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Abstract

Most automatic systems to analyze Earth observation data are designed for a particular combination of sensor and task.
This limits their applicability in real world scenarios where for a certain point in time and space an acquisition of a certain
sensor might not be available. We propose a cross-modal learning system that trained on multiple modalities can be ap-
plied to any of these modalities during inference time. We show that the proposed model not only maintains performance
compared to the baseline approach of having independent modality specific models but also provides predictions with

increased homogeneity regarding the modalities.

1 Introduction

Remote sensing is progressing at an unmatched speed lead-
ing to a continued increase of the amount, quality, and di-
versity of Earth observation imagery [14]. More and more
satellites produce images of higher and higher spatial and
spectral resolutions offering new opportunities to observe
natural and artificial processes on the surface of the Earth.
Despite this progress, many approaches either focus on
a single modality or aim to leverage multiple modalities
in parallel. The former has the disadvantage, that it cre-
ates hard constraints on the availability of the used sensor
modality. This can be critical in applications that require
either a timely response, i.e. an acquisition at a specific
time, or a dense time series of acquisitions. If acquisitions
are not available, e.g. due to cloud cover or other occlu-
sions for optical images or simply because the sensor is not
yet in the right position, one loses important information.
Multimodal learning only increases those shortcomings as
every sensor brings its own constraints on the acquisitions.
A typical example is the response to a natural disaster such
as a flood event or earthquake [12]. While there might be
machine learning based models available to aid the first re-
sponders, e.g. by detecting damaged buildings or blocked
roads in satellite imagery, these are very likely to be trained
on images from a specific sensor. In this case, one would
need to wait until this satellite is in place to make an acqui-
sition. If at this time point the scene is covered by clouds or
smoke, one has to postpone the image acquisition further
loosing precious time and making a quick response lever-
aging such information impossible.

The alternative is to have a system that can be applied
to various sensor modalities yet provides predictions with
similar characteristics for each of them.

The analysis of Earth observation data often leverages mul-
timodal learning [4] but mostly as data fusion approaches
requiring all modalities being present during inference [3].
In contrast to such multimodal methods, cross-modal mod-
els are trained on multiple modalities, e.g. imagery of dif-

ferent satellites, but use only a single of these modalities
during prediction.

The straight-forward solution to this task is to create inde-
pendent modality-specific models. This has the disadvan-
tage that the models cannot share any information despite
aiming to solve the same task and that their predictions
can hardly be combined (e.g. into consistent time series)
since their errors and uncertainties will be very different
and modality-specific, too.

Modality translation aims to estimate how the data would
look like in one modality given input from another modal-
ity, e.g. creating an optical image based on SAR data.
This has been leveraged in multiple applications including
estimating hyperspectral images from multi-spectral data
[11], inpainting regions occluded by clouds in optical im-
ages based on SAR [1], change detection between images
of different modalities [9], and densification of time se-
ries [8]. However, for use cases where each modality is
equally likely to be useful during inference, selecting a
target modality as basis for any further processing is arbi-
trary and might represent a suboptimal choice. Related to
modality transfer are domain adaptation and transfer learn-
ing [18] where circumstances of the data acquisition (such
as season, geographic location, etc.) might change but not
the sensor itself. This is usually realized by enforcing the
same distribution in source and target domain [20, 15, 16].
Closest to our method are approaches for manifold align-
ment aiming at finding a common embedding for all
modalities [19, 10, 17], which have been used for classi-
fication [17] and visualisation of multi-’hyper-spectral im-
agery [7]. Most approaches are based on linear projections
or their kernelized versions while deep learning approaches
are sparse [5, 6].

Our approach is based on [21] where a very similar frame-
work is proposed in the context of cross-modal retrieval
between images and text. We apply the general idea in
the context of multi-label classification of land use/cover
from remote sensing imagery provided by different sen-
sors, i.e. SAR (Sentinel-1) and multi-spectral (Sentinel-2).



While in this work we implement the proposed approach
with only two modalities, it is in general by no means lim-
ited to that. We do not specify a target modality and do
not aim to transform one modality into the another, neither
on a data nor feature level. Instead, we rely on modality-
specific networks to extract meaningful features that are
subsequently projected into a common latent space. Differ-
ent losses during the learning phase encourage that features
extracted from images of different modalities fall into sim-
ilar regions in this latent space, if their semantic content is
similar. We do not require aligned images of the different
modalities but only training datasets with unified reference
data, i.e. the target variable (e.g. class labels) need to fol-
low the same definition.

2  Methodology

In this work, we focus on Sentinel-1 and Sentinel-2
imagery. Dealing with only two modalities simplifies
the problem while working jointly with SAR and multi-
spectral images keeps it sufficiently challenging to remain
relevant. SAR and multi-spectral images show extreme
differences regarding geometry (distance vs. angle), look-
angle (side-looking vs. nadir), and sensitivity (electric per-
mittivity vs. colors) - to name a few. This means we
assume a training dataset D™ for each modality m, i.e.
D™ C X™ x )Y where A are the input images and )
the reference data, i.e. in our case labels for land use/cover
classes. It should be noted that while obviously the image
space depends on the modality (e.g. the dimensionality and
value range will differ for different sensors), the label space
does not, i.e. all modality specific datasets are assumed to
be consistently labeled. We also do not assume that images
of different modalities are aligned.

As shown in Figure 1, the general framework [21] of the
proposed approach can be roughly divided into three mod-
ules: Feature extraction, feature merging, and optimiza-
tion. The first step leverages modality-specific networks to
extract features f™(z!") from the i-th input image z7* of
modality m, i.e. m € {S1,52} depending on whether
a Sentinel-1 or Sentinel-2 image is used. These can be
trained from scratch (like in the proposed work) or pre-
trained on similar tasks for each modality. Their only pur-
pose is to extract meaningful features from the imagery that
are descriptive for the downstream task and any network
that fulfills this quality can be used. We use a ResNet50
network for both branches. As both networks are applied
to very different modalities, weights are not shared.

In general, both networks are able to extract features that
are meaningful for the downstream task. However, even
if the same output dimensionality would be enforced so
that feature vectors of both modalities lie in the same gen-
eral space, feature vectors of images of different modal-
ities showing similar content are not likely to be close
to each other. Thus, the second step in the proposed
method is to use two modality-specific networks to project
the modality-specific features in a shared latent space,
ie. g™ (f™) (where fI denotes f™(z}") for a less clut-
tered notation) with the goal that g5 (f51) ~ ¢92(f9?%)
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if z°* and x”“ show the same scene at the same time.
This is achieved by fully-connected networks that take
the modality-specific feature vectors to create a new vec-
tor for which modality-specific information is decreased
(in the best case even erased) while information required
to solve the downstream task is maintained. The two
ResNet50 networks used for feature extraction produce
2048-dimensional feature vectors which are reduced by
three fully-connected layers in the merging networks to
1024 dimensional vectors.

The last step of the framework are modules enabling the
end-to-end optimization of the network. The first module
is a network dedicated to the given downstream task, i.e. in
our case multi-label classification. It is a fully-connected
network that uses the feature vector computed by the merg-
ing networks to predict the semantic classes present in the
image. We use the Kullback-Leibler-Divergence loss
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where y is the label distribution over C' classes and g™ its
prediction by the network based on an image from modal-
ity m. This loss ensures that the merged latent space retains
the information necessary to solve the downstream task,
i.e. that classes in the latent space are well distinguishable.
However, it does not (explicitly) encourage feature vectors
extracted from images of the two modalities showing the
same scene to be similar to each other.

To encourage that features in the merged latent space fol-
low similar overall statistics, we add a modality classifier,
i.e. a network that given a vector determines from which
modality it originated. Similar to the discriminator in a
GAN, the inverse loss of the modality classifier is used to
adjust the parameters of the upstream networks. The clas-
sifier itself is trained via a binary cross entropy loss
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where m is the actual input modality and 1 its prediction.
Neither the loss of the modality classifier nor the loss of
the downstream classifier encourage that features in the
merged latent space are similar for images showing the
same scene but coming from different modalities. While
the latter loss can be minimized despite having completely
different distributions for both modalities, the former only
ensures that the general distributions are similar. It would
be possible to add a loss that ensures a minimal distance be-
tween the features extracted from images that are different
acquisitions of the same scene in close temporal proxim-
ity. However, this would require spatially and temporally
well aligned image pairs from all modalities which would
add a significant constraint on data acquisition. Instead,
the last module is a triplet constraint that minimizes the
distance between images having similar semantic content
while maximizing the distance between images showing
different classes. For each sample = within a batch that
comes from modality a, we select two images of the other
modality b: One with similar xi and one with different
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Figure 1 General framework of the proposed approach: Following [21], we use modality-specific networks to extract
features from images of two different sensors (Sentinel-1 and Sentinel-2) and project them into a merged latent space.
These projected features are then used for the downstream task, i.e. multi-label classification, which is solved by a net-
work that is not modality-specific anymore. A modality classification loss and a triplet constraint aim to encourage that
feature vectors of similar images are at similar positions in the latent space.

class content z° . The latter is selected from a group of
semantically different images based on the maximal sim-
ilarity in appearance (based on cosine similarity). These
image triplets are then used in a loss
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where A, u are hyperparameters that control the influence
of the negative samples.

The final loss is a composition of the three individual loss
functions, i.e.

L=aoalr+ BLc— Ly, 4)

where «, 8 are tuneable hyperparameters. The differ-
ent nature of the modality loss compared to classifica-
tion and triplet loss (reflected by a negative sign) is im-
plemented as Gradient Reversal Layer [2] which ensures
that the forward-propagation stays unchanged, while dur-
ing back-propagation the sign of modality classifier gradi-
ent is switched.

3  Experiments

3.1 Data and Performance Metrics

We use the Sen12MS dataset [13] which provides aligned
images from Sentinel-1 and Sentinel-2 together with differ-
ent MODIS-derived land cover maps. Following [22], we
use the simplified version of the IGBP label scheme which
provides nine different classes. The low-resolution seman-
tic map of each image is converted into a relative histogram
of class occurrence which is used as a soft-label for this
image. To set our work into the context of small training
datasets, we limit the data to the astronomical winter (but
since the images are taken from both hemispheres, win-
ter images still contain two meteorological seasons). This

gives us 31,825 images of which we use 27,825 for training
and 4,000 for testing.

To evaluate the performance of the multi-label classifi-
cation task, we use the F1 score which is the harmonic
mean of precision P = TP/(TP + FP) and recall
R =TP/(TP+ FN) (with TP, FP, FN being the true
positives, false positives, and false negatives, respectively)
where we count a sample as positive for a class if the esti-
mated probability for this class exceeds 30%. To account
for the class imbalance of the Sen12MS dataset, we focus
on the macro and weighted F1 scores, i.e. the weighted
average of the class-wise F1 scores where the weight is
uniform for the former and proportional to the number of
samples of a class for the latter.

3.2 Results and Discussion

Figure 2 shows the results obtained by the proposed
method in various configurations as macro and weighted
F1 scores for both modalities, i.e. for Sentinel-1 (S1) and
Sentinel-2 (S2). In general, the results for S2 are supe-
rior to S1 which is consistent with previous findings. The
baseline consists of training the whole network on only one
modality with the classification loss only, i.e. without the
triplet and modality losses. This allows a fair comparison
since the number of parameters and the general architec-
ture remain the same compared to the proposed approach.
This baseline achieves 0.58 (0.63) and 0.68 (0.77) in macro
(weighted) F1 score for S1 and S2, respectively.

Applying the full proposed approach, i.e. using all three
losses (triplet loss 7', modality loss M, and classification
loss C) decreases the macro F1 score to 0.55 and 0.64 (i.e.
by roughly 0.03-0.04) for S1 and S2, respectively, but in-
creases the weighted F1 score to 0.7 and 0.79 for S1 and S2
(i.e. by roughly 0.02-0.07) showing that in particular ma-
jority classes benefit. Please also note that the discrepancy
of the classification performance between both modalities
decreased from 0.1 (0.14) for the macro (weighted) F1
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Figure 2 Obtained results in terms of macro (opaque)
and weighted (half-transparent) F1 score for images of
Sentinel-1 (blue) and Sentinel-2 (red). From left to right:
Baseline, using only the classifier loss (C), using classifier
and modality loss (C+M), using classifier and triplet loss
(C+T), and using all three losses (C+T+M). The proposed
approach mostly maintains the accuracy of the baseline,
while using only the classification loss leads to the overall
highest accuracy.

score of the baseline to 0.09 (0.09) indicating a more ho-
mogeneous classification result for the two modalities.
Leaving either triplet loss or modality loss out decreases
performance in all cases. Interestingly, however, using
only the classification loss leads to the overall best results.
The macro (weighted) F1 score improves for all cases, i.e.
to 0.6 (0.73) for S1 and 0.71 (0.8) for S2. The reason is
that for the baseline all network submodules including the
classification network are only trained with samples of one
modality. The proposed approach, however, leverages data
from both modalities practically doubling the number of
samples. This is in particular true for the classification net-
work which is truly performing twice as many forward and
backprop passes. In contrast to the other settings, however,
the proposed method without modality and triplet loss puts
no constraints on the latent space which is then fully opti-
mized for accuracy without regard to homogeneity of the
two modalities.

Figure 3 shows the influence of the number of samples on
the weighted F1 score of the baseline, the full proposed
approach with all three losses, and only using the clas-
sification loss and confirms the above findings. The full
approach shows results that are either on-par or superior
to the baseline indicating that the additional constraints to
enforce homogeneity of the two modalities in the merged
latent space does not decrease the information content. On
the other hand, removing these constraints leads to consis-
tently better results in terms of accuracy.

To analyze whether the proposed approach really leads to
more homogenous outputs regarding the two modalities,
we exploit the fact that the Sen12MS dataset actually does
provide aligned images of Sentinel-1 and Sentinel-2. Af-
ter training, we compute the average histogram intersection
over the test data for each image pair (21, 25%);_1 _n,
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Figure 3 Influence of the number of samples on the ac-
curacy (weighted F1 score) of the baseline (blue), the

full approach with all three losses (C+T+M), and using
only the classification loss (C) applied to images of either
Sentinel-1 (dashed line) and Sentinel-2 (solid line).
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where ¢;" is the model prediction for sample 2™ of modal-
ity m. The baseline achieves a score of s = 0.63 which is
expected as both modality classifiers make mostly correct
decisions. The full model achieves a score of s = 0.67
showing that while the baseline performance is maintained
(or in some aspects even surpassed), the classification de-
cisions are much more homogeneous regarding the two
modalities. If only the classification loss is used, the score
is with s = 0.66 only a little bit smaller showing that with
improved performance the homogeneity of the classifica-
tion decisions also increases.

4  Conclusion and Future Work

This work proposes a deep neural network model that aims
to mitigate the dependence of current expert systems on the
availability of specific modalities during inference. This is
achieved by leveraging a merging network that takes im-
age features extracted by a modality-specific network and
projects them into a common latent space. Specific loss
functions during the learning phase encourage features of
images with similar semantic content to be at similar lo-
cations within this latent space. We show that the pro-
posed approach is successful in maintaining (or in some as-
pects surpassing) the performance of the baseline (i.e. the
naive approach of having independent modality-specific
networks) while increasing the homogeneity of the predic-
tions.

Future work will extend the proposed approach to more
modalities. Since we do not make any assumptions about
relations between the training data other then a consistent
annotation, i.e. we do not require aligned images of the
different modalities, extending the approach to more than
two modalities is easily possible. Furthermore, more work
has to be done to better understand the properties of the
shared latent space.
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