

Design space Mixed-discrete Gradient-free optimization [26]

Hierarchical Correction and imputation [32]

Solution space Black-box Global, gradient-free optimization [26]

Expensive Minimize number of function evaluations [47]

Multi-objective Find the Pareto-set [48]

Design constraints Constraint handling [26]

Hidden constraints Failed area avoidance [52]

3.1 Appropriate algorithm classes

The properties of SAO problems discussed in Section 2 have several consequences, also
summarized in Table 4, on the types of optimization algorithms that can be used to solve
these problems. The fact that the objective and design constraint functions exhibit non-linear,
non-smooth, and multi-modal behavior without gradient availability necessitates using a
global, gradient-free optimization algorithm [26].Gradient-based optimization is additionally
excluded from consideration due to the mixed-discrete, hierarchical nature of the design
space. Hierarchy induces the need to move design points from the declared to the valid design
space by applying correction and imputation [32]. The expensive nature of the evaluation
functions drives the need to minimize the number of evaluations required to find the optimum
Pareto-set [47]. Finally, constraint handling is needed for both the design constraints [26]
and hidden constraints [52].

Many classes of global optimization algorithms exist, designed for various purposes [26].
Exact optimization methods such as grid search [54] or DIRECT [55] are designed to yield
reproducible results with provable convergence behavior, and are relevant for problems
where finding the true optimum has a high priority [56], however exact methods struggle
to solve high-dimensional problems [55]. On the other hand, heuristic optimization meth-
ods depend on strategies that work well in practice to search a design space more efficiently
than exact optimizationmethods, without providingmathematical proof of convergence [57].
One of the most powerful classes of heuristic global optimization methods are evolutionary
algorithms (EA). Evolutionary algorithms are population-based algorithms that mimic evo-
lutionary processes found in nature: an initial population of individuals (design points) is
evolved (optimized) for maximum fitness (objective value) by generating offspring (new
design points) from selected parents whose genes (portions of the design vector) are crossed-
over andmutated [58].Major variations between evolutionary algorithms lie in theway design
points are encoded (i.e. the encoding grammar [39]), how parents are selected for the basis of
the new generation, types of cross-over and mutation operators used, and how the new gener-
ation is created from the current generation and offspring by a survival operator. Evolutionary
algorithms are robust in dealing with mixed-discrete design spaces: dealing with continuous
variables was in fact a development that came later, for example through Differential Evo-
lution [58] or CMA-ES [59]. Design constraints are handled either by applying a penalty on
the objective functions or by integrating constraints in the selection and survival operators
directly [58].Multi-ObjectiveEvolutionaryAlgorithms (MOEA) have been developed to deal
with multi-objective problems by modifying selection and survival operators for searching
for a Pareto-front rather than a single optimal point [58]. One of the most popular MOEA is
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Table 5 Past applications of evolutionary algorithms to architecture optimization problems. Nomenclature:
number of discrete design points nvalid,discr , number of continuous dimensions nxc , number of objectives
n f , number of design constraints ng , number of function evaluations Nfe, Ant Colony Optimization (ACO),
GeneticAlgorithm (GA),Non-dominated SortingGA II (NSGA-II),Multi-Objective EvolutionaryAlgorithms
(MOEA), Guidance, Navigation and Control (GN&C)

Algorithm(s) Application nvalid,discr nxc n f ng Nfe Reference

GA Supersonic aircraft 576 100 10 200 000 [64]

NSGA-II Aircraft engine 1 163 30 3 15 4 000 [46]

ACO + GA Aircraft subsystem 9 600 2 96 000 [5]

NSGA-II Aircraft family 21 875 4 4 200 000 [65]

NSGA-II Launch vehicle 123 000 23 3 50 000 [21]

NSGA-II Space transport 49e6 30 2 4 50 000 [66]

MOEA GN&C system 79e6 2 1 000 [22]

(1) Satellite instruments 8.8e12 4 20 000 [39]

1 A special-purpose architecture optimization evolutionary algorithm was used

the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [60] due to its low configuration
effort and good performance. Finally, EA can explore hierarchical design spaces using the
hidden genes approach [36, 37, 61] and deal with hidden constraints using the extreme barrier
approach [62]. The appropriateness of evolutionary algorithms in general and NSGA-II in
particular for SAO is noted by Crawley et al. [1] and has been demonstrated in the past by
various applications, see Table 5. Evolutionary algorithms have also found application for
optimizing software product lines [63], which involves optimization problems characterized
by strong hierarchy and choice dependencies, similarly to architecture optimization.

As powerful as evolutionary algorithms are for dealing with the challenges of architecture
optimization, there is one aspect that poses a problem if the objective and constraint functions
are expensive to evaluate: the high number of needed function evaluations Nfe [67]. As can
be seen in Table 5, Nfe typically is in the order of thousands to hundreds of thousands for
EA. Each evaluation of the aircraft engine problem of Bussemaker et al. [46] took about
two minutes, resulting in a little over 5 days to complete the 4000 evaluations. Depending on
the context this could still be acceptable, however the time required to solve an optimization
problem driven by an evolutionary algorithm quickly becomes intractable if more evaluations
are needed, or if evaluation becomes more costly if more or higher fidelity analyses are used
for architecture evaluation. To solve such problems, Surrogate-based Optimization (SBO)
algorithms have been developed [26]. SBO algorithms rely on some surrogate model, also
known as response surface model or metamodel, of the objective and constraint functions in
order to efficiently determine interesting design point(s) to evaluate, the infill point(s). Once
the infill points have been evaluated using the expensive evaluation functions, the surrogate
model is reconstructed and the process starts over, until some termination criterion has been
reached. Infill points are selected using infill criteria, also known as acquisition functions, that
are normally defined to represent some kind of trade-off between exploration (finding new
interesting regions) and exploitation (improving already interesting regions) of the design
space. Figure 2 visualizes the working principle of SBO.

The main choices involved in using SBO are the initial sampling method for creating the
first surrogate model, the type of surrogate model, the infill criterion, and the termination
criterion. For example, a Radial Basis Function (RBF) surrogate has been combined with a
CoordinatePerturbation infill criterion, striking abalancebetween the best predictedobjective
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Fig. 2 Principle of Surrogate-Based Optimization (SBO), adopted from [6]

value (exploitation) and staying away frompreviously evaluated points (exploration) [68, 69].
SBO has also been extended with strategies for dealing with hidden constraints [52]. Espe-
cially powerful types of SBO algorithms are Bayesian Optimization (BO) algorithms [70].
BO algorithms use surrogate models that provide error estimates ŝ(x) in addition to function
estimates ŷ(x), and therefore can use infill criteria that leverage this additional information
in order to better predict where interesting points lie. Most applications of BO use Gaussian
Process (GP) models [67], also known as Kriging models. Extensive research has been per-
formed on handling design constraints [71, 72] and solvingmulti-objective [73, 74] problems
using BO. GP models were originally developed for continuous variables, however research
has been performed into methods for supporting mixed-discrete [28, 75–79] and hierarchi-
cal [30, 32, 35, 80–83] design spaces. Enabling the use of GP models for high-dimensional
design spaces is an active area of research [70, 84–86]. For the especially non-smooth and
hierarchical design spaces encountered in hyperparameter optimization [25] problems Ran-
domForest (RF) [87, 88] andTree Parzen Estimator (TPE) [34, 89]models have been applied.
These two models naturally represent the tree structure of hierarchical design spaces [90],
however recent evidence shows the superior performance of mixed-discrete GP models over
RF and TPE models [75], and therefore in this work we will concentrate on the use of BO
with GP models only.

In the rest of this work, both Multi-Objective Evolutionary Algorithms (MOEA) and
Bayesian Optimization (BO) algorithms will be further investigated for use in architecture
optimization problems. One is not better than the other: MOEA should be used if evaluation
is not expensive (e.g. one evaluation takes at most in the order of seconds), and BO should
be used if evaluation is expensive (e.g. in the order of minutes or more) [91]. Bayesian
Optimization should not be used for inexpensive problems, as then time for model fitting and
searching for infill points becomes limiting, rather than function evaluation time [67].
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3.2 Non-hierarchical foundation of the Bayesian optimization algorithm

An advantage of BO is the high level of composability: many specializations of BO (e.g.
mixed-discrete, multi-objective) can be combined without negative interactions [92]. In this
work we follow the same approach: specializations, e.g. hierarchy and hidden constraints,
build on prior specializations, e.g.mixed-discrete andmulti-objective. TheGPmodel used by
the BO algorithm further developed in this work was already able to deal with mixed-discrete
variables, including categorical variables, for non-hierarchical design spaces. Categorical
variables pose a particular challenge to GP models, since there is no inherent ordering in the
possible values and therefore conventional distance measures used for modeling correlation
for continuous and integer variables might not be able to model the variable accurately. The
approach for modeling categorical variables is based on the work by Saves et al. [28], which
uses dedicated kernels to model categorical variables, for example the Gower or Exponential
Homoscedastic Hypersphere (EHH) kernel. We use the implementation in the Surrogate
Modeling Toolbox (SMT)1 [83]. By default the Gower distance kernel is used.

One of the main limitations of BO is that GP models do not handle high-dimensional
design spaces well. Due to the number of hyperparameters to tune, training and sampling
time quickly increases with the number of input dimensions and training points [70]. How-
ever, a feature space can be defined that reduces the dimension of the original input space [93],
supported by the observation that in some cases the optimization problem has a lower intrin-
sic dimensionality. The BO algorithm uses Kriging with Partial Least Squares (KPLS) to
construct such feature spaces as described by Bouhlel et al. [94]. Recently KPLS has been
extended to work with discrete variables too [86, 95, 96] and these methods are implemented
in SMT [83, 97]. By default, KPLS is applied with nkpls = 10 if the design space contains
more than 10 design variables.

Infill points are selected by formulating an infill ensemble: an approach first presented by
Lyu et al. [98] based on the observation that different infill criteria can suggest very different
infill points. This can be especially true in the earlier phases of the optimization when the GP
is less accurate. There are two advantages to this ensemble-infill strategy [99]: the selected
infill points represent the best trade-off between the infill criteria, and it is easy to select
multiple infill points per iteration for batch optimization [70] without needing to retrain
the underlying GP models as is needed for qEI [100]. For single-objective optimization,
an ensemble of Lower Confidence Bound (LCB) [101], Expected Improvement (EI) [47]
and Probability of Improvement (PoI) [102] infills is used. For multi-objective, the ensemble
consists of theMinimum Probability of Improvement (MPoI) [103] andMinimum Euclidean
PoI (MEPoI) [6] infills. The infill batch size nbatch is set to the maximum amount of designs
that can be evaluated in parallel: nbatch = nparallel.

Design constraints are handled by constraint function mean prediction ĝ [72] by default,
or by Probability of Feasibility (PoF) [104] if a more or less conservative (achieved by PoF
above or below 50%, respectively) criterion is requested. Hidden constraints are handled by
training an additional model to predict the Probability of Viability (PoV), and constraining
it to be at least 25% (by default) during infill search [23]. The PoV prediction model is the
same mixed-discrete GP as used for predicting f and g.

1 https://smt.readthedocs.io/
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3.3 Implementation in SBArchOpt

The optimization algorithms presented in this work are implemented in the SBArchOpt
2

library: an open-source Python library for solvingSAOproblems [105].SBArchOpt features
a problem definition class with interfaces for executing hierarchical optimization problems.
The problem definition class is built on top of pymoo’s3 Problem class [106], and adds
functions for performing imputation and correction (standalone, not part of design point
evaluation), getting information about which design variables are conditionally active, gen-
erating all valid discrete design vectors xvalid,discr, and for getting various statistics (see
Section 2.1). The hierarchical structure of the problem can either be provided implicitly by
implementing the correction and imputation function, or it can be modeled explicitly using
ConfigSpace

4 [107]. ConfigSpace enables declaring design variables, specifying activa-
tion conditions between them, and specifying value constraints. For more discussion about
the role ConfigSpace can play in hierarchical optimization, refer to Section 6.

SBArchOpt implements various optimization algorithms for solving architecture opti-
mization problems. These optimization algorithms are implemented using pymoo classes,
enabling provisioning of any pymoo algorithm for solving architecture optimization prob-
lems. For example, SBArchOpt provides the hierarchical sampling algorithm presented in
Section 5 as a pymoo class. Similarly, a repair operator is implemented that either uses
the problem-agnostic correction algorithm of Section 5, or uses the correction function
supplied by the problem definition class. A problem-specific correction function can cor-
rect both discrete and continuous design variables. Additionally, SBArchOpt implements
result storage and restart functionalities, which are important for expensive and therefore
long-running optimization problems. Two pre-configured pymoo algorithms are provided:
ArchOptNSGA2 implementing NSGA-II [60] for architecture optimization, and DOEAl-

gorithm that only executes the hierarchical sampling algorithm to perform a Design of
Experiments (DoE).TheSBOalgorithmdeveloped in thiswork is implemented asArchSBO,
and features automatic selection of infill and hidden constraints strategies. It can either use
an RBF model or a GP model, both using the implementation in the Surrogate Modeling
Toolbox (SMT)1 [83]. To test and promote solving architecture optimization problems with
SBO in general, SBArchOpt also implements connections to other SBO libraries such as
BoTorch [108], Trieste [109], HEBO [99], SEGOMOE [110] and SMARTy [111].

Finally, to support SAO algorithm development SBArchOpt contains a library of test
problems featuring various combinations of continuous ormixed-discrete, (non-)hierarchical,
single-objective or multi-objective, (un)constrained problems with or without hidden con-
straints. Many problems are implemented from literature or adopted from pymoo’s test
problem database, however also several new test problems are provided. Realistic engineer-
ing problem behavior is exhibited by the jet engine architecture optimization problem used in
Section 7, a multi-stage launch vehicle architecture problem adopted from [112] and several
versions of a Guidance, Navigation & Control (GNC) problem adopted from [1, 22], see also
Section 5.1.

2 https://sbarchopt.readthedocs.io/
3 https://pymoo.org/
4 https://automl.github.io/ConfigSpace/
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4 Modeling hierarchical design spaces in bayesian optimization

In order to apply SBO to architecture optimization problems, the surrogate model should
be able to accurately model the behavior of the objective and constraint functions over the
design space. For architecture optimization problems it means that the hierarchical struc-
ture between design variables should be integrated in the structure of the surrogate model.
Gaussian Process (GP) models as used in Bayesian Optimization (BO) have been extended
to support hierarchical design variables by Saves et al. [83] and implemented in version 2.0
of the Surrogate Modeling Toolbox (SMT)1. In previous works about hierarchical design
spaces [30, 33, 113–115], variables are structured according to their types and roles, which
reflect the complex nature of real-world problems. Variables can be classified into three main
categories: neutral, meta, and decreed.

• Neutral Variables: These variables not affected by other variables in the hierarchy. They
can be continuous, integer, or categorical.

• Meta Variables: These variables determine whether other variables are activated or
not, influencing the structure of the problem. They are also known as dimensional vari-
ables [30], tree-structured variables [34] or conditional search space variables [36].

• Decreed Variables: These are the dependant conditionally active variables that are acti-
vated based on the values of the meta variables.

Modeling these hierarchical design spaces is critical in Bayesian optimization, particularly
for complex problems such as system architecture optimization problems in this work. Tradi-
tional GP and kernel functions often fall short in handling such complexity. Therefore, recent
works have focused on developing kernels to accommodate hierarchical structures. One such
innovation is the Alg-Kernel, which is designed to handle the intricacies of hierarchical
and mixed-variable problems. The Alg-Kernel effectively captures the dependencies and
interactions among different types of variables, providing a robust framework for surrogate
modeling in hierarchical design spaces [83]. This work, however, only considered continuous
and integer hierarchical variables. Here we provide an extension to previous work that also
supports categorical conditionally active variables. Based on the advances published in [28],
we can define a new hierarchical kernel for categorical conditional variables based on one-hot
encoding and on the algebraic distance defined in [83].

For two given inputs, for example, the r th and sth points in the DoE (xr and xs), let cri
and csi be the associated categorical variables taking respectively the �ir and the �is level on
the categorical variable ci . Denote ecri the one-hot encoding [116] of cri that takes value 0

everywhere but on the dimension �ir : ecri ∈ R
Li such that

(
ecri

)

�ir

= 1 and
(
ecri

)

k
= 0 for

k �= �ir . The new hierarchical kernel between two points r and s and for categorical variables
xi is formulated using similar principles as in [28]. Let [Ri (�i )] be the GP correlation kernel
for the i th categorical variable ci that depends on �i , the hyperparameter matrix related to
ci . The variable ci features Li different levels and [�(�i )] is a chosen symmetric positive
definite parameterization of the matrix �i .

• If δi (xr ) = δi (xs) = 0 (both variables are inactive): all the one-hot relaxed dimensions
associated to this variable are also inactive meaning none of them is relevant.

• If δi (xr ) = δi (xs) = 1 (both variables are active): all the one-hot relaxed dimensions
associated to this variable are also active. If �ir = �is, [Ri (�i )]�ir ,�ir = 1. Otherwise,
assuming that the chosen kernel is the exponential kernel, this leads to the kernel

[Ri (�i )]�ir ,�is = exp
(
−√

2[�(�i )]�ir ,�ir − √
2[�(�i )]�is ,�is

)
(12)
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• If δi (xr ) �= δi (xs) (only one of the variables is active): for all the relaxed dimensions
associated to this variable, because of the algebraic distance, there is a induced distance
1 between both inputs. Assuming that the chosen kernel is the exponential kernel, this
leads to the kernel

[Ri (�i )]�ir ,�is = exp

⎛

⎝−
Li∑

j=1

[�(�i )] j, j
⎞

⎠ (13)

As shown in [117], continuous relaxation (one-hot encoding) generalizes the Gower distance.
Therefore, denoting θcov the unique correlation parameter for the considered variable, we
can define the following adaptation for the particular case in which we are using the Gower
distance kernel for a categorical variable ci with Li levels:

• di (xr , xs) = 0 if both xr and xs are inactive.

• di (xr , xs) = √
2 θcov if both xr and xs are active.

• di (xr , xs) = 1

2
Li θcov if either xr or xs are active.

(14)

Finally, for the exponential homoscedastic hypersphere or for the homoscedastic hypersphere
kernel we apply the imputation method: whenever one of the variables is inactive, it is treated
as if its value would be the first available level L0. These new categorical hierarchical kernels
are implemented in SMT 2.3 and above1. The rest of this work uses the Gower distance
categorical hierarchical kernel for conditionally active variables defined in Equation (14).

We now discuss other stages of an optimization run where information about design space
hierarchy can be leveraged.

5 Hierarchical sampling and correction algorithms

In this section we investigate how to most effectively generate design vectors covering the
design space in such a way as to obtain as much information about the design space behavior
as possible for a given function evaluation budget. This is relevant both for sampling the
design space and when correcting invalid design vectors. When sampling the design space
(creating the DoE) for use as initial database of design points for SBO algorithms or initial
population for evolutionary algorithms, the effects of rate diversity should be considered: if
this effect is ignored, some regions in the design space may be over- or under-represented [1].
Correcting invalid design vectors might affect design space exploration by modifying results
of evolutionary operators for evolutionary algorithms and infill optimization for SBO algo-
rithms. Correction behavior is especially important for problems with high correction ratios
due to the low chance of randomly finding a valid design vector. First, we introduce the
test problems used to investigate sampling and correction algorithms in Section 5.1. Then,
sampling algorithms are investigated and selected in Section 5.2, and correction algorithms
in Section 5.3.

5.1 Test problems

To compare correction and sampling strategies, the following test problems implemented in
SBArchOpt are used (see Table 6 for detailed statistics):
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• Three instances of amulti-stage rocket design problem ("Rocket"), adopted fromGarcía

Sánchez [112]. The problem attempts to minimize cost while maximizing payload mass
for a given target orbit altitude, by selecting the number of stages, engine types and
amounts per stage, and geometrical parameters of stages and rocket head. The problem
has been modified to be less tightly constrained than the original problem. In addition
to this multi-objective problem ("Rocket"), we also use two single-objective versions:
one that minimizes cost ("RCost") and one that minimizes a weighted function of cost
and payload mass ("RWt"). The cost minimum lies in the group of single-stage rockets,
which only makes up 0.3% of all valid discrete design vectors, whereas the weighted
minimum lies in one of the much larger multi-stage rocket groups.

• Four instances of a Guidance, Navigation & Control (GNC) problem, adopted from [1,
22], which features mass and failure rate as minimization objectives by selecting the
number and type of, and connections between sensors, flight computers and actuators.
The original problem has been modified to use continuous variables for selecting object
types, to turn the problem into a mixed-discrete problem (compared to fully discrete).
We use the mixed-discrete GNC problem version without actuators as a multi-objective
test problem ("MD GNC"), a single-objective version that minimizes weight only ("Wt
GNC"), a single-objective version that minimizes failure rate ("FR GNC"), and a single-
objective version that solves a scalarized objective composed of weight and failure rate
("SO GNC"). The weight minimum lies in the group containing only one sensor and one
computer, which is only represented by one x of xvalid,discr (1 / 327 = 0.3%).

• A version of the simple jet engine problem solved in Section 7 that uses surrogate models
for evaluation ("Jet SM"). This version represents the same optimization problem, how-
ever replaces the multidisciplinary thermodynamic cycle analysis evaluation by random
forest regressors for each output, to reduce evaluation times (milliseconds, compared to
minutes for the original problem). We use the random forest regressors implemented in
scikit-learn is one word, please remove the space after the dash

5. Just
as the original problem, this version features a hidden constraint (i.e. failed evaluations).

Table 6 provides somemore statistics: both single-objective andmulti-objective problems are
included, and all except the GNC problems contain design constraints. The GNC problems
feature a relatively high IR, showing that they indeed feature hierarchical design spaces. The
GNC and Jet SM problems need correction algorithms as they get about half their IR from
the need for correction shown by a CRF a little over 50%. MRD is a common occurrence in
SAO problems too, as can be seen.

In subsequent sections, optimization performance is compared using the rank-based proce-
dure described in Appendix A. A rank of 1 indicates best performance, higher values indicate
progressively worse performance. The best performing infill is then selected by looking at
the highest proportion of rank ≤ 2 and rank 1. Performance is compared based on �HV (�
hypervolume) regret. �HV represents the distance to the known optimum (or Pareto front
in case of multi-objective optimization) normalized to the range of objective values. Regret
represents the cumulative �HV as seen over the optimization run. For more details, refer to
Appendix A.

5.2 Sampling

Many sampling methods have been developed in the past, such as random sampling or
Latin Hypercube Sampling (LHS) [26]. Such methods can still be applied for hierarchical

5 https://scikit-learn.org/
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Table 7 Grouping and weighting process of the hierarchical sampling algorithm: discrete design vectors are
grouped by xact and weighted by w = nact (number of active x); wrel represents the relative weighting for
sampling design vectors from groups (e.g. wrel = 36% means 36% of x is sampled from that group). Red
background indicates an inactive variable

design spaces, for example by rejecting sampled design invalid design vectors (i.e. vectors
with violated value constraints) as done in ConfigSpace [107]. Instead of rejecting invalid
design vectors, it is also possible to apply correction. Using conventional sampling methods
with correction however might result in over- or under-representation of certain design space
regions [1]. Another way is to sample design vectors directly from the set of valid design
vectors xvalid,discr: this ensures generated design vectors are valid and therefore correction is
not needed after sampling. To do this, xvalid,discr may be divided into interesting subdivisions
(e.g. based on subproblems as defined by dimensional variables [30]) and sampling might
be separated in two steps: first decide how many samples to draw from each subdivision,
then sample from the subdivisions. As it is mostly the discrete design variables that decide
the activeness of other design variables, in this work the hierarchical sampling procedure is
applied to the discrete design vectors first. After sampling discrete design vectors, continuous
design variables are filled by Sobol’ sampling [118], ignoring inactive continuous design
variables.

One way of defining subdivisions is by using design variable activeness information. For
example, groups can be defined based on the number of active design variables nact, similar
to what Kaltenecker et al. [119] did for sampling software product lines. An extension
of this is to group by the active variables xact directly. In that case, design vectors with
the same number of active variables where these variables do not completely overlap are
treated as different subdivisions. This approach is similar to how Frank et al. [21] define their
architecture optimization problems: they divide by selections of values from amorphological
matrix constrained by a compatibility matrix, then for each set of selections with the same
active design variables they define a separate optimization problem. Table 7 shows how the
valid discrete design vectors xvalid,discr are separated into groups based on xact.

Another way is to define subdivisions based on the value of certain discrete design vari-
ables. Pelamatti et al. [30] defined subdivisions based on dedicated dimensional variables.
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Table 8 Grouping byMRD: discrete design vectors are grouped by values of high-RD variables. The example
uses RDmin = 50%. Red background indicates an inactive variable

This approach, however, requires the user to define which variables act as such grouping
variables, thereby requiring the user to think in terms of the design variables rather than the
architecture design space (i.e. domain-specific design space model). The goal of hierarchi-
cal sampling is to mitigate max rate diversity (MRD) issues: subdivisions can therefore be
defined based on values of high-RD variables. Subdivisions are made by recursively select-
ing argmaxRD j , subject to RD j ≥ RDmin where RD is determined for the current (partial)
subdivision and RDmin is set such that only high-RD variables are used for grouping. Table 8
shows an example of grouping byMRDwith RDmin = 50%: group 3 is defined based onRD0

(RD of x0), group 1 and 2 are defined based on RD1. No further groups are defined because
the next-highest RD is RD2, which is lower than RDmin . In this work we use RDmin = 80%
as it is a good compromise between reducing group-internal MRD and the number of groups
created.

After subdivisions are defined, it should be determined how many samples to take from
each subdivision by assigning weights w to each group. This can be done using any distribu-
tion in principle, however we consider three to be most relevant for architecture optimization
problems: uniform weighting (w = 1) as applied in [119], weighting by number of active
design variables (w = nact) as applied in [30], or weighting by group size (w = √

nx,grp,
where nx,grp is the number of x in the group). The reason for the latter two is that although
smaller subdivisions (i.e. subdivisions with less active variables and therefore less possible
discrete design vectors) should not be under-represented compared to larger subdivisions,
larger subdivisionsmight needmore samples to give a good overview of subdivision behavior
to the optimization algorithm. Weighting by nx,grp uses w = √

nx,grp, because if nx,grp is
used directly it is equivalent to hierarchical sampling without grouping. The square root is
applied to prevent oversampling large groups. Table 7 shows how the valid discrete design
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Table 9 Overview of sampling
strategies for hierarchical design
spaces. xvalid,discr refers to all
valid discrete design vectors

Strategy Needs Grouping Weighting

Non-hierarchical Correction

Hierarchical xvalid,discr None

nact

nact nact

nact nx,grp

xact

xact nact

xact nx,grp

MRD

MRD nact

MRD nx,grp

vectors xvalid,discr are separated into groups based on xact and weights are assigned based
on nact. The relative weighting wrel then determines how many of the requested samples are
sampled from each group. For example, if 100 samples are requested, 36 will come from the
first group, 36 from the second group, and 18 and 9 from the last two groups, respectively.
If there are less discrete vectors in a group than requested, vectors can be selected multiple
times if there are also continuous variables in the problem.

After valid discrete design vectors have been sampled, active continuous variables are
assigned values using Sobol’ sampling [118]. To summarize, the hierarchical sampling algo-
rithm consists of the following steps (visualized in Table 7):

1. Generate all possible valid discrete design vectors xvalid,discr and obtain associated active-
ness information δ;

2. Group design vectors (e.g. by active variables xact) and weight each group (e.g. by the
number of active variables nact);

3. Sample discrete design vectors according to the weights of each group;
4. Assign values to active continuous variables using Sobol’ sampling.

Table 9 provides an overview of discussed sampling strategies for hierarchical design spaces.
For problems with large design spaces, it might not be possible to generate xvalid,discr due
to memory or time limits. An overview of past applications of the architecture optimization
method presented in [13] suggests that this limitation might occur above design space sizes
of 100’s of millions of valid design vectors, meaning that for many architecture optimization
problems this would not pose a problem. If, however, indeed xvalid,discr is not available for a
given optimization problem, it excludes the use of the previously discussed hierarchical sam-
pling algorithms and therefore requires the use of a conventional (non-hierarchical) sampling
algorithm combined with a correction step.

First, the sampling strategies listed inTable 9 are tested onNSGA-II.Weuse the implemen-
tation of NSGA-II available in SBArchOpt as highlighted in Section 3.3. Problem-specific
correction is used and xvalid,discr is assumed to be available. NSGA-II is executed with a DoE
size of 10 · nx , 25 generations and 100 repetitions. Optimization performance is compared
based on �HV regret using the procedure described in Appendix A. �HV (� hypervolume)
represents the distance to the known optimum (or Pareto front in case of multi-objective
optimization) normalized to the range of objective values. Table 10 presents the results of
sampling strategies for NSGA-II. The hierarchical non-grouping sampling performs worst,
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Table 10 Best performing sampling strategies on various test problems running NSGA-II, ranked by �HV
regret (lower rank is better). Penalty represents the mean�HV regret increase compared to the best infill. Best
performing strategy is underlined; darker colors represent better results. Abbreviation: grp. = grouping, wt. =
weighting, hier. = hierarchical

especially on the rocket problems and weight-minimizing GNC problem (rank 8 and 455%
penalty compared to the best strategy). This is because in those problems (part of) the opti-
mum lies in architectures represented by only 0.3% of xvalid,discr (1 sensor/computer for the
GND problem; 1 stage for the Rocket problem). The non-grouping sampler uniformly sam-
ples over all xvalid,discr and therefore has a high chance of not sampling these architectures.
Problems with high MRD potentially suffer from this effect, depending on where the opti-
mum lies. From the other samplers, the hierarchical samplers without weighting consistently
perform better than samplers with weighting. Among the non-weighted hierarchical sam-
plers, the nact sampler performs best, with the other hierarchical samplers incurring between
6% and 7% relative penalty.

For the BO algorithm, the non-hierarchical sampler and hierarchical non-weighted sam-
plers are compared. The BO algorithm is executed with ndoe = 3 · nx , 40 infill points and 24
repetitions. For the Jet SM problem, ndoe = 10 ·nx for BOwill be used, to correct for the fact
that this problem features approximately a 60% failure rate and therefore needs a larger DoE.
The weight-minimizing GNC problem ("Wt GNC") is not included, as it proved too easy
for the BO algorithm to solve which lead to arbitrary differences in �HV regret. Table 11
presents sampling results for the BO algorithm. It shows the hierarchical xact sampler per-
forms best. The hierarchical nact sampler performs worst with an 18% mean performance
penalty.

Non-hierarchical sampling performs slightly worse than the best sampler, at a 12% mean
performance penalty both for NSGA-II and for the BO algorithm. Therefore, although the
availability of xvalid,discr improves algorithm performance, the non-availability does not pre-
vent the problem from being solved. This observation is in line with results published in [13],
where it is shown that using a design space encoder ("ADORE Fast") that does not provide
xvalid,discr (regardless of design space size) does indeed reduce optimization performance for
both NSGA-II and BO, however not so severely as to prevent the optimization problem from
being solved.

When comparing between NSGA-II and the BO algorithm, therefore, xact and MRD
remain as good candidates for hierarchical sampling. We select hierarchical sampling based
on xact for its slightly better performance on the BO algorithm. If xvalid,discr is not available,
the non-hierarchical sampler is used instead.
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Table 11 Best performing sampling strategies on various test problems running the BO algorithm, ranked by
�HV regret (lower rank is better). Penalty represents themean�HV regret increase compared to the best infill.
Best performing strategy is underlined; darker colors represent better results. Abbreviation: grp. = grouping,
wt. = weighting, hier. = hierarchical

5.3 Correction

Correction is the operation of creating a valid design vector from an invalid design vector.
Here we only discuss the process of correction for discrete design vectors, as we assume that
only discrete variables determine the hierarchical structure in terms of activeness and value
constraints in this work. Continuous variables are therefore only subject to imputation if they
are inactive.

The mechanism of correction depends on the hierarchical structure of the optimization
problem and therefore can be implemented on a per-problem basis, as in [46]. There, design
variables are corrected during parsing of the design vector into an architecture description:
design variables not representing a valid option value are corrected one-by-one to the closest
valid value. For example, when a design variable selects the third compressor stage for bleed
off-take when only two compressor stages are available, the design variable is modified
to select the second compressor stage for bleed off-take instead. This is called a greedy
correction algorithm, as it takes the locally best choice for correcting invalid values for each
invalid design variable. It is arguably themost convenient way to implement problem-specific
correction, because of this step-by-step correction mechanism.

Problem-agnostic correction algorithms instead could reduce implementation effort and
potentially improve optimizer performance. Such correction algorithms can be defined both
for when xvalid,discr is available and for when it is not: correction algorithms with xvalid,discr
available are called eager algorithms (see Fig. 3), as they require the upfront exposure of
valid design vectors; when xvalid,discr is not available the correction algorithm is known as
a lazy algorithm, as design vector validity is checked during the correction process rather
than upfront. As eager correction algorithms have access to xvalid,discr, the simplest algorithm
selects any of the available vectors as a replacement (called "Any-select"). We can define
one that always returns the first (or any index for that matter) valid design vector, however
that would not help with exploration at all: for problems with high imputation ratios there
would still be a low chance to generate a new valid design vector. A better option therefore
is to select a random valid design vector, as shown in Fig. 3b.

Another approach is to select a design vector that is close to the design vector to be
corrected xcorr. For eager algorithms this can be done in two ways: by applying a greedy
algorithm or by selecting the most similar valid design vector. The eager greedy algorithm
(see Fig. 3c) repeatedly filters xvalid,discr based on the selected value of each design variable,
starting from the left of xcorr. If a given design variable value leaves no valid design vectors
to be selected from, the closest value that does is selected. This is repeated until either only
one valid design vector remains, or until all design variables have been processed. If in the
latter case multiple design vectors remain, either the first (non-randomized configuration)
or a random design vector is chosen (randomized configuration). Eager selection based on
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Fig. 3 A visualization of different eager correction strategies

similarity (see Fig. 3d) is done by calculating theweighted distances from xcorr to all vectors in
xvalid,discr and selecting the valid vectorwith theminimumdistance to replace xcorr.Weighting
factors linearly varying from1.1 to 1.0 are applied in order to favor changes on the right side of
the design vector over changes on the left, assuming that left-side design variables represent
higher-impact decisions [29]. As distance metrics either Euclidean or Manhattan distance
can be used. If multiple valid vectors have the same minimum distance to xcorr either the first
(non-randomized configuration) or a random design vector (randomized configuration) can
be selected.

Lazy correction algorithms do not have access to xvalid,discr and instead provide some way
to generate design vectors and check with a user-provided validation function isCorrect(x)

whether that designvector is valid or not. This generation and checkingprocess continues until
a valid design vector is found. Analogous to the any-selection eager algorithm, also an any-
selection lazy algorithm can be defined. The difference in randomized and non-randomized
selection however is that for non-randomized selection, the result may be remembered and
returned in subsequent correction requests, whereas for randomized selection this is not the
case. For randomized selection, an average of CR design vectors (see also the discussion in
Section 2.1) will have to be generated before finding a valid design vector, which represents
the main limitation of lazy over eager algorithms. Greedy selection is not possible for lazy
algorithms, because isCorrect(x) only operates on complete design vectors and not fractions
of design vectors as would be needed for one-by-one correction. Lazy correction by similarity
is done bymodifying xcorr with some�corr vector, which can either be generated depth-first or

123



Journal of Global Optimization

Table 12 Overview of correction algorithms for hierarchical design spaces. Euc and Manh refer to Euclidean
and Manhattan distance metrics, respectively. See Fig. 3 for a visualization of eager correction algorithms

Type Algorithm Configuration Needs

Problem-specific Custom correction function

Eager Any-select xvalid,discr
Greedy xvalid,discr
Similar Distance (Euc/Manh) xvalid,discr

Lazy Any-select isCorrect(x)

Similar Depth- or distance-first isCorrect(x)

Distance (Euc/Manh)

Table 13 Best performing correction strategies on various test problems running NGSA-II, ranked by �HV
regret (lower rank is better). Penalty represents the mean�HV regret increase compared to the best infill. Best
performing strategy is underlined; darker colors represent better results

distance-first. Depth-first �corr generation directly applies the generated Cartesian product
of � values for each design variable. Distance-first generation first generates all possible
�corr vectors and then sorts them by Euclidean or Manhattan distance before applying them
to xcorr. The same distance-weighting process as for eager similarity selection is used here.
ConfigSpace uses a randomized version of lazy similarity correction: candidate design
vectors are generated by replacing one design variable by a random valid value at a time.
We do not consider this method, as it does not allow to correct multiple design variables at
a time. Table 12 presents an overview of discussed correction strategies.

The identified correction strategies are tested on NSGA-II first, with a DoE size of 10 ·nx ,
25 generations and 100 repetitions. Eager correction strategies are tested with the hierar-
chical xact sampling algorithm; lazy strategies with the non-hierarchical sampler as here the
assumption is that xvalid,discr is not available. Correction strategies are tested for the vari-
ous algorithm-specific configuration options (see Table 12). Eager and lazy correction are
additionally compared to problem-specific correction. Table 13 presents results of correction
strategies forNSGA-II. Eager correction performs better than lazy correction, and similarly to
problem-specific correction. Eager Any-select performs best, with Eager similar (Manhattan
or Euclidean distance) performing similarly. Lazy similar (depth-first) correction performs
best among lazy correction strategies. Lazy correction, however, takes between 1 and 2 orders
of magnitude longer than problem-specific and eager correction: 2 to 50 ms, compared to
0.1 to 1 ms for eager and problem-specific correction. Additionally, lazy correction time
increases linearly with CR, because it is based on a trial-and-error approach.

For the BO algorithm, best performing eager and lazy correction algorithms and problem-
specific correction are compared. The BO algorithm is executed with ndoe = 3 · nx (ndoe =
10 ·nx for the Jet SM problem), 40 infill points and 24 repetitions. Table 14 presents sampling
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Table 14 Best performing correction strategies on various test problems running the BO algorithm, ranked
by �HV regret (lower rank is better). Penalty represents the mean �HV regret increase compared to the best
infill. Best performing strategy is underlined; darker colors represent better results

results for theBOalgorithm.Problem-specific correctionwith hierarchical samplingperforms
best. Eager correction performs similar to problem-specific correction, however attains rank
1 less often. Lazy correction and problem-specific correction with non-hierarchical sampling
performworst. Based on these investigations, we conclude that problem-specific correction is
sufficient for good optimizer performance, both for NSGA-II and BO. If the user prefers not
to implement problem-specific correction instead, and if xvalid,discr is available, then Eager
Any-select correction should be used. These results are used in the next section where the
influence of hierarchy information integration strategies are investigated.

6 Hierarchical design space integration strategies

According to Zaefferer et al. [32] there are three high-level strategies for considering design
space hierarchy when implementing and solving an optimization problem:

1. Naive: no modification of the optimization algorithm at all, thereby effectively ignoring
the effect of design variable hierarchy;

2. Correction and imputation: here correction and imputation are applied to ensure that all
evaluated design vectors are valid (see also Section 2.1);

3. Explicit consideration: the hierarchical structure is explicitly made available to and used
by the optimization algorithm.

The naive approach means that there might be a discrepancy between which design vectors
the optimizer thinks are being evaluated and which design vectors actually are evaluated. For
example, design vectors where only inactive design variables differ in value all represent the
same system architecture instance. Not making this information available to the optimizer
might lead to wasted computational resources, because exploration could be performed in
sections of the design space that have no influence on performance. The optimization might
also stall if the imputation ratio (see Section 2.1) is too high, because of the low chance of
randomly finding valid design vectors. As discussed in Section 2.1, correction and imputation
ensure that design vectors are valid by ensuring value constraints are satisfied and setting inac-
tive design variables to some default value, respectively. Applying these operations avoids
the aforementioned design vector mapping problems and only requires that the optimization
algorithm accepts modified design vectors as output of the evaluation call. Another way to
support correction and imputation is through an ask-and-tell interface [120]: here a process
external to the optimizer has control over the optimization loop, "asking" the optimizer for
one or more design vectors to evaluate and "telling" the optimizer the results after evalua-
tion is finished. Results are "told" to the optimizer together with the corresponding design
vectors, which means the ask-and-tell pattern allows integrating correction and imputation
steps without any further modifications. Therefore, any optimization framework or algorithm
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that implements an ask-and-tell interface is compatible with correction and imputation, for
example pymoo [106], BoTorch [108], Trieste [109] and HEBO [99].

Correction and imputation can also be implemented using a repair operator [43]: a
problem-specific function that modifies design vectors, for example to satisfy an a-priori
constraint or otherwise improve the design points using heuristics. The advantage of a repair
operator over ask-and-tell or modifying design vectors in the evaluation function is that the
correction and imputation operators are now available as a standalone function rather than
always tied to evaluation. This allows correction and imputation to be applied during other
steps in the optimization process than only evaluation, for example when generating initial
design points or when searching the design space for the best infill point for surrogate-based
optimization algorithms [75]. In this work, repair is only applied to discrete variables, how-
ever in principle it can also be applied to continuous variables, as was done for example in
the work by Zaefferer & Horn [32].

The most invasive way of supporting hierarchical design spaces is through explicit consid-
eration by optimization algorithms. Here correction and imputation become an integral part
of the optimizer and activeness information as defined by the δ-function (see Section 2.1)
is made available to the optimizer. The availability of activeness information makes the
following possible:

• Generating all possible valid design vectors xvalid,discr, and therefore using hierarchical
sampling and problem-agnostic correction algorithms, as investigated in Section 5.

• Using hierarchical kernels in GP models used by BO [33, 38, 82, 83].

Figure 4 compares the three high-level integration strategies. It highlights the existence of a
standalone corrector function that corrects and imputes design vectors and optionally returns
activeness information.

One way to explicitly consider the hierarchical structure is by formally modeling the
hierarchical structure and making this model available to the optimization algorithm. It for
example enables problem decomposition approaches [21, 30] and the development of dedi-
cated evolutionary search operators [22, 36, 61]. Additionally, because themodel provides all
information needed without needing to interrogate the problem definition (i.e. as needed for
a repair operator) this opens up the possibility for physically separating the optimizer from
the function evaluation, for example to enable remote ask-and-tell execution. Hierarchical
design space models can be classified according to different levels of complexity:

1. Single-level: one set of variables determining activeness of a disjoint set of conditional
variables, e.g. [30, 80];

2. Tree-structured: conditional variables can also determine activeness of other variables,
e.g. BoTorch [108];

3. Directed acyclic graph: activeness can be determined by multiple variables, e.g. [33, 113]
and ConfigSpace [107];

4. Directed graph: also supports cyclic dependencies, e.g. the Design Space Graph
(DSG) [13].

ConfigSpace
6 implements one of the most general hierarchical design space definitions

known to the authors. ConfigSpace is an open-source Python library that supports the defi-
nition ofmixed-discrete design variables, conditional activation of design variables, and value
constraints [107]. Conditional activation is specified by if-clauses that can be composed of
equality and inequality checks and Boolean conjunctions (AND, OR). Conditional activation

6 https://automl.github.io/ConfigSpace/
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Fig. 4 High-level strategies for dealing with hierarchical optimization

depending on multiple variables is supported, as long as there are no cyclic dependencies.
Value constraints can be specified using forbidden clauses: generic if-clauses between two
or more design variables that define a violated value constraint when the condition is true.
Once defined, the design space object can then be used to query which design variables are
conditionally active, query whether a given design vector is valid, correct and impute a design
vector, get activeness information for a given design vector, and generate random valid design
vectors. ConfigSpace is used by several optimization frameworks to support hierarchical
design spaces, for example SMAC3 [88], BOAH [107], OpenBox [121] and SMT [83]. It
should be noted that also if the optimization problem does not expose an explicit hierarchi-
cal design space model, the problem still contains some model of the hierarchical structure,
either explicitly defined or implicitly embedded in the evaluation code (e.g. as for the turbofan
optimization benchmark problem of [46]). It might be more convenient for the user to think
in terms of a domain-specific model of the design space compared to directly thinking in
terms of design variables, and thus it might help adoption of architecture optimization. Exam-
ples of design space modeling techniques developed in the context of systems engineering
and architecture optimization include the Architecture Decision Graph [11], the Adaptive
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Table 15 Different strategies for dealing with design variable hierarchy in optimization algorithms

General strategy Integration Usage 1 2 3 4 5 6

Naive N/A N/A

Correction & Imputation x-output Evaluation �
Ask-and-tell Evaluation �
Repair operator Evaluation, sampling � �

Explicit consideration Activeness δi (x) Sampling � � �
Activeness δi (x) Sampling & modeling � � � �
Formal model Sampling & modeling � � � � � �

1All evaluated x are valid.
2All x in sampling and infill search are valid.
3Availability of all valid discrete design vectors xvalid,discr .
4Hierarchical kernels for surrogate modeling.
5Dedicated search operators and possibility for problem decomposition.
6Physical separation between optimization and evaluation code

Reconfigurable Matrix of Alternatives [9], the Architecture Decision Diagram [22], fea-
ture models [7, 45], function-means models [8], and the Architecture Design Space Graph
(ADSG) [29]. Retiarii [122] and NASBench [42] provide domain-specific formats for mod-
eling deep neural network architecture design spaces [123]. Table 15 presents a detailed
overview of discussed integration strategies, and capabilities gained at each level of integra-
tion.

The correction and sampling algorithms developed in Section 5 need the highest level of
hierarchy integration: activeness information. We now compare the different levels of inte-
gration to investigate if applying higher levels of integration (see Table 15) indeed results
in better optimizer performance. Ask-and-tell integration has the same results as x-output
integration: they only differ in the way the algorithm is called. Similarly, having a formal
model changes nothing in the information available to the algorithm compared to the active-
ness integration. Therefore, experiments are only run for the naive, x-output, repair and
activeness integration strategies. For BO, the activeness strategy is run in two configurations:
one where activeness is only used for hierarchical sampling, and one where activeness is
available additionally for the GP models. An overview of tested integration strategies and
available capabilities for each strategy is provided in Table 16. NSGA-II is executed with
ndoe = 10 · nx , 25 generations and 100 repetitions. The BO algorithm is executed with
ndoe = 3 ·nx (ndoe = 10 ·nx for the Jet SM problem), 40 infill points and 16 repetitions. The
hierarchical test problems presented in Section 5.1 and shown in Table 6 are used to compare
the hierarchical optimization strategies.

Table 17 shows that for NSGA-II, the level of integration does not influence performance
much. Repair performs best, indicating that hierarchical sampling (as used in Activeness) is
not necessarily beneficial. Table 18 shows that for BO a higher level of integration improves
optimizer performance. Naive, X-out andRepair integration is penalized significantly (134%,
149% and 89%, respectively), showing that in these cases the BO algorithm is less well able
to suggest valid infill design points. It should be noted that if it is not possible to generate
xvalid,discr due to memory or time limits, the Activeness integration can still be used, however
without hierarchical sampling. The unavailability of xvalid,discr and therefore hierarchical
sampling does reduce optimizer performance, as shown and discussed in Section 5.2, however
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Table 16 Tested hierarchy integration strategies and impact on available capabilities. General strategy refers
to strategies presented in Table 15. Abbreviations: hier. = hierarchical, corr. = correction, expl. cons. = explicit
consideration

Naive X out Repair Hier. sampling Activeness

General strategy Naive Corr. Corr. Expl. cons. Expl. cons.

Valid x-output � � � �
Repair operator � � �
Hierarchical sampling � �
Hierarchical GP (BO only) �

Table 17 Comparison of hierarchical optimization strategies on various test problems running NSGA-II,
ranked by �HV regret (lower rank is better). Penalty represents the mean �HV regret increase compared to
the best infill. Best performing strategy is underlined; darker colors represent better results

Table 18 Comparison of hierarchical optimization strategies on various test problems running the BO algo-
rithm, ranked by�HV regret (lower rank is better). Penalty represents themean�HV regret increase compared
to the best infill. Best performing strategy is underlined; darker colors represent better results

not as severe as switching to Repair integration. The unavailability of xvalid,discr therefore
does not represent a major obstacle to solving SAO problems.

If we consider only querying a Gaussian Process (GP) model, as shown by Saves et al.

in [83], taking into account the activeness in the GP using hierarchical kernels leads to better
results than using non-hierarchical kernels. However, Table 18 shows a reduction in perfor-
mance when using hierarchical kernels (Activeness) compared to non-hierarchical kernels
(Hierarchical sampling). This result is due to two factors: the potentially high concentration of
training points in some areas of the design space, and the structure of the used test problems.
High concentrations of training points in certain areas of the design space occur because the
algorithm is attempting to close-in on an optimum in these areas, and is a common occur-
rence in SBO. The Rocket and GNC problems have relatively smooth objective functions,
and therefore in their hierarchical versions the non-hierarchical GP models are still able to
accurately represent the objective functions. It is expected that the first effect will be reduced
for higher-dimensional problems, and that the second effect will be reduced for problems
with more non-linear and non-smooth objective and constraint functions. Therefore we keep
both the non-hierarchical and hierarchical GP models into consideration for the subsequent
more complex investigation.
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7 Application: jet engine architecture

To demonstrate the application of the architecture optimization strategies presented in this
work, a jet engine optimization problem is solved using a Bayesian Optimization (BO) algo-
rithm. The jet engine optimization problem is a benchmark problem specifically developed to
provide realistic architecture optimization challenges and behavior [46]. It is defined using
the jet engine optimization testing framework presented by Bussemaker et al. [46], the
purpose of which is the provide a flexible way to define jet engine optimization problems
with the purpose of testing optimization algorithms for SAO, see Fig. 5 for an overview.
The user defines the optimization problem by selecting from available architectural choices
(that define the design variables) and metrics and inputting the flight conditions and power
offtakes to size the engine for. Available architectural choices include whether to add a fan
and bypass flow, the number of compressor and turbine stages, the use of intercooling and
inter-turbine burning, and where to apply bleed and power offtakes. The selected choices are
used to define the continuous, integer, and categorical design variables for the optimizer. A
translator code is provided that translates a design vector generated by the optimizer into an
architecture instance defined using objects. These objects contain all information required
to build the analysis problem, including input parameters (from flight conditions, offtake
requirements, or design vectors) and airflow connection sequences (e.g. compressor to com-
bustor, combustor to turbine, etc.). A builder code then takes these objects and constructs
an OpenMDAO [124] problem that performs thermodynamic cycle analysis and engine siz-
ing using pyCycle [125], with the main output being the Thrust-Specific Fuel Consumption
(TSFC) of the engine. Handbook methods are added to calculate additional metrics such as
noise level, NOx emissions, weight, and size. Thermodynamic cycle analysis takes between
1 and 5 minutes to complete. However, it is not guaranteed to converge to a feasible solution,
leading to the presence of a hidden constraint. If the hidden constraint is violated, metrics
are set to NaN (not a number). The testing framework enables specification of a wide variety
of test problems, all based on realistic engineering behavior, however with varying number
of design variables, objectives, and constraints. The code is available open source7, for more
information the reader is referred to [46].

7 https://github.com/jbussemaker/OpenTurbofanArchitecting/

123

https://github.com/jbussemaker/OpenTurbofanArchitecting/


Journal of Global Optimization

In this investigation, we use the simple problem formulation defined in [46]:

minimize TSFC
w.r.t. IncludeFan ∈ {False,True}

if IncludeFan = True :
2.0 ≤ BPR ≤ 12.5
1.1 ≤ FPR ≤ 1.8
MixedNozzle ∈ {False,True}
IncludeGearbox ∈ {False,True}
if IncludeGearbox = True :

1.0 ≤ GearRatio ≤ 5.0
1.1 ≤ OPR ≤ 60.0
nshafts ∈ {1, 2, 3}
if nshafts > 1 :

0.1 ≤ factor,i ≤ 0.9 i = 2, . . . , nshafts
1000 ≤ RPMi ≤ 20000 i = 1, . . . , nshafts
PowerOfftake ∈ {1, . . . , nshafts}
BleedOfftake ∈ {1, . . . , nshafts}

subject to Mjet ≤ 1.0
PRfactor,sum ≤ 0.9
PRmax,i ≤ 15.0 i = 1, 2, 3

(15)

which is a single-objective (TSFC minimization) problem with several architectural
choices: fan inclusion IncludeFan, number of compressor stages nshafts, gearbox inclu-
sion IncludeGearbox, mixed nozzle selection MixedNozzle and power offtake locations
PowerOfftake and BleedOfftake. The problem includes several levels of activation hierar-
chy: bypass ratio BPR, fan pressure ratio FPR, gearbox inclusion IncludeGearbox and mixed
nozzle selection MixedNozzle are only active if the fan is included (IncludeFan = True); the
gear ratio GearRatio is only active if IncludeGearbox = True; and shaft-related pressure ratio
factors PRfactor,i and rotational speeds RPMi are only active if the respective number of shafts
are selected. The power offtake PowerOfftake and bleed offtake BleedOfftake selections are
always active, however are value-constrained by the available shafts.

In total, there are 70 valid discrete design vectors. However, the Cartesian product of
discrete variables leads to 216 combinations: the discrete imputation ratio therefore is
IRd = 216/70 = 3.1 (see Eq. (1)). The continuous imputation ratio IRc = 1.26 (see
Eq. (2)), meaning that there are on average 9/1.26 = 7.14 continuous variables active (as
seen over all valid discrete design vectors). The overall imputation ratio is IR = 3.89 (see
Eq. (3)). The correction ratio CR = 2.10 (see Eq. (6)), which leads to correction ratio fraction
CRF = 55% (see Eq. (7)). Thus, a little over half of the design space hierarchy is due to
value constraints (i.e. the need for correction). The problem additionally features 5 design
constraints, constraining the output jet Mach number Mjet and pressure ratio distributions
over the selected compressor stages (PRfactor,sum and PRmax,i). Additionally, the underlying
thermodynamic cycle analysis and sizing code does not always converge, leading to a hidden
constraint being violated in approximately 50% of design points generated in a randomDoE.
We use the problem implemented in SBArchOpt as SimpleTurbofanArch.

The BO algorithm is executed 24 times with ndoe = 113, ninfill = 187 (a budget of 300
evaluations), and nbatch = 4. The algorithm is executed for (see Table 16) Repair integration
(no hierarchy information exposed, however the repair operator is available), Hierarchical
Sampling (therefore an MD GP used during the optimization), and Activeness (both hierar-
chical sampling and hierarchical GP is used). The effectiveness of NSGA-II has already been
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Fig. 5 Overview of the jet engine optimization testing framework. The user provides the problem defi-
nition (in terms of design variables and metrics selected from a database) and the flight conditions and
power offtakes to size the engine for. Engine schematic adapted from original by K. Aainsqatsi, available at
https://commons.wikimedia.org/wiki/File:Turbofan_operation.svg

Table 19 Comparison of median optimal TSFC (minimization) values achieved for the jet engine problem.
Refer to Table 16 for comparison of hierarchy integration strategies.�HV regret was not available forNSGA-II
with 3250 evaluations

Algorithm Hierarchy integration Nfe TSFC [g/kNs] �HV regret

BO Activeness 300 6.633 0.91

BO Hierarchical sampling 300 6.653 (+0.30%) 0.86 (-4.8%)

BO Repair 300 6.640 (+0.11%) 1.59 (+75%)

NSGA-II 300 7.455 (+12.4%) 3.67 (+305%)

NSGA-II 3250 6.640 (+0.11%) −

demonstrated in [46], however for completeness we compare BO results against NSGA-II
results. NSGA-II is executed with repair operator available and using hierarchical sampling.

Figures 6 and 7 present the results of the jet engine optimization for the BO algorithm
with the three compared hierarchy integration strategies. Table 19 presents achieved median
optimal TSFC and �HV regret values. All BO algorithm configurations approximate the
previously-found optimum within 0.2%, or slightly improve it, within the 300 function eval-
uations. The previously-found optimum was found with NSGA-II and an evaluation budget
of 3250; BO therefore can be considered to be able to find the same result in 92% less
function evaluations. For the BO algorithm, Activeness and Hierarchical sampling perform
with similar �HV regret (see Table 19). However, Activeness is able to find a slightly better
TSFC. Repair yields a significantly higher �HV regret due to less effective initial sampling,
however in the end finds a better TSFC than Hierarchical sampling. NSGA-II is not able
to improve much upon its initial population within 300 function evaluations. These results
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Fig. 6 Comparison of NSGA-II to the BO algorithm with different levels of hierarchy integration (see also
Table 16): Repair (no hierarchy information; repair operator available), Hierarchical sampling (no hierarchical
GP) and Activeness (hierarchical sampling and hierarchical GP)

Fig. 7 Details of final optimization phase of comparison shown in Figure 6, only showing the BO algorithm

demonstrate that BO can be used to solve SAO problems, enabling a significant reduction in
number of function evaluations needed compared to evolutionary algorithms like NSGA-II.
Integration of design space hierarchy information, both by using the hierarchical sampling
algorithm and using hierarchical GP, results in better optimizer performance.
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8 Conclusions and outlook

System Architecture Optimization (SAO) problems are challenging to solve due to their
mixed-discrete and hierarchical design spaces combined with constrained, multi-objective,
black-box, and expensive to evaluate solution spaces that potentially are subject to hidden
constraints. Four metrics are defined for characterizing SAO design space hierarchy: impu-
tation ratio IR, correction ratio CR, correction fraction CRF, and maximum rate diversity
MRD. The mixed-discrete, black-box nature of SAO problems require the use of gradient-
free, global optimization algorithms. Multi-objective Evolutionary Algorithms (MOEA), in
particular NSGA-II, have been shown in the past to be effective, although at a high func-
tion evaluation cost. The potential of Surrogate-Based Optimization (SBO) and in particular
Bayesian Optimization (BO) algorithms is identified, mainly due to their high potential in
solving global optimization problems with a restricted function evaluation budget.

This work extends a non-hierarchical BO algorithm to support optimization in hierarchical
SAO design spaces. First, hierarchical Gaussian Process (GP) kernels developed in previous
research and used in the SMT library are extended to also support categorical hierarchical
variables. This enables the usageof hierarchicalGPmodels in anymixed-discrete hierarchical
design space.

Then, hierarchical sampling and correction algorithms are developed to deal with rate
diversity and correction ratio effects, respectively. The best performing and thereafter applied
hierarchical sampling algorithm groups discrete design vectors by active design variables
xact, then uniformly samples discrete design vectors from the defined groups, and applies
Sobol’ sampling to generate samples for continuous variables. Hierarchical sampling per-
forms better than non-hierarchical sampling, however cannot be used if valid discrete design
vectors xvalid,discr are not available. Problem-agnostic correction algorithms are developed to
deal with imputation ratio effects. Eager correction algorithms have access to valid discrete
design vectors xvalid,discr, whereas lazy correction algorithms do not. Using problem-agnostic
correction does not necessarily lead to better optimizer performance when compared for both
NSGA-II and BO, and therefore it is not applied in the rest of the work.

Information about the hierarchical design space can be integrated into an optimization
algorithm at various levels: the information can be ignored (naive approach), design vectors
can bemodified either by the evaluation function or by a standalone repair operator (correction
and imputation approach), and activeness information can additionally bemade available and
used by the optimizer (explicit consideration approach). It is shown that for NSGA-II the
level of integration does not influence optimizer performance much. For BO, higher levels
of integration increase optimizer performance, except that using a hierarchical GP for infill
search reduces performance.

The developed BO algorithm is demonstrated on a jet engine optimization problem that
features design space hierarchy, design constraints, and hidden constraints. It is shown thatBO
is able to find the optimum in 92% less function evaluations than NSGA-II. The higher levels
of hierarchy integration perform better. The developed BO algorithm is implemented as as
ArchSBO in SBArchOpt8 [105]. Used test problems are also available in SBArchOpt. The
implemented algorithm is provided with a default configuration that should be appropriate
for a wide range of optimization problems.

Although BO has been shown to be effective at solving moderate-size architecture opti-
mization problems, use of BO should also be enabled for larger design space sizes, i.e. tens
to hundreds of design variables [126], for example using dimension reduction techniques

8 https://sbarchopt.readthedocs.io/
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such as EGORSE [85]. Multi-fidelity BOmay also be considered to make BOmore effective
and/or further reduce required computational resources. To aid adoption of SAO, it should
be easy to formulate and run optimizations. Formulating architecture optimization problems
can be made easier by developing and applying modeling techniques that do not require the
explicit definition of design variables and design variable hierarchy, e.g. [29, 122]. Running
optimizations can be made easier by enabling configuration and execution of optimization
algorithms from the architecture modeling environment directly, rather than requiring the
user to switch environments and/or write additional code. It should be investigated whether
formulating kernels forGPmodels directly based on similarity between architecture instances
is possible. Specifically, for architecture instances that are represented as (directed) graphs,
e.g. [13], graph kernels [127, 128] should be investigated.

Appendix A Optimizer performance comparisonmethod

This appendix describes the method for comparing optimization algorithm performance by
ranking various algorithm configurations based on �HV regret. �HV (� hypervolume)
represents the distance to the known optimum (or Pareto front in case of multi-objective
optimization) normalized to the range of objective values. For single-objective optimiza-
tion, the range is calculated from the difference between the known optimum and the
maximum objective value encountered during the optimization; for multi-objective opti-
mization the hypervolume of the known Pareto front is taken as normalization value. To
compare multiple optimization runs with different initial Design of Experiments (DoEs),
�HVratio = �HV/�HV0 is used, where�HV0 is the value at the first iteration (i.e. after the
DoE has been evaluated). Regret represents the cumulative error, in our case �HVratio, over
the course of an optimization [70]: lower values are better, and the value gives an indication
of both how closely the optimum is approach by the end of the optimization and by how
quickly this was achieved. �HV regret at iteration i is calculated from:

Regret(�HV)i = Regret(�HV)i−1 + 1

2
nstep

(
�HVratio,i−1 + �HVratio,i

)
(16)

where nstep = nbatch when comparing performance per function evaluation, and nstep = 1
when comparing by infill iteration. Performance is sampled nsamples times for the same
configuration to correct for randomness.

For a given test problem, the best performing algorithm configuration has rank 1;
higher ranks indicate lower performance. Similarly-performing configurations have the
same rank, as tested by an independent two-sample t-test as implemented by Scipy’s
ttest_ind_from_stats

9 function. The algorithm for determining rank is listed in Algo-
rithm 1. The best performing algorithm configuration is then selected by counting ranks
over multiple test problems: the best performing configuration is the one with the highest
proportion of rank 1 within the set of configurations with highest proportion of rank ≤ 2.

9 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html
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Algorithm 1 Determine performance rank Ri for each algorithm configuration Ci given
performance measure pi with standard deviation σi .
Require: C , p, σ , nsamples, perfMin
Ensure: R
1: R ← zeros � Initialize ranks to 0 (unevaluated)
2: if perfMin then � Get initial best performing configuration
3: icomp ← argmin p
4: else
5: icomp ← argmax p
6: end if
7: Ricomp ← 1 � Set initial best performing configuration to rank 1
8: while any(R = 0) do � Loop while there are unevaluated ranks
9: iuneval ← arg R = 0 � Get unevaluated ranks
10: if perfMin then � Get best performing unevaluated configuration
11: jcomp ← argmin p(iuneval)
12: else
13: jcomp ← argmax p(iuneval)
14: end if
15: psame ← tTestInd(picomp , σicomp , nsamples, p jcomp , σ jcomp , nsamples)

16: if psame ≤ 10% then � If probability of being the same is low
17: R jcomp ← Ricomp + 1 � Assign higher rank to compared configuration
18: icomp ← jcomp � Update reference configuration
19: else
20: R jcomp ← Ricomp � Assign same rank
21: end if
22: end while
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