Prolonging a discrete time crystal
by quantum-classical feedback

Sonzalo Camacho¹, Benedikt Fauseweh¹²

<sup>1German Aerospace Center (DLR), SC-HPC

^{2TU Dortmund, Department of Physics}
 gonzalo.camacho@dlr.de</sup> Prolonging a discrete time crystal by quantum-classical feedback

Gonzalo Camacho¹, Benedikt Fauseweh^{1,2} Metalog Bonzalo Camacho¹, Benedikt Fauseweh^{1,2} 1German Aerospace Center (DLR), SC-HPC

gonzalo.camacho@dlr.de

21/03/2024, DPG Berlin 2024

Motivation

Approach

M.P.A. Fisher et.al., Annu. Rev. Condens. Matter Phys. 14, 335-379 (2023)

Model

Floquet unitary

Model
Floquet unitary
$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j \sigma_j^z \sigma_{j+1}^z + 2h_j \sigma_j^z\right)} e^{-i\frac{\pi g}{2}T \sum_j \sigma_j^x}$
X. Mi et.al. Nature, 601, 531–536 (2022)
Quantum circuit realization
G.Camacho, B.Fauseweh, arXiv:2309.02151

X. Mi et.al. Nature, 601, 531–536 (2022)

G.Camacho, B.Fauseweh, arXiv:2309.02151

 ${\cal U}_F$

Model

Model
Floquet unitary
$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j \sigma_j^z \sigma_{j+1}^z + 2h_j \sigma_j^z\right)} e^{-i\frac{\pi g}{2}T \sum_j \sigma_j^x}$
X . Mi et al. Nature, 601, 531–536 (2022)
Quantum circuit realization
G.Camacho, B.Fauseweh, arXiv:2309.02151

\n**Unitary**

\nStan protocol (ii)

X. Mi et.al. Nature, 601, 531–536 (2022)

G.Camacho, B.Fauseweh, arXiv:2309.02151

Model

Model	Bit-flip noisy
Floquet unitary	Bit-flip noisy
$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j \sigma_j^z \sigma_{j+1}^z + 2h_j \sigma_j^z\right)} e^{-i\frac{\pi g}{2}T \sum_j \sigma_j^x}$	$\Phi(\rho) = \sum_{i=0}^{Q-1} X$
Xi, Mäture, 601, 531–536 (2022)	Kraus ope

X. Mi et.al. Nature, 601, 531–536 (2022)

G.Camacho, B.Fauseweh, arXiv:2309.02151

Bit-flip noise model

$$
\Phi(\rho) = \sum_{i=0}^{Q-1} K_i \rho K_i^{\dagger}, \quad \sum_i K_i^{\dagger} K_i = I.
$$

Kraus operators

$$
K_0 = \sqrt{1 - pI}, \ K_1 = \sqrt{p}\sigma^x
$$

 U_F

Measurement

Correction

 \mathcal{M}

 \mathcal{C}

Represent state ρ as Matrix Product Density Operator (MPDO)

 σ

F. Verstraete, et.al. Phys. Rev. Lett. 93, 207204 (2004) A. H. Werner et.al. Phys. Rev. Lett. 116, 237201 (2016)

$$
\sigma'
$$

Protocol (i) $\rho_n = U_F^n \rho_0 (U_F^{\dagger})^n$
Protocol (ii) $\rho_n = \Phi \left(U_F \rho_{n-1} U_F^{\dagger} \right)$
Protocol (iii) $\rho_n = C \circ M \circ \Phi \left(U_F \rho_{n-1} U_F^{\dagger} \right)$

 ρ

Correction scheme for protocol (iii)

At step "n"...

(1) Measure M adjacent qubits at random location

 $\mathcal{S}^{(n)} = \{x_0^{(n)}, x_0^{(n)}+1, ..., x_0^{(n)}+M-1\}$

(2) Store result into classical regi $\vec{\sigma}_n(\mathcal{S}^{(n)})\bigg|\sigma_j\in\{+1,-1\}$

(3) Compute classical correlations for that specific domain wall

Initialization values

 $\vec{\sigma}_0(\mathcal{S}^{(n)})$

$$
C_n(i,j) = \vec{\sigma}_n^T \otimes \vec{\sigma}_n \quad i,j \in \mathcal{S}^{(n)} \qquad \text{Comparison matrix}
$$

$$
C_0(i,j) = \vec{\sigma}_0^T \otimes \vec{\sigma}_0 \qquad \delta_{ij}(n) = \text{int} \left(\frac{1}{2} (\mathbf{J}_{ij} - C_0(i,j) * C_n(i,j)) \right)
$$

Protocol instances

$$
i(n) = \max\left(\sum_j \delta_{ij}(n)\right) \qquad \text{...continue to step n+1}
$$

(4) Identify index $i(n)$ and correct Key remarks for DTC correction ☑T-periodic scheme ☑Local regions correction ...continue to step n+1 ☑Error qubit identification improves with number of qubits

Results

- Initial state independence
- DTC correlations beyond intrinsic decoherence times employing feedback $_{0.50}$

Correction scheme verification:

- Site and disorder averaged autocorrelation
- Bulk-edge spin correlations

G.Camacho, B.Fauseweh, arXiv:2309.02151

• Favourable scaling with system size

Noise parameter is dominant over kick parameter

Summary and outlook

Main results

- Summary and outlook

Main results

■Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environment

■Forocol independent of state preparation, and periodic with period T

 Good scaling wit Summary and outlook

Main results

■Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy effection from feedback is essential: Beyond pure Zeno effect

■Foroction independent of state prepara Summary and outlook

"Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environment

"Ferotocol independent of state preparation, and periodic with period T
"Food scaling with increasing s Summary and outlook

Main results

■Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environm

■Correction from feedback is essential: Beyond pure Zeno effect
■Frotocol independent of sta Summary and outlook

■ Main results

■ Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environment

■ Correction form feedback is essential: Beyond pure Zeno effect

■ Forocol independen ■ Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environment

■ Correction from feedback is essential: Beyond pure Zeno effect

■ Frotocol independent of state preparation, and periodic
-
-
-

Outlook

- Main results

 Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environ

 Correction from feedback is essential: Beyond pure Zeno effect

 Frotocol independent of state preparation, an
-
-