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ABSTRACT

Computer vision algorithms are increasingly leveraged to ac-
celerate geospatial analysis for disaster response and recov-
ery. As the diversity of remote sensing imagery grows with
optical, SAR, and other modalities, a perquisite for analytics
is cross-modal image registration. There is a high potential
to harness computer vision for this pre-processing require-
ment toward enabling downstream analytics such as hetero-
geneous change detection, automated feature extraction, and
data fusion. Advancement in these areas has the potential
to simplify data wrangling tasks and further accelerate dis-
aster response timelines. The SpaceNet 9 challenge (launch-
ing in mid-2024) focuses on addressing the cross-modal im-
age registration problem and demonstrating the utility of such
modules on earthquake impacted scenarios. This paper de-
scribes the motivation for the SpaceNet 9 and provides a first
overview of the dataset, the baseline algorithm, and implica-
tions for seeking cross-modal image registration in Earth ob-
servation. Code is available at https://github.com/
SpaceNetChallenge/SpaceNet 9l

Index Terms— High-resolution optical satellite imagery,
SAR data, image registration, cross-modal learning, computer
vision, natural disaster, disaster response, earthquake

1. INTRODUCTION

Founded in 2016, SpaceNet is a collaborative initiative with
the goal of accelerating novel uses of open source machine
learning capabilities specifically for geospatial application
use cases. SpaceNet provides a repository of openly avail-
able satellite imagery with co-registered labels and access to
baseline algorithms. It has hosted eight innovation challenges
where the winning algorithms for each SpaceNet challenge
are also open sourced. The SpaceNet team consists of con-
tributors from Maxar, AWS, IEEE-GRSS, Oak Ridge Na-
tional Laboratory, the Open Geospatial Consortium (OGC),
Topcoder, and UMBRA.

Enabling first responders to react quickly to natural dis-
asters helps mitigate the impact on people and damage to in-
frastructure. However, one of the impediments for analysts

utilizing open datasets for disaster response is co-registration
of diverse remote sensing data sources such as optical and
Synthetic Aperture Radar (SAR) imagery. Co-registration is
critical in order to assess the impact of a disaster with pre-
and post-event imagery. Increasingly, SAR is available for
post-event imagery due to a wider commercial availability, as
well as the benefit of being able to image through cloud cover
and during nighttime. However, cross-modal registration be-
tween optical and SAR imagery is very challenging due to the
inherently different imaging geometries.

SpaceNet 9 (SN9) is designed to accelerate the ability to
leverage cross-modal image registration. We believe com-
puter vision algorithms on remote sensing data are key to
accelerating disaster response efforts, and that improved au-
tomated pre-processing for cross-modal imagery is essential
for such downstream analysis. This challenge will build upon
previous SpaceNet challenges that focused on identification
of infrastructure and use of SAR imagery [[1]. As an exten-
sion, the challenge will enable the understanding of natural
disaster impacts by considering building damage assessment
[2]. Although we illustrate cross-modal registration for earth-
quake impacted infrastructure, the implications of the study
outcomes extend to other weather related disasters including
basin-scale floods due to heavy rainfall and snowmelt, torna-
does, and hurricane storm surges impacts on coastal areas.

2. DATASET AND CHALLENGE

The SpaceNet 9 dataset consists of several areas of interest
(AOIs) with optical imagery provided through the Maxar
Open Data Program and SAR imagery from UMBRA. Simi-
lar to SpaceNet 8 [3], the imagery used in this challenge are
actual disaster response datasets that were released at the time
of the natural disasters by their providers to support human-
itarian relief efforts. Challenge participants will be asked to
algorithmically establish a pixel-wise transformation across
the optical and SAR images. In addition to the imagery,
tie-points are manually established identifying matchable key
features such as road intersections (see Figure [I) allowing
evaluation of cross-modal image alignment quality.
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Fig. 1.
Maxar optical and UMBRA SAR images.

Example of SpaceNet 9 tie-point labels between

Similar to previous SpaceNet challenges, one set of AOIs
will be provided as a training dataset, a second AOI set will be
used for public testing with the labels held back, and a third
AOI set will be used as a private test dataset for which the
top algorithms will be run for the final scoring. The training
dataset consists of Maxar optical images, UMBRA SAR im-
ages, and a CSV file with the coordinates of tie-points across
these images. Each AOI has approximately 500 optical to
SAR tie-points.

A baseline algorithm will be provided that automates the
registration of the images. The objective of SN9 is to substan-
tially improve upon the accuracy of this baseline or find other
novel approaches to perform this task.

Accurate coregistration of SAR and optical imagery is a
difficult task. The geometric and radiometric properties of
these data are vastly different due to their underlying acquisi-
tion concepts, making their joint interpretation and matching
difficult. SAR data measure physical properties of the scene
and are collected based on range measurements while optical
imagery measures chemical properties and are collected in a
perspective projection [4}15,16]. SAR data are collected with a
side-looking geometry resulting in geometric distortions such
as layover, foreshortening, and radar shadow that do not ap-
pear in optical imagery. In addition, SAR includes speckle
that further contributes to the visual differences between the
two modalities. Figure [T| provides a visual illustration of the
differences in these modalities for an urban area.

Several existing datasets pairing SAR and optical images
have been developed in recent years. The SEN1-2 dataset
[6], for example, consists of approximately 280,000 matching
image pairs from across the globe collected by Sentinel 1 and
Sentinel 2 and has been used in image patch matching studies.
The SARptical dataset [7] consists of 10,000 pairs of high-
resolution SAR and high resolution optical imagery focused
on dense urban areas. The QXS-SAROPT dataset [8]] consists
of 20,000 image patch pairs of co-registered high-resolution
(Im GSD) SAR and optical images acquired by GaoFen-3
and optical satellites used for Google Earth. The SOPatch [9]
dataset, curated to focus on sensor robustness and land-cover

variations, consists of 650,000 matching SAR-optical image
pairs, derived from WHU-SEN-City [10], OSdataset [11]], and
SEN1-2 dataset [6].

Classical computer vision methods, such as SIFT or other
handcrafted features, were found to be inadequate for accu-
rate SAR to optical image matching [12]]. As a result, modifi-
cations to these algorithms as well as deep learning have been
proposed to help improve cross-modality image registration
and matching. Several existing works use (pseudo-)siamese
architectures [4} |5, [13] to discern whether two input patches
correspond to one another.

Most existing benchmarks and methods address cross-
modal image matching, i.e. the classification whether two
given image patches show the same scene, i.e. are centered
around the same spatial coordinate. This, however, assumes a
preceding step of extracting such candidates. SN9 is closer to
a more realistic scenario where only two larger image regions
are given that are coarsely aligned through geocoding. The
goal is to compute a fine alignment between both images,
i.e. the optical and SAR data. Participants will be asked to
provide the corresponding spatial transformation maps that
will be evaluated by transforming the tie-point coordinates
in one image into the other image and measuring the spatial
distance of the transformed points to the coordinates of the
reference points.

3. BASELINE

The proposed baseline consists of scene alignment, training
dataset tiling and keypoint heatmap label generation, and key-
point detection network training. To use the baseline at test-
time, we develop a workflow consisting of scene alignment,
optical and SAR keypoint detection using the trained net-
works, and transformation estimation from the detected key-
points. Finally, we use the transformation and dimensions of
the original optical scene to create a pixel offset image that
describes for each pixel in the optical scene, the shift in the
x- and y-direction that is required for determining the corre-
sponding pixel in the SAR scene. The pixel offset map is the
solution used for evaluation.

Scene alignment: We resample and zero-pad the SAR
and optical scenes so that they have the same spatial extent
and spatial resolution. To match spatial resolutions, we re-
sample the scene with higher spatial resolution so that its pixel
size matches the spatial resolution of the scene with lower
spatial resolution. Following this resampling, we zero pad
the scenes to give them the same spatial extent.

3.1. Training

Tiles preparation for training keypoint detectors: We cre-
ate two tiled datasets from the training set of AOIs to train the
keypoint detection networks. One tiled dataset is used to train
the optical keypoint detection network while the other is used



Fig. 2. A SAR keypoint detection training sample. An opti-
cal (left) and SAR (center) image is cropped centered at the
location of the optical keypoint and a heatmap label (right) is
created with a Gaussian located at the SAR keypoint location.
Optical and SAR keypoint locations are indicated in red.

to train the SAR keypoint detection network. The SAR key-
point detection dataset consists of optical-SAR pairs of image
crops and SAR keypoint heatmaps as labels. Similar to [12],
we crop both the optical scene and SAR scene centered on the
optical keypoint location and create a single-channel heatmap
label with a 2D Gaussian kernel with standard deviation of 13
pixels, centered on the location of corresponding SAR key-
point. For the optical keypoint detection dataset, we follow an
analogous process where we crop the SAR and optical scene
centered on the SAR keypoint instead, creating the heatmap
label with 2D Gaussian kernel centered on the location of the
corresponding optical keypoint. In both datasets, we use a tile
size of 256 x 256 pixels. Figure [2]depicts a sample example
in the SAR keypoint detection dataset.

Keypoint detection: We develop two keypoint detection
networks that are separately trained. One network is trained
to detect SAR keypoints and the other to detect optical key-
points. Both keypoint detection networks follow a U-Net
style architecture, configured for pixel-wise regression and
trained to approximate the keypoint heatmaps labels. The
outputs from intermediate blocks of each encoder are con-
catenated and passed through a single decoder that produces
a single-channel feature map. We apply a sigmoid function to
this final feature map and use these as input into an MSE loss
weighted at the pixel level to account for imbalance in the
number of non-zero valued pixels in the reference keypoint
heatmap. Similar to the loss in [12]], this emphasizes the loss
at the keypoint location to be given equal importance as the
loss at zero-valued locations in heatmap.

3.2. Inference

For inference, the goal is to compute a fine alignment be-
tween an optical scene and a SAR scene. The baseline in-
ference workflow relies on the trained optical keypoint and
SAR keypoint detection networks to find corresponding key-
points between images. The detected keypoints are then used
to estimate a geometric transformation between the images.
The end-to-end workflow is shown in Figure 3]

Keypoint detection: In contrast to the training phase
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Fig. 3. Inference workflow for SAR and optical image regis-
tration.

where labeled tiepoints are available, in the inference phase
we do not have locations of optical keypoints or SAR key-
points to guide where in the large optical scene the detection
networks should be deployed to. In this baseline configura-
tion, we opt for predicting optical keypoints with the optical
keypoint detector across the entire optical scene in a uniform
grid every 100 meters. Then, the remaining of the workflow
in Figure [3| applies, with the detected optical keypoints refer-
enced for cropping, and the SAR keypoint detector deployed
to find corresponding SAR keypoints.

Transformation estimation: Given the detected optical
keypoints and SAR keypoints, we estimate a geometric trans-
formation to warp the optical image to the SAR image. In
this baseline, we pair affine transformation estimation with
RANSAC to estimate the transformation between the detected
optical and SAR keypoint sets. Finally, we use the estimated
transformation to create a pixel-offset map that describes the
x- and y-direction shift for each pixel in the optical image that
is needed to co-register it with the corresponding SAR pixel.
An example of this pixel offset map is shown in Figure ]
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Fig. 4. Pixel-offset image created for an optical image scene.

4. EXPERIMENTS

The following experiments demonstrate usage of this dataset
and measure the performance of the baseline approach. With
these experiments we show that: 1) the provided labeled
dataset (tiepoints) is sufficient for estimating a tranformation
that improves the coregistration of the input SAR and optical
image scenes, 2) it is possible to learn keypoint detectors from
the labeled tiepoints to automate keypoint detection within
patches, and 3) an automated image registration workflow us-
ing the aforementioned baseline configuration does improve
coregistration of SpaceNet 9’s SAR and optical scenes, but



leaves significant room for improvement for participants of
the challenge to outperform such a baseline.

For evaluating coregistration, we use the average distance
between transformed optical keypoints and the corresponding
reference SAR tiepoints.

Transformation on annotated tiepoints: Before any
transformation, the average distance between annotated opti-
cal and SAR tiepoints for the two AOIs are between 30 and
35 meters (Table [T). Applying a global affine transforma-
tion using the reference tiepoints reduces the mean average
distance by 8 to 17 meters, depending on the AOI (Table [2).
Using RANSAC for transformation estimation from the same
reference tiepoints showed marginal improvement of about
1 meter relative to not using RANSAC. This represents an
“upper bound” of performance that can be obtained by a
single global affine transformation for the provided datasets
— i.e., assuming keypoint detectors could perfectly replicate
locations of labeled tiepoints.

Table 1. Reference tiepoints without transformation.

Fig. 5. Predictions with the SAR keypoint detection network
for two samples. Input optical and SAR image are shown in
the left and center-left columns. Reference heatmap is shown
in the center-right and network prediction heatmap is shown
on the right. Reference SAR keypoint location shown as a
green ”X” and predicted SAR keypoint shown as a red ”X”.

Table 3. Coregistration results after using RANSAC to esti-
mate an affine transformation between detected keypoint sets.

AOI Mean DlStance (m) Mean DlStance (Plxels) AOI  Optical Keypoints Inliers Mean Distance (meters) Mean Distance (pixels)
AOI-1 30.22 84.54 AOI-1 840 59 20.99 58.72

AOI-2 930 81 40.68 99.46
AOI-2 34.96 85.46

Table 2. Evaluation of transformations on reference tiepoints.

AOI Transformation Mean Distance (meters) Mean Distance (pixels)
AOL1 Afﬁqe wit}_xout RANSAC 14.24 39.84

Affine with RANSAC 13.14 37.77
AOL2 Affine without RANSAC 27.88 68.14

Affine with RANSAC 26.31 64.31

Learning keypoint detection: We created a tiled dataset
from the annotated tiepoints and randomly split the dataset
into 80% training and 20% validation. We trained separate
SAR keypoint detection and optical keypoint detection net-
works, both using the same training hyperparameters. We
trained for 100 epochs using the Adam optimizer with initial
learning rate of le-4 and used a step learning rate schedule to
attenuate the learning rate by a factor of le-2 after 30 epochs.
Models were trained on a single NVIDIA V100 GPU (32GB).

Figure ] illustrates visual examples of predicted SAR
keypoints on two samples in the validation dataset using the
trained SAR keypoint detection network. A final keypoint
from the predicted heatmap was determined by computing
the pixel coordinates of the maximum value in the heatmap
(i.e. argmax). In the future, other methods for peak finding
may be valuable such as the method used in [12].

Inference: We tested the inference workflow outlined in
Figure [3] for both AOIs using the trained keypoint detectors.
Results are shown in Table 3] The proposed baseline im-
proved coregistration of SAR and optical images in one AOI
while it failed in the second AOIL

5. CONCLUSION

SN9 will advance the understanding and implementation
of techniques to accelerate cross-modal image registration
for optical and SAR imagery. We believe these algorithms
can provide substantial benefit in accelerating workflows for
the disaster response community that is increasingly faced
with leveraging diverse remote sensing data to perform time-
sensitive analysis following natural disasters. Once the results
of SNO are available, future papers will describe the winning
algorithms and assess their approaches.
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