

A Brief History of the Inflight Spectral and **Radiometric Performance of EnMAP**

David Marshall Ingram^{1,*}, Kevin Alonso², Martin Bachmann³, Simon Baur⁴, Birgit Gerasch¹, Martin Habermeyer³, Stefanie Holzwarth³, Maximilian Langheinrich¹, Miguel Pato¹, Raquel de los Reyes¹, Mathias Schneider¹, Peter Schwind¹, Helge Witt¹, Emiliano Carmona¹

13th EARSeL Workshop on Imaging Spectroscopy València, 17.04.2024

¹ German Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, Germany ² RHEA Group c/o European Space Agency (ESA), Frascati, Italy

³ German Aerospace Center (DLR), German Remote Sensing Data Center, Oberpfaffenhofen, Germany

Federal Ministry for Economic Affairs and Climate Action

- ⁴ OHB-System AG, Weßling, Germany
- * David.Marshall@dlr.de

EnMAP Onboard Calibration

- 1. OBCA-Radiometric Stability Lamp calibration with white spectralon sphere, frequency: weekly
- 2. **OBCA-Spectral** Spectral calibration with doped spectralon sphere, frequency: 2 weeks
- 3. Absolute Radiometric Sun calibration with sun diffuser, frequency: monthly. As of April 2024: every 2 months
- 4. Linearity Calibration with LEDs in front of focal plane, frequency: monthly
- 5. A. Shutter Calibration Mechanism Deep Space calibration, frequency: monthly
- 5. B. Shutter Calibration Mechanism dark measurement, frequency: before and after every image acquisition

1.

3.

2.

Radiometric Calibration Measurements April – December 2022

David Marshall Ingram, German Aerospace Center (DLR), 17.04.2024

First OBCA-Radiometric Lamp Measurements

EnM

Early OBCA-Radiometric Lamp Measurements

Degradation Distribution Pattern

- Degradation map from OBCA-Radiometric Lamp in VNIR HG
- Percentage change from May November 2022

- Degradation
 - affects VNIR only
 - affects high and low gains
 - is visible in other calibration systems -> change in detector sensitivity

Early Mission Calibration Coefficients

EnMAP

Dynamic Coefficients

Due to fast degradation in VNIR sensor, calibration tables used in L1B processing could become outdated quickly

Solution: model VNIR RNU and radiometric behaviour with "Dynamic Coefficients" from an exponentialpolynomial function

Dynamic Coefficients are used between April – December 2022 rather than coefficients in calibration tables

Radiometric Calibration Measurements January 2023 – April 2024

David Marshall Ingram, German Aerospace Center (DLR), 17.04.2024

Recent OBCA-Radiometric Lamp Measurements

David Marshall Ingram, German Aerospace Center (DLR), 17.04.2024

Recent Calibration Coefficients

Spectral and Dark Shutter Calibration Measurements April 2022 – April 2024

David Marshall Ingram, German Aerospace Center (DLR), 17.04.2024

Spectral Stability

- Good spectral stability: within requirements (0.5 nm VNIR, 1.0 nm SWIR)
- 6 spectral updates during mission (4 during Commissioning, 1 after outage, 1 for SWIR band swap)

EnN

Dark Shutter Stability

Dark Current very stable in time

VNIR low gain at nominal integration time shown here

EnMAP Calibration Summary

	April – December 2022	January 2023 – Present
VNIR sensor	Degradation (10%)	Stable
VNIR radiometric calibration coefficients	Changes due to degradation, dynamic coefficients used	Stable (meets 2.5% requirement between observations), calibration tables used
SWIR sensor	Stable after launch	Stable
SWIR radiometric calibration coefficients	Stable after launch (meets 2.5% requirement between observations)	Stable (meets 2.5% requirement between observations)
Dark Signal	Stable	Stable
VNIR spectral calibration	Stable after launch (meets 0.5 nm requirement)	Stable (meets 0.5 nm requirement)
SWIR spectral calibration	Stable after launch (meets 1.0 nm requirement)	Stable (meets 1.0 nm requirement)
VNIR-SWIR mismatch	Calibration improvement at low signals under investigation	

BACKUP SLIDES

David Marshall Ingram, German Aerospace Center (DLR), 17.04.2024

First OBCA-Radiometric Lamp Measurements

Early OBCA-Radiometric Lamp Measurements

EnMAP

Recent OBCA-Radiometric Lamp Measurements

Absolute Radiometric Calibration Coefficients

Absolute Radiometric Calibration Coefficients

22

Total Degradation

VNIR-SWIR mismatch

Q: What is the reason for the apparent noise in some EnMAP L1C and L2A products in the spectral range between 900 and 1000 nm?

A: The EnMAP instrument consists of two separate spectrometers, one covering the visible and nearinfrared (VNIR) and the other covering the shortwave infrared (SWIR). The spectrometers overlap in the spectral range between 900 nm and 1000 nm with 12 VNIR and 10 SWIR bands. Since EnMAP L1C/L2A products contain a single spectral data cube with all bands ordered by wavelength (not separated by sensor), the spectra have interleaved VNIR and SWIR bands between 900 nm and 1000 nm. Therefore, any slight signal mismatch between the sensors is seen as a zig-zag (spectral noise) pattern in the overlapping spectral range. This is most obvious in low-radiance and/or inhomogeneous regions. There are two main reasons for the effect. First, the two spectrometers, which are independently calibrated in orbit, have distinct sensor responses in the overlapping range. The differences are especially important for low signals as they usually occur, for instance, in water bodies or forests. Second, the different lines of sight of VNIR and SWIR and any slight errors in the co-registration performed at L1C level will contribute to the mismatch between the sensors. Pixels in inhomogeneous regions or at the border between different surfaces are particularly affected.