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ABSTRACT
In GNSS degraded environments, cameras have great potential to be used as navigation sensors in various applications such as
UAV landing, autonomous driving, indoor navigation, etc. Using a set of visible features with known locations on the map, the 6
degrees of freedom (DOF) pose (position and attitude) of the camera can be estimated. This is known as the Perspective-n-Point
(PnP) problem. However, the performance of pose estimation is very sensitive to the initial rough estimate of the camera pose, as
the measurement equation is highly non-linear. This problem degrades the performance of visual navigation and has limited its
use in applications that require high reliability. In this work, we propose an innovative algorithm based on Feasible Pursuit Point
and Successive Convex Approximation (FPP-SCA) method by Mehanna et al. (2015) to solve the PnP problem. The algorithm
exhibits a significant global convergence property so that the camera pose can be accurately estimated even when the initial
position error is large. The overall performance of the proposed method is shown to outperform state-of-the-art approaches
and to be more resistant to incorrect initial conditions and measurement noise levels from simulations and experiments in the
context of UAV landing.

I. INTRODUCTION
In recent years there has been an increase in the use of cameras for navigation in a variety of systems ranging from automotive
to robotics and aerospace. Each context has different requirements on the navigation system. For example, in augmented
reality and many robotics applications, a fast and accurate camera-based localization algorithm is usually preferred. The
real-time feasibility and the continuity of the system have a higher priority than the system integrity in the algorithm design.
However, in safety-critical applications such as urban air mobility (UAM), which targets on integrating cargo delivery drones
and future air-taxis into the urban airspace, the navigation system also needs to provide high integrity solutions. In urban areas,
the performance of navigation solutions based on Global Navigation Satellite System (GNSS) may degrade or even become
unavailable due to the blockage of the satellite signals, radio interference and multipath effects. In such scenarios, computer
vision based navigation methods can play an important role in the landing of UAVs (Unmanned Aerial Vehicles) at vertiports,
and the integrity of the camera based position estimation is crucial to the operation safety.

Exploiting georeferenced landmarks, e.g., reference markers or distinct features in the map, is an intuitive and reliable visual
positioning method for UAV landing. Using a set of 2D visible features with known 3D locations, the six degrees of freedom
(DOF) pose (position and attitude) of the camera can be estimated in the reference frame of the 3D points with a single image.



Figure 1: Urban Air Mobility Concept. ©DLR.

This is known as the Perspective-n-Point (PnP) problem.

A few state-of-the-art algorithms can solve the PnP problem analytically, e.g., P3P in Gao et al. (2003), AP3P in Ke and
Roumeliotis (2017), EPNP in Lepetit et al. (2009), IPPE in Collins and Bartoli (2014), and SQPNP in Terzakis and Lourakis
(2020). They have already been implemented in the prestigious open source library OpenCV (Bradski (2000)) and widely used
in various visual navigation applications. However, most of the analytical PnP solvers are based on the noise-free assumption,
but in practice the measurements are always noisy. Nonlinear optimisation is required to solve the PnP problem with noisy
measurements. Gradient or Jacobian-based methods such as Gauss-Newton or the Levenberg-Marquardt algorithms are widely
used to estimate camera poses iteratively. Nevertheless, the performance of the nonlinear optimization is significantly dependent
on the initial pose estimation, since the measurement equations for solving the PnP problem are highly nonlinear. If the error
in the initial guess is large, there is a high possibility that the optimization algorithm converges to a local minimum of the cost
function, which can result in large errors in the estimated pose. It has been shown that with exactly the same measurements and
associations of 2D-3D points, the estimation results may differ for distinct initial guesses of the camera pose (Zhu et al. (2022)).
It is in many cases challenging to validate whether the solver has converged to the global optimum or not. This introduces
integrity risks to the navigation system and strongly limits their use in safety-critical applications.

Researchers have proposed advanced methods to mitigate the impact of the initial pose errors. Rosen et al. (2014) and Jia
et al. (2023) proposed methods applying the trust region algorithm from Conn et al. (2000) to solve the nonlinear optimization.
Semi-Definite Programming (SDP) is another tool to cope with the global convergence problem of PnP (Schweighofer and Pinz
(2008)) and has been used in visual navigation for UAVs in Jubran et al. (2022).

In this work we proposed SEC-PnP (Slack-Eigen-Convexification-PnP) algorithm to estimate the camera pose reliably, even
if the initial pose estimation is erroneous and the measurements are noisy. SEC-PnP models the PnP problem as a Quadratic
Constrained Quadratic Problem (QCQP), and convexify the problem using slack variables and linearizing the quadratic con-
straints based on the FPP-SCA algorithm. The use of slack variables relaxing the constraints during the iterative process gives
the proposed algorithm greater flexibility, and the possibility of ”avoiding” local minima. The proposed approach has greater
robustness and better convergence properties than the state-of-the-art algorithms, so it is shown to outperform other methods in
pose estimation error using both simulation and real experiment data from UAV, at a cost of slightly increased computational
time. The paper is organized as follows: in Section II, the system model and reference frame definitions are introduced, followed
by a categorization of the state-of-the-art methods to solve the problem. In Section III, the proposed SEC-PnP algorithm is
introduced in detail. Validations of the algorithm are shown in Section IV, using both simulated scenarios and real measurement
data collected from UAV flight tests. Conclusions are drawn in Section V.



II. SYSTEM MODEL
In this section, the basics of camera-based positioning and the system models are briefly introduced. More detailed introduction
of the theory behind visual navigation can be found in Hartley and Zisserman (2004), and the error sources and uncertainty in
the visual positioning process are reviewed in Zhu et al. (2022).

The raw sensor measurement of digital cameras is a discrete image III which represents an amplitude measure of the illuminance
during the exposure time on the image plane Ω ⊂ R2. For visual navigation applications, it is essential to extract geometric
information from the luminance of the images, and the processing should be in real time. For navigation purposes, gray-scale
images are typically used because of computational reasons. It is important to underline that the intensity values in the image III
can be noisy due to various error sources.

The location of pixels in the image plane and the corresponding light sources follows projective geometry. Most systems
can be approximated using the classic pinhole model. For this model, the two-dimensional (2D) position of an image point
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with fx/y denoting the focal length in x and y direction, (cx, cy) denotes the coordinate of the projected principal point in the
2D image. The transformation between the camera frame C and the world reference frame O is dependent on the position and
attitude of the camera. For a camera at position tttO ∈ R3 and with attitude represented by RRRO ∈ SO(3) in the world frame, the
projective geometry of a 3D point in the world frame is described by:
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where P̃PP
O

i is expressed in homogeneous coordinates in the world frame, and KKK is the intrinsic matrix. A simple example with
four points in the space projected to the image plane is shown in Figure 2. By rewriting the last equation with variables in
Euclidean space, we denote the 2D coordinates of a point in the image by a function of the camera pose and 3D position of the
point as:

PPP 2D
i = π(P̃PP

O

i ,xxx) (3)

where xxx ∈ R6 is the camera pose parameterized with a six degrees-of-freedom vector. The camera pose xxx can be estimated
given a set of associated 3D points and their corresponding 2D projections in the image. The coordinates of the 3D points can
be obtained, for example, by using georeferenced landmarks (this is the approach applied in our simulations and real tests).
By stacking all the N successfully associated 2D-3D points, the pose of the camera can be estimated by solving the following
nonlinear optimization problem iteratively:

xxxest = argminx ∥µµµ− π(xxx)∥2 (4)

with µµµ = [µµµ1, ...,µµµN ]⊤ and µµµi = PPP 2D
i +nnn, being µµµ the vector composed by the stacked 2D measurements and µµµi the single 2D

measurement composed by the sum of the correct value given by the camera model and a noise vector nnn derived by multiple
noise sources and disturbances, respectively. Equation (4) is the fundamental optimization problem for visual pose estimation.
It is easy to verify that the measurement function π(xxx) is highly nonlinear. Therefore, a good initial estimate of xxx is essential
to ensure that the iterative process does not lead to local optima, if state-of-the-art methods like Levenberg-Marquardt (Eade
(2013)) are applied.

In has been shown in Zhu et al. (2022) that distinct initial guesses of the camera pose can result in different optimization
results. If the initial guess of the nonlinear optimization is close enough to the true position, the process can generate the correct
estimation results. However, if the initialization is not sufficiently accurate the estimated camera pose is biased from the true
value, even if all the measurements are noise-free and all the associations are correct. The error is caused by the convergence
issue of nonlinear optimization.

The state-of-the-art approaches to solve the PnP problem can be categorized into the following groups:



1. Analytical PnP algorithms. In noise-free cases, xxx can be solved analytically by using N ≥ 3 measurements. For the
real cases where different sources of noise are present, there are several analytical PnP algorithms, each with different
assumptions about the minimal number of features or geometry of 2D-3D associations. The algorithms compared in this
work are the P3P algorithm in Gao et al. (2003), AP3P in Ke and Roumeliotis (2017), EPNP in Lepetit et al. (2009), IPPE
in Collins and Bartoli (2014), and SQPNP in Terzakis and Lourakis (2020).

2. Gradient-based iterative approaches. Gauss-Newton methods (Madsen et al. (2004)) and Levenberg-Marquardt are
among the most classical and popular non-linear optimisation algorithms. As mentioned above, starting from an initial
estimate of the parameters and having a well-defined cost function based on the 2D-3D associations, a gradient-based
approach is used with the assumption of already being in the domain of the global minimum of the cost function.

3. Solvers for non-linear constrained problems. As will be shown in Section III, the PnP problem can be modelled as a
non-convex Quadratic Constrained Quadratic Problem. It is possible to solve QCQP using state-of-the-art approaches,
such as Trust-Region methods in Conn et al. (2000) or the Sequential Least Squares Programming (SLSQP) in Fu et al.
(2019). Comparing the SEC-PnP algorithm with the state-of-the-art solvers is necessary to show the performance of the
proposed approach under the same the QCQP modelling of the problem.

4. SDP relaxation. SDP (Semi-Definite Programming) relaxation in Fu et al. (2013) is the state-of-the-art algorithm to solve
QCQP. SDP algorithm transforms the non-convex QCQP problem into one in which only semi-definite positive functions
exist, by making appropriate assumptions. This makes the problem convex by definition and therefore easy to solve with
global convergence property.

Figure 2: Reference frames in visual positioning.



III. THE SEC-PNP ALGORITHM
In this work, we propose an innovative solution to the PnP problem, which aims to improve the robustness to the errors in the
initial camera pose. The acronym of the algorithm, SEC-PnP, stands for Slack-Eigen-Convexification-PnP, which describes the
most important aspects of the processing procedure. Following the problem formulation derived from the work of Sun and
Deng (2020), the PnP problem can be formulated into a non-convex QCQP. With the help of Slack variables and Eigenvalue
decomposition based Convexification, the proposed algorithm approaches the non-convex QCQP using a series of convex
QCQPs, which can be solved with guaranteed global convergence.

The detailed cost function construction and convexification process is described in the following part of this section.

1. A QCQP Formulation of the PnP Problem
In the mapping process of a calibrated pinhole camera, consider a number of points in the 3D world and their corresponding
projections on the 2D image plane of the camera, both with known coordinates. With these 3D-to-2D point correspondences,
as already discussed in the last section, the PnP problem consists in estimating the camera’s 3D pose w.r.t. the world frame that
can be mathematically represented as a rotation matrix RRRO ∈ SO(3) containing the orientation information and a translation
vector tttO ∈ R3 containing the position information.

Given a point
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i = [xO

i , y
O
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withPPPO
i ∈ R3 in the 3D world frame O, the extrinsic absolute pose of the cameraRRRO and tttO, and the intrinsic matrixKKK, point
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Due to noise, the 2D projections of 3D points cannot be precise, generating projection errors. This error for the pointPPPO
i can be

geometrically quantified as a distance from the theoretical projection PPP 2D
i to the actual one PPP 2D∗

i obtained on the real image.
We can take the squares of these distances for each n point so that the total projection error caused by noise can be globally
formulated as
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where d(, ) is the planar distance of two 2D points and i = 1, 2, ..., n. And by multiplying the depth zCi in the Z-axis, that means
to amplify the distance according to the depth, it is possible to have the following expression:
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where ζpoints represents now the sum of the geometric distances for all n point correspondences. Equation (6) can be
reformulated as

PPPC
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where ⊗ is the Kronecker product and III3 is the identity matrix. vec(MMM) is the vectorialization of the matrixMMM , that will contain
the parameters to be found during the optimization process. The Z-axis depth zCi in (9) can be written as

zCi = (P̃PP
O

i
⊤ ⊗ III3)(3) vec(MMM), (11)



where the (·)(3) indicates the third row of the 3× 12 matrix taken in consideration. Furthermore, the geometric distances in (9)
can be rewritten as a quadratic function such that
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Semi-Definite (PSD) matrix that can be computed knowing 3D-to-2D measurements of point correspondences using the
aforementioned formula.
Exploiting the quadratic nature of the formulation of (12), we can superpose all the cumulative geometric distances from the n
point matches as
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This formulation is independent from the point correspondence number n.
So far we have analysed the construction of the cost function. The variables representing the rotation matrix are contained in the
vector xxx, but it is now necessary to define the constraints that a correct rotation matrix has to respect. As we mentioned before,
RRRO ∈ SO(3) , so RORORO is a 3× 3 orthogonal matrix with determinant 1. These two properties can be briefly summarized in the
expression RRR⊤

ORRRO = III . We can then write the following quadratic functions representing the same properties
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Each of the above quadratic functions can be briefly expressed in matrix form using the vector of variables xxx, so we can write:

xxx⊤PPP ixxx = ci, (15)

with ccc = [1, 1, 1, 0, 0, 0]⊤ and i = 1, .., 6. Finally, taking into account the cost function and the six quadratic constraints derived
from the orthonormality of the rotation matrix, we can define the PnP problem as a non-convex Quadratic Constrained Quadratic
Problem (QCQP)

min
x

xxx⊤NNN totxxx

s.t. xxx⊤PPP ixxx = ci, i = 1, ..., 6.
(16)

2. Convexification of the QCQP Formulation
Non-convex QCQPs are NP-hard in general. Existing approaches relax the non-convexity using semi-definite relaxation (SDR)
or linearize the non-convex part and solve the resulting convex problem. However, these techniques are seldom successful in
even obtaining a feasible solution when the QCQP matrices are indefinite (Mehanna et al. (2015)).

We propose to employ the FPP-SCA iterative algorithm for obtaining the optimal solution to the QCQP formulation in Equation
(22), where we approximate the feasible region through a linear restriction of the non-convex parts of the constraints. In order to
guarantee feasibility of the modified problem, slack variables are added, and a penalty is used to ensure that slacks are sparingly
used. The solution of the resulting optimization problem is then used to compute a new linearization, and the procedure is
repeated until convergence.

As a first step, we represent each equality constraint in the original problem as two inequality constraints



min
x

xxx⊤NNN totxxx

s.t. xxx⊤PPP ixxx ≤ ci,

xxx⊤PPP ixxx ≥ ci, i = 1, ..., 6.

(17)

In order to have more flexibility during the minimisation process, we introduce slack variables sss ∈ R6 in the constraints and a
slack penalty in the cost function

min
x, s

xxx⊤NNN totxxx+ λ∥sss∥

s.t. xxx⊤PPP ixxx ≤ ci + si,

xxx⊤PPP ixxx ≥ ci − si, i = 1, ..., 6.

(18)

where λ trades off the original objective function and the slack penalty term, and ∥ · ∥ is the euclidean norm. Problem (18) is
always feasible, and if (xxx∗, sss∗) is an optimal solution of (18) and it so happens that sss∗ = 0, then xxx∗ is an optimal solution of
Problem (17), and clearly of (16). We must underline that Problem (18) remains non-convex and NP-hard in general.
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By using the linear restriction (19) around the point zzz we may replace the i-th non-convex constraint of Problem (16) with the
convex constraints
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And finally we can present the basic algorithm that is used during the optimization process of SEC-PnP as follows:

1. Set k = 0 and generate a initial point zzz0 by knowing an initial estimate of the rotation RRR0 and the translation vector ttt0.

2. Solve the following convex QCQP:

min
x, s
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3. Let xxxk denote the optimal x obtained in Problem (17). at the k iteration, and set zzzk+1 = xxxk.

4. Set k = k + 1 and repeat the procedure from point 2. until convergence.

The Problem (21) is convex and can be easily formulated as a second-order cone program (SOCP). The solver used in our tests
is CVXOPT (Vandenberghe (2010)) coupled with the CVXPY interface (Diamond and Boyd (2016), Agrawal et al. (2018)).
In the original FPP-SCA algorithm it is proposed to use a generic λ ≫ 1 to force the slack variables toward zero, in order to
push the iterates towards the feasible region of Problem (16). The main advantage of FPP-SCA over conventional SCA is the
ability to find a feasible point with higher probability during the iteration process, giving at the same time more flexibility to
the parameters space.

Instead of using a fixed λ value in the optimization (22) as proposed by FPP-SCA, we further optimize the algorithm by using
an adaptive function depending on the current iteration number and on the norm of the slack variables at the first iteration. This
approach shows more robustness to measurements noise and to initial position and rotation uncertainties while solving the PnP
problem. So the SEC-PnP algorithm can be obtained by modifying the aforementioned algorithm as:



1. Set k = 0 and generate a initial point zzz0 by knowing an initial estimate of the rotation RRR0 and the translation vector ttt0.

2. Solve the convex QCQP (21) by setting λ = 1.

3. Save the value of ∥sss∥ of the solved problem as ∥sss0∥.

4. Solve the following problem:

min
x, s

xxx⊤NNN totxxx+ f(k, ∥sss0∥) ∥sss∥

s.t. xxx⊤PPP
(+)
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i zzzk − si, i = 1, ..., 6.

(22)

5. Let xxxk denote the optimal x obtained in Problem (22). at the k iteration, and set zzzk+1 = xxxk.

6. Set k = k + 1 and repeat the procedure from point 4. until convergence.

If the FPP-SCA algorithm converges, it converges to a KKT point for the Problem (18), according to Ye and Zhang (2003).
If the converged slack variables turn out being all zero, then it is easy to show that the remaining variables satisfy the KKT
conditions for the original Problem (16). For more information on convex optimisation theory, the definition of a KKT point
and KKT conditions, we recommend reading the book ”Convex Optimisation” by Boyd and Vandenberghe (2004).

The adaptive modification in the SEC-PnP algorithm increases the chances of obtaining solutions with slack variables equal to
0 (with tiny numerical effects in implementation) and thus feasible solutions for Problem (16). The initial information about
the norm of the slack variables at step 3 is necessary to determine the extent of constraint violation the problem has during the
optimisation process. Once such extent of violation is quantified for the scenario, we can appropriately calibrate the coefficient
that determines the weight in the cost function of the slack variable minimisation part. Moreover, this coefficient will increase
in magnitude in proportion to the number of iterations in order to obtain an accurate solution that fully respects the constraints
imposed by the orthonormality of the rotation matrix.

IV. EXPERIMENTAL RESULTS
Our proposed SEC-PnP algorithm are compared to the state-of-the-art methods reviewed in Section II using both simulated data
and real measurements. For clearness of the result, only selected methods from each category (P3P, IPPE, Levenberg-Marquart,
SLSQP) are shown in the plots. The SDP algorithm is analysed separately due to its unavailability. Although the SDP relaxation
formulation is elegant and easy to understand, it has been shown in Mehanna et al. (2015) that the success rate of the SDP
relaxation is significantly lower compared to the FPP-SCA algorithm (on which SEC-PnP is based) for generic QCQPs. We
have verified such performance behavior for solving PnP problems in our simulations.

Using the same simulation scenario in terms of altitude and noise level in measurements, and using the same software
framework (CVXPY modeling language and CVXOPT/ ECOS/ SDPA solvers), the SDP relaxation does indeed provide an
infeasible problem. Given the complexity of the problem (12 variables and 12 inequality constraints), the infeasibility of solving
the PnP problem using the same cost function and set of constraints as the aforementioned formulation was predictable, given
this table from Mehanna et al. (2015):

Table 1: Generic QCQPs solved with SDP relaxation with n = 20

M 32 40 48
Rank-1 solution 11.5% 2.9% 0.4%

No feasible sol. after randomization 84.7% 96.4% 99.5%
Feasible sol. after randomization 3.8% 0.7% 0.1%

M is the number of constraints in the generic problem and n is the number of variables. After obtaining a solution XXX from
the SDP relaxation, it is necessary to derive a solution vector xxx from XXX if it has rank(XXX) = 1. If this does not happen, it is
necessary to use randomization techniques to obtain rank-1 solutions. Even after using randomization, it is not obvious to obtain
a feasible solution. The percentages of feasible and rank-1 solutions are given in the Table 1. The results reported are averaged
over 1000 Monte-Carlo simulation runs. The entries of the matrices in the QCQPs are randomly and independently generated
from a complex Gaussian distribution (with zero-mean and variance 2), then symmetrized.



Our instance of QCQP, which represents a highly nonlinear problem where the constraints represent the orthonormality of the
rotation matrix and the cost function represents a geometric distance subject to numerous sources of error, is hard be solved
globally without a feasible starting point. The SDP approach could be useful for problems of small size or mild non-linearity.

Another important factor is the conditioning of the problem data: in the generic QCQPs of Table 1, the data are well conditioned
because their order of magnitude is comparable between the cost function and the constraints, so a small percentage of problems
was solved successfully. In the case of the PnP problem, it is easy to fall into the infeasible region due to the nature of the
data. The data conditioning problem and the condition number are well-studied topics in the world of numerical optimization
(Bianchi et al. (2012), Zolezzi (2003)).

Both the simulations and the real tests consist of measurements from a camera mounted on a UAV during the take-off and
landing phases on a vertiport. The movement of the UAV is mainly vertical. The test scenario is useful for analysing the possible
use of camera-based navigation for applications such as air-taxis. Nevertheless, the SEC-PnP algorithm can be used in many
other contexts, as it has no prerequisites on the geometry of the 2D-3D associations.

1. From Simulation

Figure 3: Simulation setting.

The simulation scenario is set up as in Figure 3:

• Four 3D points in the world frame O are defined as: PPPO
1 = [L,L, 0], PPPO

2 = [L,−L, 0], PPPO
3 = [−L,−L, 0], PPPO

4 =
[−L,L, 0] with L = 0.5. The units for each point coordinate are meters [m]. This arrangement of points represents the
shape of a marker of dimension 2L × 2L m with its 4 corners. The world coordinate frame O is centered at the point
PPPO = [0, 0, 0].

• The camera attitude is represented by the rotation vector rrrtruth = [−π, 0, 0] and its translation vector is given by
ttttruth = [0, 0, h] where h represents the z-coordinate varying during the simulation. This means that the camera is
simulating a vertical take-off trajectory while pointing down to the marker.

• h will vary in the interval [0, 30] meters. This range will be divided in 60 steps (granularity of 0.5 m), and for each step
300 runs for each solver will be carried out.

• For each run, each i-th coordinate of the translation vector ttttruth will be perturbed by a normal distribution with µt = 0
m and σt = 10 m. The resulting vector will be the initial estimate for the position tttinit. Regarding rrrinit, it will be
generated by rotating RRRtruth by a certain angle given by a normal distribution with µr = 0 rad and σr = π

12 rad, with a
random rotation axis.

• The PPP 2D
i image points generated by applying the pinhole camera model to the 3D points will be perturbed in both

coordinates with noise modelled as a normal distribution with µn = 0 pixels and σn = 2 pixels.



• The calibration matrix of the camera is:

KKK =

[
1363.58692 0 948.00583

0 1365.00925 609.90681
0 0 1

]
. (23)

The availability, computational times, rotational error and translation error of the algorithms are compared based on the simulated
measurements.

Figure 4a illustrates the percentage of availability of the algorithms out of the 300 completed runs is calculated at each height
level. The SEC-PnP algorithm is available for 95 % of the runs regardless of height. It is important to emphasise that an algorithm
is also considered unavailable when it provides negative z-coordinate in the translation vector as a result, and consequently
a result inconsistent with the geometry of the simulated scenario. This is what happens very frequently in state-of-the-art
algorithms; this phenomenon does not occur in SEC-PnP.

Figure 4b shows the runtime required to estimate the camera pose on a logarithmic scale (in second). SEC-PnP takes
approximately half a second. The computational time using SEC-PnP is higher compared to the state-of-the-art algorithms.
However, this is still within acceptable limits to potentially support real-time processing. The accuracy of the results of the
SEC-PnP algorithm comes at a cost in time that may not be comparable to other geometric methods that are faster but less
accurate. Moreover, it is important to underline that the code used has not yet been optimised from a computational time point
of view, and this can be further improved in the future, while the state-of-the-art methods are all well-implemented in prestigious
open source libraries, e.g. OpenCV, and they require computation times ranging from 1 millisecond to 0.1 millisecond.

Regarding the attitude estimation (Figure 4c), the SEC-PnP algorithm is more accurate than other solvers. At a height of 30
meters, the average error is 0.2 radians. The other algorithms far exceed this value. Most of them settle around the value of 0.5
radians.

With regard to the estimation of the translation vector (Figure 4d), it can also be seen here that the SEC-PnP algorithm is the
most accurate (roughly twice as accurate). On the other hand, with regard to the Levenberg-Marquardt algorithm, it can be
observed that this is highly unstable in estimating the position.



(a) Availability of the algorithms. (b) Computational time of the algorithms.

(c) Average rotational error of the algorithms. (d) Translation RMSE of the algorithms.

(e) Translation RMSE in log scale of the algorithms.

Figure 4: Simulation results.



2. From Real-Data
Plots will be generated representing translation error, using the ground-truth given by a local GNSS-system as reference during
take-off and landing phases of a drone. This test was carried out in Cochstedt (Germany) in November 2022 for a measurement
campaign of DLR. The setup is the following:

• Four 3D points in the world frame O are geo-referenced by using the local GNSS-system: PPPO
0 = [L,−L, 0], PPPO

1 =
[−L,−L, 0], PPPO

2 = [−L,L, 0], PPPO
3 = [L,L, 0] with L = 0.3925. The units for each point coordinate are meters [m].

Those points are the four corners of an April-Tag detected by using the April-Tag detector (Olson (2011)). This means
that the 2D points are subject to various types of errors, such as association error, camera thermal error, errors due to
varying lighting conditions, etc. (more details about these error sources in Zhu et al. (2022)).
These sources of error will affect the 2D coordinates obtained during the association process, but unlike simulations, the
error projected onto the pixels cannot be quantified analytically. The world coordinate frame O is centered at the point
PPPO = [0, 0, 0]. Refer to Figure 6a.

• Information on the camera translation vector ttttruth will be given by the local GNSS-system. Two different phases of the
flight will be analysed: take-off and landing. The z-coordinate of ttttruth will vary in the [0, 50] meter range. Even in this
case the camera will be pointing down to the April-Tag. Unfortunately, no ground-truth data are available for the attitude
of the camera, and for this reason no comparison will be carried out to quantify the rotational error of each algorithm.
Refer to Figure 6b.

• Since this is a real flight test, the trajectory of the drone will be heavily influenced by abrupt movements due to weather
factors such as wind. These sudden and abrupt movements can lead to large errors in the previously mentioned marker
detection phase. We will see later that the SEC-PnP algorithm will perform better than the state-of-the-art ones despite
these external disturbances.

• Considering both landing and take-off phases, around 200 camera poses have to be estimated. For every estimation
process, each i-th coordinate of the translation vector ttttruth will be perturbed by a normal distribution with µt = 0 m and
σt = 10 m. The resulting vector will be the initial estimate for the position tttinit. Regarding rrrinit, due to the missing of
attitude data, we will simply make the assumption that the camera is constantly pointing down, so rrrinit = [−π, 0, 0].

• The calibration matrix of the camera is:

KKK =

[
1328.82588 0 955.46177

0 1335.60937 605.3018
0 0 1

]
. (24)

It is important to note that the calibration matrix was obtained through a calibration process prior to the flight tests. This
was done using some tools from ROS (Robot Operating System, Quigley et al. (2019)) as well as some custom software
from DLR’s Visual and Terrestrial Augmentation Group. This means that the KKK matrix is not free from different types
of errors resulting from the calibration, which will inevitably affect the optimization process performed by the SEC-PnP
algorithm.

The performance of the different algorithms in the real UAV landing scenario is compared in Figure 5. It can be seen from
the plot that SEC-PnP outperforms other algorithms in accuracy and robustness. This statement is valid for both the take-off
(Figure 5a) and the landing (Figure 5b) procedure. It is also important to note that the P3P algorithm actually begins to be very
inaccurate after a height of approximately 30 m (it is very imprecise after 15 seconds during the take-off phase and becomes
reliable again after 60 seconds during the landing phase) and that the Levenberg-Marquardt approach alternates between very
accurate and completely incorrect results. This highly unstable behaviour justifies the results obtained for the latter algorithm
during simulations, where high levels of RMSE are present.



(a) Translation error during take-off phase [m]. (b) Translation error during landing phase [m].

(c) Translation error during take-off phase in log scale. (d) Translation error during landing phase in log scale.

(e) Height during take-off phase. (f) Height during landing phase.

Figure 5: Real flights results.



V. CONCLUSION AND OUTLOOK
In this work, an innovative visual positioning algorithm, SEC-PnP, is proposed to improve the global convergence property
in pose estimation. When the initial pose estimation is inaccurate, the SEC-PnP algorithm outperforms the state-of-the-art
methods in accuracy due to its remarkable global convergence capability. This algorithm has great potential to be exploited
in applications with high reliability requirements, such as urban air mobility, autonomous driving, etc. The next step will be
to define protection levels for SEC-PnP in order to have integrity standards that other navigation technologies possess and that
camera-based navigation does not yet have.
Furthermore, the algorithm has the great potential that an analytical way to validate the global optimality of results obtained
through SEC-PnP can be developed in the future work. This concept will be of fundamental importance in securing the integrity
of output, so that a certifiable visual navigation solution can be developed.

(a) April-Tag used during flight tests. (b) Flight tests in Cochstedt (Nov. 2022).

Figure 6: Images from the real experimental setup.
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