Prolonging a discrete time crystal by quantum-classical feedback

Gonzalo Camacho¹, Benedikt Fauseweh^{1,2} ¹German Aerospace Center (DLR), SC-HPC ²TU Dortmund, Department of Physics

gonzalo.camacho@dlr.de

21/03/2024, DPG Berlin 2024

Motivation

Approach

Context: Monitored quantum circuits (non-unitary operations)

M.P.A. Fisher et.al., Annu. Rev. Condens. Matter Phys. 14, 335-379 (2023)

Model

Floquet unitary

$$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j \sigma_j^z \sigma_{j+1}^z + 2h_j \sigma_j^z\right)} e^{-i\frac{\pi g}{2}T\sum_j \sigma_j^x}$$

X. Mi et.al. Nature, 601, 531–536 (2022)

Quantum circuit realization

G.Camacho, B.Fauseweh, arXiv:2309.02151

Unitary U_F

Model

Floquet unitary

$$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j \sigma_j^z \sigma_{j+1}^z + 2h_j \sigma_j^z\right)} e^{-i\frac{\pi g}{2}T\sum_j \sigma_j^x}$$

X. Mi et.al. Nature, 601, 531–536 (2022)

Quantum circuit realization

G.Camacho, B.Fauseweh, arXiv:2309.02151

Unitary	U_F
Quantum channel	Φ

Model

Floquet unitary

$$U_F = e^{-i\frac{T}{4}\sum_j \left(J_j\sigma_j^z\sigma_{j+1}^z + 2h_j\sigma_j^z\right)} e^{-i\frac{\pi g}{2}T\sum_j\sigma_j^x}$$

X. Mi et.al. Nature, 601, 531–536 (2022)

Quantum circuit realization

G.Camacho, B.Fauseweh, arXiv:2309.02151

Bit-flip noise model

$$\Phi(\rho) = \sum_{i=0}^{Q-1} K_i \rho K_i^{\dagger}, \quad \sum_i K_i^{\dagger} K_i = I$$

Kraus operators

$$K_0 = \sqrt{1 - p}I, \ K_1 = \sqrt{p}\sigma^x$$

 U_F

Measurement

Correction

Represent state ρ as Matrix Product Density Operator (MPDO)

 σ

 σ

F. Verstraete, et.al. Phys. Rev. Lett. 93, 207204 (2004) A. H. Werner et.al. Phys. Rev. Lett. 116, 237201 (2016)

Protocol (i)
$$\rho_n = U_F^n \rho_0 (U_F^{\dagger})^n$$

Protocol (ii) $\rho_n = \Phi \left(U_F \rho_{n-1} U_F^{\dagger} \right)$
Protocol (iii) $\rho_n = \mathcal{C} \circ \mathcal{M} \circ \Phi \left(U_F \rho_{n-1} U_F^{\dagger} \right)$

M

C

 ρ

Correction scheme for protocol (iii)

At step "n"...

(1) Measure M adjacent qubits at random location

Set of indices $\mathcal{S}^{(n)} = \{x_0^{(n)}, x_0^{(n)} + 1, ..., x_0^{(n)} + M - 1\}$

Store result into classical register (bits) $\vec{\sigma}_n(\mathcal{S}^{(n)}) \bigg| \sigma_j \in \{+1, -1\}$ Initialization values $\vec{\sigma}_0(\mathcal{S}^{(n)})$

(3) Compute classical correlations for that specific domain wall

(4) Identify index *i*(*n*) and correct

$$i(n) = \max\left(\sum_{j} \delta_{ij}(n)\right)$$
 ...continue to step n+1

Protocol instances

Key remarks for DTC correction **T**-periodic scheme ✓ Local regions correction Error qubit identification improves with number of qubits

Results

- Initial state independence
- DTC correlations beyond intrinsic decoherence times employing feedback

Correction scheme verification:

- Site and disorder averaged autocorrelation
- Bulk-edge spin correlations

G.Camacho, B.Fauseweh, arXiv:2309.02151

- Favourable scaling with system size
- . Noise parameter is dominant over kick parameter

Summary and outlook

Main results

Feedback scheme based on mid-circuit measurements enhances DTC response on a noisy environment

Correction from feedback is essential: Beyond pure Zeno effect

reprotocol independent of state preparation, and periodic with period T

Good scaling with increasing system size and domain wall size

Outlook

Implementation of feedback scheme on current hardware employing dynamic circuits functionalities

Alternative noise models, measurement protocols, generalization to qudit systems

Monitored quantum dynamics affected by feedback schemes