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Abstract
Numerical simulations with high accuracy are a fundamental part of modern aircraft
design. The current industry standard for the simulation of aerodynamic flows are RANS
simulations that require modeling of unresolved turbulence. The underlying assumptions
of RANS equations and the corresponding turbulence models exhibit inadequacies that
lead to errors. Field inversion and machine learning (FIML) is a data-driven turbulence
modeling approach that introduces a spatially varying correction term in the turbulence
model by using high-fidelity numerical or experimental reference data. Within this thesis
the production term of the negative Spalart-Allmaras (SA) model is corrected.

Using the RAE 2822 two-dimensional airfoil two test cases, one with numerical and one
with experimental reference data, are designed to incorporate transonic flow effects such as
shocks. The FIML approach is trained and applied on multiple steady cases with varying
angles of attack α, aiming to yield good corrections for steady transonic simulations and
implicitly learning the change of the correction field β with the angle of attack dβ/dα.
In a second step, the trained model is applied to unsteady dual-time stepping simulations
with a pitching airfoil at varying reduced frequencies and excitation amplitudes.

The field inversion approach delivers good corrections of the reference quantity and related
quantities for inadequacies caused by the SA turbulence model in transonic flow fields
including shocks using a realistic number of reference points. Therefore, investigations
regarding the number of reference points, the correction of non-reference variables, and
varying free-stream conditions are conducted.

Applying a fully-connected neural network with selected locally available flow features to a
limited area of the flow field yields good results for the correction of steady simulations. For
the application to unsteady simulations, the ML correction model shows ambiguous results
regarding the accuracy and convergence issues for flow conditions including strong non-
linear effects. Applying a steady correction field which is the result of the field inversion
or a corrected steady simulation yields improved convergence and promising correction
results at excitation amplitudes smaller than one degree. Testing the ML approach on the
second test case with experimental reference data shows issues regarding generalizability.
Finally, multiple ideas regarding further work and improvements are presented.
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Kurzfassung
Numerische Simulationen mit hoher Genauigkeit sind ein wichtiger Bestandteil im heuti-
gen Flugzeugentwurf. Industrieller Standard ist die Verwendung von Simulationsmetho-
den basierend auf den RANS Gleichungen. Dafür ist eine Modellierung nicht aufgelöster
Turbulenz notwendig. Die den RANS Gleichungen und den dazugehörigen Turbulenzmo-
dellen zugrundeliegenden Annahmen weisen Ungenauigkeiten auf und führen zu Fehlern.
Der datengetriebene Turbuenzmodellierungsansatz Field Inversion and Machine Lear-
ning (FIML) führt einen räumlich variierenden Korrekturterm im Turbulenzmodell ein,
indem höherwertige numerische Simulationen oder experimentelle Daten genutzt werden.
Innerhalb dieser Arbeit wird der Produktionsterm des negativen Spalart-Allamaras (SA)
Turbulenzmodells korrigiert.

Zwei Testfälle, einer mit numerischen und einer mit experimentellen Referenzdaten, ba-
sierend auf dem RAE 2822 Flügelprofil sind so ausgelegt, dass transonische Strömungs-
effekte inklusive Stößen enthalten sind. FIML wird verwendet um eine Korrektur von
stationären transonischen Strömungen bei variierendem Anstellwinkel α zu ermöglichen.
Dabei soll implizit die Änderung des Korrekturfaktors β mit dem Anstellwinkel dβ/dα
gelernt werden. In einem zweiten Schritt wird das trainierte Modell zur Korrektur in-
stationärer dual-time stepping Simulationen mit einem harmonisch nickenden Profil bei
verschiedenen reduzierten Frequenzen und Amplituden verwendet.

Mit einer realistischen Anzahl an Referenzpunkten liefert die Feldinversion gute Kor-
rekturergebnisse in transonischer Strömung bezüglich der Referenzgrößen und verwand-
ter Größen für Fehler die durch das Turbulenzmodell verursacht werden. Dafür werden
Untersuchungen bezüglich der Anzahl der Referenzpunkt, des Einflusses der Korrektur
auf verschiedenes Variablen und des Verhaltens bei Fehlern in den Anströmbedingungen
durchgeführt.

Unter Verwendung eines vollvernetzten neuronalen Netzwerkes mit ausgewählten lokal
verfügbaren Eingangsgrößen in einem beschränkten Bereich des Strömungsfelds können
gute Korrekturergebnisse für stationäre Simulationen erzielt werden. Die Anwendung sel-
bigen Korrekturmodells in instationären Simulationen liefert uneindeutige Ergebnisse be-
züglich der Genauigkeit und weist zudem Konvergenzprobleme auf, wenn ausgeprägte
nichtlineare Effekte vorhanden sind. Eine Korrektur instationärer Simulationen mithilfe
von stationären Korrekturfeldern, welche das Ergebnis der Feldinversion oder stationärer
korrigierter Simulation sind, zeigt bessere Ergebnisse hinsichtlich Genauigkeit und Kon-
vergenz für Amplituden bis zu einem Grad. Angewendet auf den zweiten, experimentellen
Testfall zeigt das trainierte Korrekturmodell Probleme hinsichtlich der Generalisierbar-
keit. Schlussendlich werden Ideen zu Verbesserungsmöglichkeiten und weiteren Untersu-
chungen aufgezeigt.

v



Contents

Nomenclature vii

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Background 5
2.1 Transonic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Unsteady Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 RANS Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Resulting Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Field Inversion and Machine Learning 12
3.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 FIML Classic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Field Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Application of Correction Model . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Current Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Numerical Test Case 19
4.1 Case Description and Preparation . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Field Inversion on Steady Simulations . . . . . . . . . . . . . . . . . . . . . 23
4.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Application to Steady Simulations . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Unsteady Case Description and Preparation . . . . . . . . . . . . . . . . . 46
4.6 Correction of Unsteady Simulations . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Experimental Test Case 60
5.1 Case Description and Preparation . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Field Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Machine Learning and Application to Steady Simulation . . . . . . . . . . 65
5.4 Exemplary Unsteady Simulation . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusions and Outlook 71
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 80

List of Figures 83

List of Tables 84

A Appendix 85

vi



Nomenclature

Latin

b Bias
b Bias vector
c Chord length
cd Drag coefficient
cf Skin friction coefficient
cl Lift coefficient
cmy Pitching moment coefficient
cp Pressure coefficient
cz,inertial Coefficient of force in inertial z-direction
D Turbulence model destruction term
e Thermodynamic internal energy
f Frequency
f(·) Functional relationship
f Body force vector
g(·) Activation function
h Hidden layer
I Identity matrix
I Cost function
k Reduced frequency
k̃ Heat conduction coefficient
k Turbulent kinetic energy vector
l Length
M Mach number
M̃ Number of reference data points
n Amount of substance
N Number of cells
o Generic vector
p Pressure
P Turbulence model production term
q Reference value
Q Heat source
r Correlation coefficient
R Ideal gas constant
R Reynolds stress tensor
R2 Coefficient of determination
Re Reynolds number
S Strain rate tensor
t Time

vii



Nomenclature viii

T Temperature
u Velocity vector
u Mean part of velocity vector
u′ Fluctuating part of velocity vector
U Mean flow variables
V Volume
w Weight vector
W Weight matrix
x Cartesian coordinate in x-direction (corresponding to the aircraft roll axis)
x Cartesian coordinate vector
y Cartesian coordinate in y-direction (corresponding to the aircraft pitch axis)
z Cartesian coordinate in z-direction (corresponding to the aircraft yaw axis)

Greek

α Angle of attack
α Mean angle of attack
β Correction term
η Feature
θ Pitch angle
θ̂ Pitch amplitude
λ Regularization parameter
ν Kinematic viscosity
νt Turbulent kinematic viscosity
µt Dynamic eddy viscosity
ν̃ Spalart-Allmaras viscosity
ρ Density
τ Deviatoric stress tensor
φ Generic flow variable
φ Mean component of generic flow variable
φ′ Fluctuating component of generic flow variable
ϕ Radial basis function
χ Dimensionless Spalart-Allmaras viscosity
Ω Vorticity

Indices

0 equilibrium
∞ free-stream
crit critical
max maximum
opt optimal
ref reference
tot total



Nomenclature ix

Abbreviations

AI Artificial Intelligence
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
DL Deep Learning
DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)
DNS Direct Numerical Simulation
FCNN Fully-Connected Neural Network
FFT Fast Fourier Transform
FI Field Inversion
FIML Field Inversion and Machine Learning
FRF Frequency Response Function
HPO HyperParameter Optimization
LES Large Eddy Simulation
MAE Mean Absolute Error
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
RANS Reynolds-averaged Navier-Stokes
RBF Radial Basis Function
RSM Reynolds Stress Model
SA Spalart-Allmaras
SA-neg Negative Spalart-Allmaras
SMARTy Surrogate Modeling for AeRo data Toolbox in Python
SWBLI Shock Wave Boundary Layer Interaction
PDE Partial Differential Equation



Chapter 1

Introduction
Future aircraft design of new, disruptive layouts, aims to incorporate processes such as
certification by analysis and virtual flight testing to reduce the number and the cost of
physical tests such as wind tunnel or flight tests. Thus, numerical tools with high accuracy
across the entire flight envelope are required [1]. Even though numerous future aircraft
concepts aim to achieve laminar flow to reduce drag, most commercial aircraft that fly at
high Reynolds numbers are subjected to turbulent flows. When flying at typical cruise
speeds in the transonic regime, the flow is significantly influenced by shocks. An accurate
prediction of the interaction between shocks and other flow phenomena, e.g. the boundary
layer, is mandatory to ensure a safe and efficient flight. Steady-state simulations are
sufficient to analyse a variety of flight conditions, e.g. cruise. In addition, time-dependent
flows must be considered in the aeroelastic analysis or when an aircraft is subjected to
gusts [2]. This requires accurate simulations of unsteady aerodynamics.

A straightforward solution to numerically compute turbulent flows is to resolve the govern-
ing equations at all spatial and temporal scales, using direct numerical simulation (DNS).
However, being computationally very expensive with current resources DNS is unfeasible
to be applied to industrial problems. Compared to DNS, large eddy simulations (LES)
and methods based on Reynolds-averaged Navier-Stokes (RANS) equations are of
lower fidelity, as they do not resolve the flow at all scales and are therefore computa-
tionally less expensive [3, 4]. Both approaches decompose the flow into a resolved and
an unresolved part: LES filters the physical scales while the RANS approach separates
the flow into mean and fluctuating components. LES is of higher fidelity, however, still
computationally too expensive to be applied to industrial problems. For most indus-
trial applications, solving the RANS equations is the highest fidelity approach that is
computationally feasible.

Turbulence models are necessary to achieve a closed form of the RANS equations and
describe the relationship between the resolved mean flow and the unresolved fluctuating
components. Each model relies on assumptions that might be empirical, mathematical,
or based on physical considerations. A large variety of turbulence models with a wide
range of complexity and different target applications is available. Regardless of the com-
plexity, all models and the RANS approach itself exhibit inadequacies: information is lost
by separating a flow into mean and fluctuating components, the modeling assumptions
and the resulting functional relationships are imperfect, and lastly turbulence models are
calibrated using canonical test cases that only reflect selected flow characteristics. Quanti-
fying and mitigating the errors of turbulence models is necessary for the models to deliver
reliable results across all flight conditions. Especially turbulence modeling for unsteady
flow is less mature than steady RANS turbulence models. This area is identified as one
technology gap that needs to be improved in future CFD codes [5].

The steady improvement of computational resources allows to processing of larger amounts
of data, increasing the popularity of data-driven approaches such as machine learning
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(ML). Experimental and numerical investigations in fluid dynamics research produce large
amounts of data, making this field attractive for data-driven methodologies [6]. Parish
and Duraisamy as well as Duraisamy et al. introduce the field inversion and machine
learning (FIML) approach that makes use of available high fidelity data to improve exist-
ing turbulence models [7, 8]. Investigations of the FIML approach on steady aerodynamic
problems show promising results as the literature review in the next section shows. Thus,
an investigation regarding unsteady flows is of interest.

The text above gives a motivation for this thesis. Subsequently, related work is reviewed
in section 1.1 before a research objective is defined in section 1.2. Finally, the structure
of this work is outlined in section 1.3.

1.1 Related Work
Various data-driven turbulence modeling approaches are described in the literature. In
this section, publications regarding general considerations and approaches are reviewed
before papers concerning the FIML approach are considered.

In a review paper Brunton et al. give an overview of ML methods for fluid dynamics.
The historical relationship between statistical learning methods and the physical problem
of fluid dynamics, especially turbulence, is described. Recognizing underlying structures
in complex data is a strength of ML models. Turbulence is characterised by complex
structures that are hard to describe analytically. Thus, the paper argues that ML is
suitable for turbulence closure modeling [6].

Multiple publications aim to employ data-driven approaches to replace (parts of) the
RANS turbulence models. Ling and Templeton make a first step towards data-driven tur-
bulence modeling by training different ML approaches on canonical test cases, comparing
RANS solutions to corresponding higher fidelity solutions. The resulting models can clas-
sify, but not quantify regions of high uncertainty [9]. Wang et al. learn discrepancies in
RANS modeled Reynolds stresses as a function of mean flow features using supervised
ML techniques based on random forests [10]. This approach is extended by Wu et al.
introducing a comprehensive framework that can predict mean flow velocities based on
the ML predicted Reynolds stress tensor [11]. Instead of learning the entire Reynolds
stresses, Ling et al. introduce a deep neural network with embedded physical properties
to only predict the anisotropy tensor. Improvements over baseline turbulence models are
achieved [12].

Data-driven turbulence modeling is not exclusive to the RANS approach. Gamahara and
Hattori train an artificial neural network to establish a functional relationship between
subgrid-scale stresses and grid-scale flow quantities in LES. Using DNS training data,
the model can find functions with high correlation to existing models [13]. Similarly,
Beck et al. introduce a rigorous framework to derive subgrid closure models using neural
networks [14].

All of the previously mentioned publications aim to introduce a data-driven approach that
can replace (parts of) a closure model. The FIML approach, first introduced by Parish
and Duraisamy and further described by Duraisamy et al., has the objective of correcting
existing turbulence models instead of replacing them. Thus, physical considerations and
constraints from the original closure models are preserved. In the first step, using statist-
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ical inference methods, the so-called field inversion, a spatially distributed correction term
is introduced into a RANS closure model by harnessing reference data from higher-fidelity
simulations or experiments. Subsequently, the relationship between the correction term
and mean flow variables is learned using ML methodologies [7, 8]. This approach is not
fully data-driven, but data-informed: data is used to improve an existing model that is
based on physical considerations. Multiple publications further investigate the FIML ap-
proach. Jäckel performs a sensitivity analysis with a focus on the field inversion (FI) step
using the Spalart-Allmaras (SA) turbulence model. The influence of regularization,
grid resolution, and a spatially restricted application of the approach is investigated [15].
Grabe et al. investigate the FIML on transonic flows including shock-induced separation.
The work sets an emphasis on the selection of input features for the ML model and finds
features that lead to improved outcomes [16].

Holland et al. argue that the two-step FIML Classic approach might exhibit an incon-
sistency between the correction that is derived in the FI step and the correction that is
predicted by an imperfectly trained ML model. A physics-consistent one-step approach,
also called FIML Direct, that integrates the ML model training within the inverse prob-
lem of the inference step is proposed and tested. The resulting approach shows improved
results regarding the ability to generalize, however, with the cost of decreased numerical
stability [17]. Jäckel implements the FIML Direct with the SA turbulence model and
shows improved flow predictions on separated flows [18].

The available research on FIML for unsteady RANS simulations is limited. Fidkowski
does not apply the FIML approach within unsteady simulations, however, a design op-
timization loop consisting of unsteady simulations, FIML and steady adjoint-based shape
optimization is investigated. The proposed optimization accounts for unsteady effects
and leads to an improvement in gradient-based shape optimization [19]. A recent pub-
lication by Fang and He develops a FIML framework for time-accurate unsteady flow.
The authors propose to use a coupled FIML approach, similar to FIML Direct, to correct
the flow within the inner loop of each physical time step of an unsteady time marching
simulation based on time-dependent flow features. Improved results over the baseline SA-
turbulence model, with the limitation of a computationally very challenging and expensive
problem that involves a highly non-linear neural network model and a CFD solver, are
observed [20].

1.2 Research Objective
The main research objective for this is given by the following quote from the description
of the master thesis, which can be found in the front matter:

«The aim of this thesis is to investigate if this methodology is capable of correcting turbu-
lence models such that improved predictions at steady transonic flow conditions including
shocks are obtained and how this affects a subsequent unsteady response analysis.»

Following the task description and the main research objective, several sub-objectives may
be stated:

• Correction fields for steady-state RANS simulations in the transonic regime are to
be obtained using field inversion. The results must be evaluated.
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• An investigation of ML approaches to predict correction fields based on mean flow
quantities must be performed. This includes a feature selection and an evaluation
regarding the generalizability.

• The correction model trained on steady data shall be applied to unsteady sim-
ulations. Different levels of unsteadiness must be investigated to determine the
limitations of the approach.

While the first and second sub-objectives are not entirely new and build on existing
publications, the author is not aware of any work similar to the third sub-objective.
Thus, the investigation of the application of a FIML correction model trained on steady
data to unsteady simulations is an extension of the current state of research.

1.3 Outline
This chapter gives motivation for this thesis and surveys related research. In chapter 2,
the physical background to transonic and unsteady flows is described. Also, numerical
approaches to solve the physical problems and the corresponding challenges are stated.
Subsequently, in chapter 3, the FIML approach is described. Then, two test cases are
investigated: in chapter 4 the FIML approach is investigated by using steady high-fidelity
reference data and by applying the derived correction model to unsteady simulations.
While the first test case contains several smaller investigations, the second test case in
chapter 5 is narrower in scope. The findings from the first test case are tested using
experimental reference data to evaluate the generalizability of the approach. Finally, the
results are summarised, conclusions are drawn, and an outlook for further work is given
in chapter 6.



Chapter 2

Problem Background
Two types of physical flow phenomena are of interest for this thesis: section 2.1 introduces
transonic flows and section 2.2 introduces unsteady flows. Using the Reynolds-averaged
Navier-Stokes (RANS) equations, given in section 2.3, in combination with a turbu-
lence model, explained section 2.4, allows to compute the flow phenomena numerically.
Section 2.5 reasons how inadequacies in the current computational approach relate to the
objective of this thesis.

2.1 Transonic Flows
Transonic flows are a crucial physical phenomenon influencing aircraft design significantly
and are introduced in subsection 2.1.1. Thus, understanding challenges in the computa-
tional simulation of transonic flows stated in subsection 2.1.2 is important.

2.1.1 Physical Phenomena

Modern commercial aircraft typically fly at speeds close to, but below, M = 1. Above the
airfoil-specific critical Mach number Mcrit, the flow on the airfoil, typically on the upper
side, is accelerated to M ≥ 1 even though the free-stream velocity is below the speed of
sound. The supersonic flow is usually terminated by a shock wave which slows the flow
to subsonic flow conditions. Said flow condition with regions of sub- and supersonic flow
is referred to as transonic flow.
With increasing free-stream Mach number, the shock moves backwards on the airfoil.
The shock may also move forward with an inverse shock motion. Additionally, a shock
wave on the lower side of the airfoil may emerge. The shock wave results in an increase
in static pressure and interacts with the boundary layer. With increasing Mach number,
the shock gets stronger. It affects the boundary layer in a way that adverse pressure
gradients and separation may occur if the boundary layer’s kinetic energy is too small to
withstand the shock. The interaction of the shock wave and the boundary is mutual and
referred to as shock wave boundary layer interaction (SWBLI). In addition to separation,
oscillations can occur [21, 22].

2.1.2 Challenges in Computational Solution

As the position of the shock and the interaction with the boundary layer significantly
influence quantities of interest such as lift, drag and pitching moment, correctly computing
the phenomena is of great importance.

This poses a significant challenge since solving the mathematical problem of transonic flow
is a non-linear problem corresponding to an elliptic mathematical problem in subsonic flow

5
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and a hyperbolic problem in supersonic flow. Using CFD to solve the RANS equations,
given in section 2.3, allows to make predictions on transonic flows [23].

The quality of transonic CFD computations is limited by the underlying assumptions of
the equations. Particularly the chosen turbulence model exhibits restrictive assumptions
and influences the result, as stated in section 2.4. As a baseline comparison and model
to be corrected, the Spalart-Allmaras turbulence model is used in this thesis. This
model is known to under-predict boundary layer separation, i.e. over-predict the turbulent
kinetic energy in the boundary layer in some cases, affecting the shock position. Thus, it
is desirable to correct the turbulence model to achieve more precise results.

2.2 Unsteady Flows
Unsteady aerodynamics occur when time-dependent processes are present in a flow. Un-
derstanding the physical phenomena and how to compute unsteady flows is described in
the following sections.

2.2.1 Physical Phenomena

Unsteadiness in a flow may be caused by the motion of a body in the flow, e.g. a harmon-
ically pitching airfoil, external disturbances such as gusts, or time-dependent interactions
of flow phenomena, e.g. SWBLI. An interaction between multiple effects is also possible.
The interaction of aerodynamic forces with a structure is the subject of investigation of
aeroelasticity [24, 25].

This thesis investigates unsteady aerodynamics caused by the harmonic pitching motion
of an airfoil. Given a mean angle of attack α the airfoil pitches with a harmonic frequency
f and a pitch amplitude θ̂ around a reference point at 1/4-th chord length. The resulting
angle of attack is a function of time t:

α(t) = α + θ(t) = α + θ̂ · sin (2πf · t). (2.1)

Introducing a dimensionless parameter, the reduced frequency k, allows a comparison of
unsteady effects in different flow cases:

k =
2πflref
|u∞|

, (2.2)

with f the harmonic frequency, lref a reference length, e.g. the chord length, and |u∞|
the free-stream velocity. Faster changes, i.e. larger reduced frequencies, may lead to a
phase shift between the excitation and the response. For k → 0 the problem becomes
quasi-steady [24].

2.2.2 Numerical Computation

Multiple methodologies are available to compute unsteady aerodynamics. The Doublet-
Lattice method as introduced by Albano and Rodden assumes small perturbations and
is a powerful method to predict unsteady aerodynamic forces in compressible, inviscid
flow [26]. Since viscous effects are not covered by this method, effects such as shock
waves, or boundary layer separation are not predicted correctly and require correction.
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Using CFD methods based on the Navier-Stokes equations is computationally more
expensive, but leads to more precise results. The unsteady computations in this thesis are
done using the dual-time stepping method by Jameson that is implemented in the DLR-
TAU code [27, 28, 29]. The dual time stepping method uses a backward differentiation
scheme to solve the RANS equations for a subsequent time step. Each physical time step
is treated as a steady state problem that is solved in inner iterations using a pseudo time
variable and an implicit Runge-Kutta. In contrast to an explicit scheme, the implicit
scheme is numerically stable for arbitrarily large time steps. Thus, the time step size is
only limited by accuracy requirements [27]. To be concise, the mathematical formulation
is not reproduced in this thesis and can be found in the referenced publications.

2.3 RANS Equations
The Navier-Stokes equations describe the motion of viscous fluids and can be used
to describe transonic and unsteady flows. These equations form a system of non-linear
partial differential equations. Solving the equations in a discretised space is the subject
of computational fluid dynamics (CFD). The following partial differential equations are
derived based on finite control volumes fixed in space and fully describe a compressible
fluid flow [4].

The conservation of mass in vector notation can be written as

∂ρ

∂t
+∇ · (ρu) = 0 (2.3)

where ρ is the density, t is the time, ∇· is the divergence operator, and u is the vector of
flow velocities.

Based on Newtons second law the conservation of momentum is given by the equation

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρf (2.4)

with pressure p, the deviatoric stress tensor τ , and f the body force vector.

Finally, the total energy equation is given by

∂

∂t

[
ρ

(
e+

1

2
|u|2

)]
+∇·

[
ρ

(
e+

1

2
|u|2

)]
= ∇·

(
k̃∇T

)
+∇·(−pu+ τ · u)+ρu·f+Q (2.5)

where e is the thermodynamic internal energy, k̃ is the heat conduction coefficient, T is the
temperature, and Q is a heat source. The fluid flow is fully described, using equations 2.3–
2.5 together with an equation of state as the ideal gas law that is stated in the subsequent
formula:

pV = nRT (2.6)

with V the volume, n the amount of substance, and R the ideal gas constant.

Solving the Navier-Stokes equations in discretised volumes that resolve all temporal
and spatial scales yields a physically accurate solution. However, due to the large range of
scales in a turbulent flow, this requires an enormous computational effort. By assuming
a statistically stationary flow, the Reynolds decomposition can be applied to the flow



2.4 Turbulence Modeling 8

equations 2.3-2.5 [30]. A generic flow variable φ (x, t) can be decomposed into a mean
time-independent component φ (x) and a fluctuating time-dependent component φ′ (x, t):

φ (x, t) = φ (x) + φ′ (x, t) (2.7)

Applying the Reynolds decomposition to the momentum equation (eq. 2.4), while
assuming a Newtonian fluid and a constant density, results in the following mean flow
momentum equation:

∂u

∂t
+∇ · (uu) = −∇p+∇ ·

(
ν
(
∇u+∇u⊤)− u′u′

)
(2.8)

where ν is the kinematic viscosity. Equation 2.8 shows that the Reynolds stress tensor
R = −u′u′ needs to be defined. This closure problem is often referred to as turbulence
modeling and is further described in section 2.4. To keep this thesis concise, a simple
form of the Reynolds-averaged momentum equation is presented. More general forms,
e.g. for compressible flows, can be found in the literature, e.g. [30].

2.4 Turbulence Modeling
Many approaches of different complexity, aiming to achieve a closed system of equations
starting from the Reynolds-averaged Navier-Stokes (RANS) equations, are available
and can be described in two different main categories. The first category is based on the
Boussinesq hypothesis, assuming the deviatoric part of the Reynolds stresses to be
proportional to the mean rate of deformation [30]:

R = νt2S− 2

3
kI (2.9)

with νt the turbulent eddy viscosity, the mean strain rate tensor S = 1
2

(
∇u+∇u⊤), the

turbulent kinetic energy k = −tr (R), and the identity matrix I.

Figure 2.1: Schematic overview of the most common RANS turbulence modeling ap-
proaches.
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The turbulent kinetic energy and the turbulent eddy viscosity must be determined using
approaches such as algebraic models or transport equations of different variables. The
second category of RANS closure models contains Reynolds stress models (RSMs) that
model the individual components of the Reynolds stress tensor. These models are the
most general form of RANS models. However, they come with an additional cost, are
less validated, and are less numerically robust. Figure 2.1 gives an overview of RANS
turbulence modeling approaches. The figure illustrates the trade-off between resolving
the actual physical behaviour which comes with an increase in computational cost and
the need for correct modeling assumptions. However, it must be noted that an increase in
modeling efforts can not always mitigate deficiencies in the overall model structure. This
is further elaborated in section 2.4.3.

2.4.1 Spalart-Allmaras One-Equation Model

The Spalart-Allmaras (SA) turbulence model is a one-equation turbulence model
describing the transport of turbulent eddy viscosity [31]. When dealing with external
aerodynamics such as an airfoil flow, this model is a popular and well-validated choice.
The turbulent kinetic energy is given by

νt = ν̃fv1 (2.10)

with fv1 =
χ3

χ3 + C3
v1

(2.11)

and χ : =
ν̃

ν
(2.12)

where ν is the molecular kinematic viscosity and ν̃ is the SA variable. The transport of
the SA variable is given by the following equations:

Dν̃

Dt
= P −D + T with (2.13)

Dν̃

Dt
=

∂ν̃

∂t
+ u∇ν̃, (2.14)

P = Cb1 [1− ft2] , (2.15)

D =

[
Cw1fw − Cb1

κ2

](
ν̃

d

)2

and (2.16)

T =
1

σ

{
∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2

}
(2.17)

P denotes the production of turbulence, D is turbulence destruction, and the term T
represents the diffusive transport. Explanations regarding all variables can be found in
the original publication [31] and are not further discussed to keep this text concise.

In this thesis, the negative SA (SA-neg) model which is implemented in DLR TAU-code
is used [28, 32]. This variation of the model has improved numerical robustness over the
original SA model by introducing a term which applies when νt is negative, which can be
found in the referenced publication.

Assessment of the SA Model

The advantages of the SA model are being a simple and numerically robust model with
wide usage and validation. The model delivers a complete closure with just one equation.
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In contrast to two-equation models it is simpler, but delivers equally good results in many
applications. The model is superior to simpler algebraic models.

Known disadvantages are a reduced accuracy for incompressible flows with adverse pres-
sure gradients or shock-induced separation. As these kinds of flows are critical in aerospace
design it is of interest to mitigate the resulting errors [30].

2.4.2 Reynolds Stress Model

In contrast to the SA model, Reynolds stress models (RSMs) do not rely on the
Boussinesq hypothesis (eq. 2.9). Instead, RSMs describe the individual parts of the
Reynolds stress tensor:

R = −u′u′ = −

u′
xu

′
x u′

xu
′
y u′

xu
′
z

u′
yu

′
x u′

yu
′
y u′

yu
′
z

u′
zu

′
x u′

zu
′
y u′

zu
′
z

 (2.18)

As equation 2.18 shows, the tensor is symmetric with six unknown components that need
to be determined by solving six additional partial differential equations (PDEs).

Assessment of the RSM Model

RSMs are the most general approach to turbulence modeling for RANS equations. Fur-
thermore, an improved accuracy in some flows can be observed. However, this comes with
the cost of solving six additional PDEs. In addition, RSMs are less validated and less
numerically robust when compared to eddy viscosity models [30].

Specifications used in this Thesis

An RSM is used in this thesis as a higher fidelity numerical comparison to the SA model.
Whenever this model is used, the following specifications are used. Further details may
be found in the cited references:

• The pressure-strain correlation is handled according to the SSG/LRR-ln(ω) model [30,
33].

• According to Rotta, the dissipation is assumed isotropic [34].

• The simple gradient diffusion hypothesis is used [35].

• As length scale equation, the ln(ω)-equation according to the Menter baseline model
is used [36].

2.4.3 Uncertainties due to Simplification

The assumptions introduced by the process of Reynolds-averaging and turbulence mod-
eling are well reasoned, nevertheless, the resulting inadequacies must be noted. Duraisamy
et al. describe four levels of simplifications [8]:

• Level 1: The process of averaging leads to a fundamentally irrecoverable loss of
information.

• Level 2: Closure models are developed to relate the macroscopic state of the flow
to the microscopic state, which is not resolved. The underlying assumptions about
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which independent variables to choose lead to uncertainties in the functional and
operational representation of the Reynolds stresses.

• Level 3: The functional representation that is chosen to relate the chosen variables
leads to further uncertainties.

• Level 4: Finally, a given model has uncertainties based on the coefficients that are
chosen to calibrate the model.

2.5 Resulting Task
The previous sections state the physical problem of transonic and unsteady flows, explain
how this problem can be solved using RANS equations in combination with the SA tur-
bulence model, and describe the shortcomings of the described approach. Given these
inadequacies, a methodology to improve the prediction quality of RANS equations is of
interest.

Reference data stemming from experiments or higher fidelity simulations can be used to
quantify this error. Consequently, the overall goal of this thesis is to improve RANS
simulations with the SA model in such a way that the error between a predicted quantity
q and a reference quantity qref stemming from experiments or an RANS simulation with
the RSM model is minimised.



Chapter 3

Field Inversion and Machine Learning
Field inversion and machine learning (FIML) is a data-driven turbulence modeling ap-
proach that utilizes higher fidelity reference data to improve RANS simulations. Thus,
the FIML approach is fitting to the problem described in section 2.5.

If not indicated differently, the content of this chapter is based on these publications [8,
15, 18, 33].

3.1 Idea
The main idea of the FIML approach, proposed by Duraisamy et al., is to alter a given
turbulence model by introducing a spatially and possibly temporally distributed correction
term β [8]. Introducing the correction term into the SA turbulence model as stated in
equation 2.13 results in the following equation:

Dν̃

Dt
= βP −D + T (3.1)

In equation 3.1, the correction is only applied to the production term. Since β can also be
negative, the corrected turbulence model can increase the turbulence destruction. While
it is also possible to apply a term to the diffusive transport term, this is not done in
this thesis, since equation 3.1 is implemented in the DLR TAU-code [28]. Furthermore,
different publications show that this version of the altered turbulence model can correct
simulations in separated and transonic flows [16, 18].

The values of the correction term are unknown. However, it is assumed that an unknown
functional relationship between β and the flow state (U, ν̃) exists. U contains all the
mean flow variables. The goal of the ML part of the approach is to find a data-driven
model fβ that describes the functional relationship:

fβ : η1(U, ν̃), . . . , ηn(U, ν̃) 7→ β (3.2)

with η1 . . . ηn flow features depending on the flow state (U, ν̃). The steps to find a func-
tional relationship according to equation 3.2 are explained in sections 3.3 and 3.4.

3.2 FIML Classic
The FIML Classic methodology is a two-step approach which first builds a database
containing the results of multiple field inversions (FIs), as presented in section 3.3 [8]. In
the second step, in section 3.4, a machine learning (ML) model is built using the field
inversion results. Finally, the resulting correction model is applied within a RANS solver,
as given in section 3.5. This workflow is visualised in Figure 3.1. The individual parts are
explained in detail in the following sections.

12
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Field Inversion

High Fidelity Simulation,
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Machine 
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𝑑𝐼
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𝛽𝑖+1 = 𝛽𝑖 − 𝜖
𝑑𝐼

𝑑𝛽

Flow 
solver

Augmented
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Figure 3.1: Workflow of FIML Classic as in [18].

Assessment

For the FIML Classic approach, each FI is performed separately and allows gaining in-
sights into the correction results before training a machine learning model. Furthermore,
the database containing the inversion results can be extended if needed. Another ad-
vantage is that the ML training can be done offline using established methods. However,
performing the FI and ML steps separately exhibits two error sources: next to an imper-
fect FI the ML model might be inconsistent with training data.

For completeness, the FIML Direct approach must be mentioned here. Holland et al.
introduced a closed-loop form of the FIML approach by integrating the ML model training
into the FI step, further information can be found in the publication [17].

3.3 Field Inversion
The goal of the field inversion is to find spatially distributed values for β such that the
corrected RANS solution according to equation 3.1 matches a reference solution. The
reference solution might be experimental data or a higher fidelity numerical solution.
The comparison of the corrected RANS simulation and the reference solution is done by
comparing the reference quantities q(β) and qref:

q(β)
!
= qref (3.3)

The reference variables can be global values as the coefficient of lift cl, scalar field values
as pressure p, or vectorial field values as the flow velocities u. The number of reference
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variables can be sparse, i.e. smaller than the number of the corresponding quantities in
the RANS solution.

Equation 3.3 states an inverse problem that can be iteratively solved by minimising a cost
function I:

I =
1

2Vtot

N∑
i

Vi (qi,ref − qi(β))
2

︸ ︷︷ ︸
I1

+λ
1

2M̃

M̃∑
j

(βj − β0)
2

︸ ︷︷ ︸
I2

(3.4)

The first term I1 is the mean squared error (MSE) between the reference and the RANS
solution at each of the N nodes where a reference solution is available. For field reference
values, the squared differences are weighted according to the cell volume Vi. With N
the number of reference data points usually being smaller than M̃ degrees of freedom
the inverse problem is ill-posed. To ensure smoothness of the numerical simulation, the
term I2 is a Tikhonov regularisation penalising strong correction terms [37, 38]. M̃ is
the number of overall nodes in the computational domain. β0 refers to the correction
field that leads to an unchanged turbulence model, i.e. according to equation 3.1 for the
given SA model it is β0 = 1. By altering the value of the regularisation parameter λ the
influence of the regularisation term can be controlled.

Being influenced by the RANS equations, the cost function is non-linear and is solved
iteratively, this can be done using a gradient-based method. Consequently, the compu-
tation of the gradient of the cost function with respect to the correction term dI/dβ is
required. Different approaches can be used to evaluate the gradient. For high-dimensional
aerodynamic optimisation problems, the adjoint method is very efficient, as the number
of function evaluations scales with the number of cost functions and not the number of
unknown variables, i.e. β at each node [39]. Furthermore, this method is implemented in
the DLR TAU-code [28].

After computing the gradient, a line-search backtracking optimisation in the direction of
the steepest descent can be performed for a set number of iterations or until an Amrijo-
Goldstein condition is reached [40, 41]. This concludes the FI and the resulting β-field
can be used for machine learning as explained in section 3.4.

3.4 Machine Learning
Comparing a baseline solution with reference data in an FI delivers a RANS solution and
a corresponding β-field (see section 3.3). The goal of the machine learning step is to
find a functional relationship between features based on mean flow variables of the RANS
solution and the β-field.

In subsection 3.4.1, the general idea of data-driven methods is introduced. Then, the task
of ML in the context of FIML is explained in subsection 3.4.2. Subsequently, the specific
machine learning approaches used in this thesis are explained in subsection 3.4.4.

3.4.1 Data-Driven Methods

Traditional modeling of physical systems is achieved by describing the underlying physical
phenomena using equations based on the knowledge of the physical system. This has the
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clear advantage that the results are explainable. However, it requires deep insight and
a sufficient understanding of the physical system. Furthermore, solving the resulting
systems of equations can be very expensive.

As stated by Moores law computational resources become more powerful and the cre-
ation and processing of large amounts of data becomes cheaper [42]. These technical ad-
vancements enable the growing popularity and accessibility of data-driven methods that
make use of data, aiming to find structures that can be generalised to make predictions.

ML is a data-driven method and an artificial intelligence (AI) approach. Classical ML
such as regression models use hand-designed input features to generate an output. As a
more powerful form of ML, deep learning (DL) approaches use several mapping layers to
generate abstract mappings of the input features. Consequently, DL models are capable of
describing highly non-linear input-output, or feature-target relationships. The approaches
can be used for a variety of tasks, in this thesis regression models are of interest [43, 44].

3.4.2 Purpose of ML in FIML

To complete the FIML approach a model fβ that describes the functional relationship
between the local flow features ηi(U(x), ν̃(x)) and the target quantity β(x) as stated in
equation 3.2 is required. By supplying a database containing data for different global
conditions, the goal is to train an ML model that learns the underlying structures and
can generalize on previously unseen data.

3.4.3 Feature Selection

The features must be included in or be computable from the mean flow variables that
are obtained from a RANS simulation. Possible features can be found in the literature.
By evaluating the Spearman’s rank correlation [45] between possible features and the
target value, as well as by performing a sequential feature selection [46], five features are
determined in [16]. Similar features are also used in [17] and [18], and implemented in
the DLR Surrogate Modeling for Aero-Data Toolbox in python (SMARTy) [47]:

• η1 =
P
D

: ratio of turbulent production to destruction.

• η2 = χ: non-dimensionalised Spalart-Allmaras viscosity.

• η3 =
|S|
|Ω| : ratio of the magnitudes of strain to vorticity.

• η4 = µt|S|
τw

: ratio of the local turbulent stresses to the wall shear stresses at the
closest wall.

• η5 = Ω = d2

(ν+ν̃)|Ω| : the non-dimensionalised magnitude of the vorticity tensor.

Based on the value range a logarithm is applied to some of the features in the literat-
ure. The feature selection is case-dependent. Subsequently, requirements and correlation
metrics to evaluate possible features are described.

Requirements

Features must be locally available: the information required to compute a feature must
be available at each mesh point. However, as η4 shows, it is possible to make unavailable
information accessible, e.g. if a value is only available at walls, the closest value might be
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used. Machine learning models process data regardless of their dimension. However, to
ensure dimensional consistency, the input features should be dimensionless. Furthermore,
turbulence models typically assume Galilean invariant features: a possible feature must
be the same in all inertial reference frames. The latter two requirements are favourable,
though the main objective is to obtain a satisfactory ML model [16].

Correlation Metrics

The correlation between a feature and the target value can give insights into whether
a feature is useful to describe the target. Three correlation coefficients are used in this
thesis to compare two generic vectors o1, o2:

• Pearson’s correlation coefficient rp measures the linear relationship, where rp = ±1
is a perfected (inverse) correlation and rp = 0 indicates no correlation [48]. Given
the mean values ō1 and ō2 it can be computed by

rp =

∑
(o1 − ō1) (o2 − ō2)√∑

(o1 − ō1)
2∑ (o2 − ō2)

2
. (3.5)

• Spearman’s rank correlation coefficient rs measures the monotonicity of the rela-
tionship between two vectors and can take the same values as rp [45, 48]. With
the ranks R(o1) and R(o2) as well as the standard deviation of the ranked variables
σ(o1) and σ(o2) it can be computed as

rs =
cov (R(o1),R(o2))

σR(o1), σR(o2)

. (3.6)

• Grabe et al. proposed to use a correlation coefficient that can capture non-monotonous
relationships [16]. The distance correlation rd describes the relationship between
two vectors using the distance of observations in an Euclidean space. Using the
distance covariance dCov(·), and distance variance dVar(·), it can be evaluated by

rd =

√
dCov2 (o1,o2)√

dVar2 (o1) dVar2 (o1)
. (3.7)

The resulting value of rd is similar to the other correlation coefficients, but cannot
be negative. Further information can be found in the publication [49].

3.4.4 Methods

Two ML approaches of different complexity are used in this thesis: a regression model
based on radial basis functions, and a fully-connected neural network.

Radial Basis Function Regression

The radial basis function (RBF) regression uses radial basis functions centred at the bases
of a high-dimensional dataset to approximate the target value at non-base points. The
influence of each base diminishes with distance from the centre [50].

Given a vector of features η ∈ Rn, n RBFs ϕi can be described as

ϕi(η) = φ(||η − ηi||), i = 1, ..., n (3.8)
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where the function φ can be chosen. Four different types of RBFs are implemented in
SMARTy [47].

Fully-Connected Neural Network

Inspired by the structure of the brain, a perceptron multiplies an input vector η ∈ Rn

with a weight vector w ∈ Rn and adds a bias b ∈ R. The result is passed through a
non-linear activation function g(·) : R → R to produce an output. In accordance with the
target quantity the output is called β ∈ R [51]:

β = g
(
w⊤η + b

)
(3.9)

Arranging multiple neurons as in equation 3.9 in l layers results in a multi-layer perceptron
(MLP), also known as a fully-connected neural network (FCNN). The information from
each of the q neurons in the i-th layer h(i) ∈ Rq is passed to each of the p neurons in the
(i + 1)-th layer h(i+1) ∈ Rp. The weights in each layer are gathered in a weight matrix
W(i) ∈ R(p,q) and the biases are organised in a bias vector b(i) ∈ Rq:

h(i) = g(i)
(
W(i)h(i−1) + b(i)

)
(3.10)

The dimension of the first layer is defined by the dimension of the feature vector Rn, while
the dimension of the last layer is given by the dimension of the target R. The dimensions
of the hidden layers, i.e. the layers between the first and the last layer, can be chosen
and influence the model’s behaviour. The models in this thesis use the ReLU activation
function as in [52], are trained iteratively using backpropagation according to [53], and
are implemented in SMARTy [47], using the PyTorch backend [54].

According to the Universal Approximation Theorem for each arbitrarily complex function,
a neural network exists that approximates the function [55]. Consequently, neural net-
works are a potent tool. Nevertheless, the challenge of finding a satisfactory representation
remains.

3.5 Application of Correction Model
Once a correction model is trained it can be applied by coupling the resulting ML model
with a RANS solver. Thus, the application of the trained model is a solver intrusive
correction procedure. Consequently, the entry barrier to applying the correction model
is high, because the RANS solver must be capable of processing the predicted correction
term. This requires compatibility of the ML model and the CFD code.

For steady simulations, the evaluation period of the correction model defines the number
of inner iterations after which the turbulence model is evaluated. The correction term is
obtained by evaluating the model based on the resulting values of the last inner iteration
of the RANS solver and passing the resulting β-field as an input to the subsequent inner
iteration. Varying the number of inner iterations between the evaluation of the correction
model may affect the stability and convergence speed of the RANS solver.

Unsteady simulations augmented with a correction model are run for multiple sub-iterations
within each physical time step. Each subiteration runs for a given number of inner iter-
ations, as explained in subsection 2.2.2. The evaluation of the correction model is done
before each subiteration. Thus, the correction model’s evaluation period equals the num-
ber of inner iterations within each subiteration. By running multiple subiterations per
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physical time step the correction model can be evaluated multiple times until a converged
state is reached. Similar to the steady simulation, the number of inner iterations and
subiterations may influence the stability and convergence speed.

Figure 3.2 visualises the application of the correction model for steady and unsteady
simulations that are described in the text above.

Inner 
iteration

Sub-
iteration

Physical 
time step

Correction 
model 
evaluation

Steady 
solution

Steady 
augmented 
simulation

Unsteady 
augmented 
simulation

Correction model 
evaluation period

Figure 3.2: Application of turbulence model correction model within RANS solver for
steady and unsteady simulations.

3.6 Current Implementations
This thesis uses the DLR’s software infrastructure including the node-centred, unstruc-
tured flowsolver TAU and the Surrogate Modeling for AeRo data Toolbox Python package
(SMARTy) [28, 47]. SMARTy contains multiple data-driven capabilities and an interface
to TAU. Two versions of the FIML approach are implemented: FIML Classic according
to [7] and FIML Direct according to [17]. SMARTy contains the optimisation and ML
capabilities that are required to perform an FI and train an ML model.

The application of correction models is possible using the SMARTy TAU interface. Cur-
rently, only a correction of the production term of the SA turbulence model is supported.
Publications using both approaches, FIML Classic and FIML Direct, to correct steady
simulations using the DLR software infrastructure are available [15, 16, 18]. Further-
more, an interface for correction models for unsteady simulations is implemented within
SMARTy. However, no research work using this capability is available. Using and ex-
panding this capability lies within the scope of this thesis.

Regarding the flowsolver TAU two capabilities are especially important for FIML. First,
the flowsolver is capable of processing a correction term. However, as stated above only
for the production term of the SA turbulence model. Furthermore, TAU contains an
adjoint solver that can be used to compute the gradients that are necessary for the FI.



Chapter 4

Numerical Test Case
The objective of this chapter is to apply the concepts introduced in the preceding text
to a test case with numerically computed reference data. Using the RAE 2822 two-
dimensional airfoil case, as described in subsection 4.1.1, baseline data using the SA
turbulence model, and higher fidelity reference data using the RSM turbulence model
are produced in subsection 4.1.2. Given these steady aerodynamic data points, FIs are
computed in section 4.2, before an ML model is trained in section 4.3. The resulting
model is applied to steady simulations in section 4.4 as well as unsteady simulations in
section 4.6.

4.1 Case Description and Preparation
First, this section describes the selected test case in subsection 4.1.1. Afterwards, the
generation of numerical data is described in subsection 4.1.2.

4.1.1 RAE 2822 Airfoil

The RAE 2822 airfoil is a rear-loaded, sub-critical airfoil with a roof-top type pressure
distribution at design conditions M∞,Design = 0.66, cl,Design = 0.56 [56]. Figure 4.1 presents
the geometry of the airfoil.

Figure 4.1: RAE 2822 airfoil geometry.

For this airfoil, experimental data from measurements by Cook et al. [57] is available.
Furthermore, the author has access to the AIRBUS RWC.01 database from a measurement
campaign in the European Transonic Wind Tunnel. Given the availability of experimental
data, the RAE 2822 airfoil is a common validation case for turbulence modeling, e.g.
proposed as such a validation case by NASA [58]. Regarding data-driven turbulence
modeling using the FIML approach, the airfoil has been used in previous studies [16, 18].

19
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Additionally, the author has access to differently sized computational meshes for the airfoil
as used in [59]. Given the legacy as a test case and the data availability, the RAE 2822 is
selected to be used in this thesis.

4.1.2 Data Generation

Using the RAE 2822 airfoil, steady simulations are conducted to cover transonic effects,
especially shocks.

Flow Conditions

The free-stream flow conditions, i.e. Mach and Reynolds number, for the generation
of reference and baseline data, are fixed while the angle of attack is varied due to the
following two considerations:

1. Because experimental measurements in wind tunnels or flight tests are often done
by fixating the free stream conditions, i.e. Mach and Reynolds number, and
varying the angle of attack, a similar approach is chosen for the numerical data.

2. The goal is to apply the correction model, which is trained using results of FIs on
steady data, to unsteady simulations with a harmonically pitching airfoil, i.e. a
changing α. The idea is to implicitly learn how the correction field changes with
the angle of attack dβ/dα.

The reasoning fits the objective of this thesis, but it must be noted that fixing M and Re
comes with a reduced generalizability towards other flow conditions.

The following simulations are done with M = 0.75 and Re = 6.0 · 106. These flow
conditions produce a transonic flow including a shock. The angle of attack is varied in
the range α ∈ [0◦, 15◦] in steps of size 0.5◦, resulting in 31 simulations.

Mesh

To run a CFD simulation a mesh is necessary to describe a spatial discretisation of the
computational domain into finite volumes (or cells) [4]. The refinement of the cells influ-
ences the CFD simulation. For each cell of the mesh, the RANS equations must be solved.
Consequently, the number of degrees of freedom and therefore the computational effort
grows with the number of cells. Thus, looking at the computational effort it is favorable
to have a small number of large cells. However, larger mesh cells resolve fewer physical
effects that must be modeled to get an accurate solution. A trade-off between resolving
as many physical effects as possible while confining the computational cost is the purpose
of a mesh dependency study.

Even though the FIML approach is not only able to correct errors caused by the turbulence
model but also discretisation errors as shown in [15], the focus of this thesis lies on errors
caused by the turbulence model. Consequently, the chosen mesh should not exhibit large
discretisation errors.

Several meshes for the RAE 2822 are compared in [59]. Based on these results for this
thesis a mesh with 512 nodes on the airfoil and 256 nodes in normal direction is chosen.
The pressure distribution as well as the global coefficients on the airfoil computed using
this mesh show only small deviations to results computed with a finer mesh, thus, mesh
convergence is assumed to be reached. The selected mesh is depicted in Figure 4.2.
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Figure 4.2: Mesh used in this study. Left: full domain. Right: zoom on the airfoil.

Baseline Data

As a baseline comparison, the RANS simulations are executed using the SA turbulence
model as introduced in subsection 2.4.1. Before using the flow conditions stated above,
the integrity of the mesh is validated by reevaluating case 9 from [59] and comparing the
resulting global coefficients cl, cd, and cmy. This is done using the DLR TAU code [28].

Figure 4.3: cl (left) and cd (right) over α for M = 0.75 Re = 6.0 · 106 using the SA
turbulence model.

Subsequently, the simulations at M = 0.75 and Re = 6.0 · 106 are executed. A Cour-
ant–Friedrichs–Lewy (CFL) number of 5 leads to converging simulations for all se-
lected angles of attack. Figure 4.3 presents the resulting coefficient of lift and drag. Up
to approximately α = 2.5◦, a linear relationship between lift and angle of attack can be
seen. Beyond that point the relationship is non-linear. At α = 7.5◦ cl,max ≈ 0.89 can be
found, indicating the beginning of the stall region. Contrary to an expected lift curve,
beyond α = 12◦ the lift is increasing again.
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Reference Data

RANS simulations using the RSM turbulence model as introduced in subsection 2.4.2 serve
as higher fidelity reference data for this test case. In comparison to the SA model, the RSM
is more complex and resolves the acting physical effects to a higher degree. However, this
comes with the cost of reduced numerical stability. With a CFL number of 1.5, simulations
up to α = 6◦ converge. Varying the CFL number and settings regarding the turbulence
model, e.g. the selected diffusion model, influences the numerical computation. However,
for higher angles of attack, no converged results are obtained.

Figure 4.4 shows the results. The coefficient of lift for α = 6◦ is an outlier compared
to the other values. Even though the simulation did converge, it is neglected for further
analysis. Again, a linear dependency of α and cl can be found up to 2.5 degrees angle of
attack. cl,max ≈ 0.85 is located at α = 5.0◦.

Figure 4.4: cl (left) and cd (right) over α for M = 0.75, Re = 6.0 · 106 using the RSM
turbulence model.

Data Comparison

Comparing the baseline data obtained using the SA model to the reference data obtained
using the RSM model allows to identify differences that might be corrected using the
FIML approach. This comparison can only be done up to α = 5.5◦ because, for higher
angles of attack, no reference results exist. Figure 4.5 confirms a good match of SA and
RSM in the linear range up to 2.5 degrees. Beyond that point, the results for cl, cd,
and cmy deviate. SA predicts higher values for both: drag and lift. The maximum lift,
indicating the beginning of the stall region, occurs at a smaller angle of attack for RSM
than SA. Thus, the differences between the results are not only quantitative but also
qualitative. For cmy the predicted values of RSM are higher than SA. Again a qualitative
difference for α > 3◦ can be found: for RSM dcmy

dα > 0, whereas for SA dcmy

dα ≈ 0. This
difference is significant for the longitudinal stability.

To get further insights into the differences the distributions of the pressure coefficient cp
at the airfoil surface are compared. Figure 4.6a presents a good match of SA and RSM at
α = 1.5◦. At x/c ≈ 0.55, a significant increase in pressure, indicating a shock, is present.
The shock is the only region in the cp distribution exhibiting a small deviation between
the two turbulence models. Since the lift of the airfoil can be computed by integrating
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Figure 4.5: cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106
comparing SA and RSM.

the pressure over the airfoil surface, it becomes obvious that for α = 1.5◦ the lift values
are very close as described previously. It must be noted that the drag is also significantly
influenced by skin friction. At α = 4.5◦ larger differences can be seen. As Figure 4.6b
indicates, a mismatch between SA and RSM can be seen behind the shock at x/c ≈ 0.55.

Even though one might expect larger deviations for reference data stemming from ex-
periments, the presented differences to the higher fidelity RANS simulations significantly
influence the resulting forces, making it a suitable initial test case.

(a) α = 1.5◦ (b) α = 4.5◦

Figure 4.6: cp-distribution on airfoil surface for M = 0.75, Re = 6.0 · 106 comparing SA
and RSM.

4.2 Field Inversion on Steady Simulations
Using the reference data obtained in section 4.1, a field solution containing correction
values β can be computed by executing a field inversion as introduced in section 3.3.
Therefore, in subsection 4.2.1, several investigations regarding the process of FI are con-
ducted before in subsection 4.2.2 the resulting correction fields for the given data are
discussed.
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4.2.1 Considerations and Investigations

Before executing the field inversions to be used for machine learning some questions must
be clarified:

• Which variable to use as reference data?

• How many reference data points must be used?

• What is the effect on variables that are not used as reference data?

• What are the limitations of the approach?

The stated questions are discussed considering a realistic application scenario.

Reference Quantity

As explained in section 3.3, global values, scalar field values, as well as vectorial field
values might be used as reference quantity qref.

Duraisamy et al. state that even very limited experimental reference data as the coefficient
of lift can lead to a considerable improvement of the entire flow field [8]. The measurement
of global force coefficients is standard practice in wind tunnel measurements. However,
in flight tests, these forces are usually not measured directly.

Using the flow velocity as a vectorial reference value delivers large informational content.
However, these measurements require advanced techniques, e.g. particle image veloci-
metry (PIV) [60], that are expensive and not standard procedure for both wind tunnel
measurements and flight tests.

Pressure measurements, especially on the airfoil surface are common practice, most often
done using pressure taps on the airfoil surface. In addition, measurements using pressure-
sensitive paint (PSP) are being advanced [61]. In contrast, measuring the pressure in the
flow field around the airfoil requires far more effort and is not standard practice.

Considering the discussed possibilities the pressure on the airfoil surface is chosen as the
reference quantity for this test case. As it is standard practice to use the dimensionless
pressure coefficient instead of pressure when analysing the flow around an airfoil this
quantity is used:

qref = cp =
p− p∞

1
2
ρ∞|u∞|2

(4.1)

with static pressure p, free-stream static pressure p∞, free-stream air (or fluid) density
ρ∞, and free-stream flow velocity |u∞|.

Number of Reference Points

The pressure coefficient cp is available at 512 locations on the surface of the airfoil cor-
responding to the number of mesh nodes on the surface, as in explained subsection 4.1.2.
Assuming that the higher the amount of reference data, the better the resulting β-field,
the idea must be to use all of the 512 data points. However, this number of measurement
points might be unfeasible in an experiment. Moreover, a higher number of reference
points leads to an increased computational effort and might impede the convergence of
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the field inversion. Consequently, it is of interest to investigate how smaller numbers of
reference points affect accuracy and computational cost.

Multiple field inversions are computed for the α = 5.5◦ case. The regularisation parameter
λ is case-dependent and must be determined individually. The final values are determined
in subsection 4.2.2. For the investigations in this subsection, it is set to λ = 10−12,
corresponding to high trust in the reference data. The minimum residual for the flow
solution is set to 10−8. The adjoint solver minimum residual is set to 10−5. Both the flow
and the adjoint solution are computed using the DLR TAU code [28]. The line search
along the steepest gradient is conducted until the Armijo-Goldstein condition with
a control parameter of 10−16 is fulfilled. Overall, 150 FI iterations are set as an upper
bound to limit computational cost.

The number of reference points is varied for each FI. Table 4.1 defines the investigated
cases. For each case, the reference points are spread evenly over the airfoil surface, e.g.
for the 25% case, every 4th cp value of the full reference solution is used.

Figure 4.7 presents the results of this investigation. The bars correspond to the number
of FI iterations. A clear trend can be seen: fewer iterations are necessary for smaller
numbers of reference points. The FIs using 512, 256 and 128 reference points do not
reach convergence within 150 iterations. It is unknown whether convergence would be
reached within a higher number of iterations. The lines present various errors comparing
the RSM reference data and the RANS solution with the SA turbulence model that is
augmented using the correction term β. As an overall trend, errors decrease for a larger
number of reference points. Especially for 3.12% reference points and less a very strong
increase in errors can be seen. A small spike can be seen at 25%, but since this FI did
not converge this spike can be disregarded.

Percentage [%] 100.00 50.00 25.00 12.50 6.25 3.12 1.56 0.78 0.39
Number of points 512 256 128 64 32 16 8 4 2

Table 4.1: Numbers of investigated reference points

The individual errors are not just influenced by the number of reference points, but also
by their placement. Figure 4.8 compares three cp distributions on the airfoil surface to
gain further insights.

As visible in Subfigure 4.8a, four reference points are too sparse to produce a good correc-
tion. Three of the four points reference points are at locations with minimal differences
between baseline and reference. Consequently, only the difference at one reference point
significantly influences the FI’s cost function. Since FI is an ill-posed mathematical prob-
lem, as stated in section 3.3, more than one solution for the β-field exists. Chances are
low that using only one significant reference point does lead to a good correction of cp at
locations other than the reference point.

The 12.50% case in Subfigure 4.8b exhibits more reference points in the post-shock area
with strong differences. However, no reference point is located at the shock itself. The
inversion result is close to the reference solution, but not perfect: a small difference at
the rear (x/c ≈ 0.9) and the shock can be seen.

With a reference point at the shock the inversion result for the 50.00% case in Subfigure
4.8c matches the reference the best, even though the inversion did not converge.
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Figure 4.7: Influence of the number of reference points used for field inversion on a
numerical test case (baseline: SA; reference: RSM) with flow conditions
M = 0.75, α = 5.5◦, Re = 6 · 106, and regularisation λ = 10−12. 512
reference points correspond to 100%.

Looking at a realistic application case the reference points are fixed in position for all
angles of attack and therefore can not be adapted to a specific shock position. Further-
more, prior knowledge about the shock position can not be assumed in all cases. Con-
cluding from the results of this investigation, the 12.50% case with 64 reference points is
a good compromise between cost and accuracy. The next smaller case with 32 reference
points exhibits similar error values (see Figure 4.7). The number of pressure taps in an
experimental setting might lie in this range. Based on these findings 64 reference points
are used in the further progress of this thesis.

Effect on other Quantities

The prior investigation has proven that an FI with cp as reference quantity can lead to
an improved cp distribution and an improvement of the values that are most strongly
affected by cp, e.g. the coefficient of lift. Thus, the question arises how other quantities
are affected. As cd is also influenced by the skin friction coefficient cf this variable is of
interest and makes a suitable example.

Subfigure 4.9b presents the skin friction coefficient around the airfoil for the baseline,
the reference, and the inversion at α = 5.0◦. The baseline and reference solutions show
a mismatch regarding the shock position and the upper surface skin friction coefficient
behind the shock. The FI can correct the position of the shock. However, behind the
shock, the FI result matches the baseline solution. For both, baseline and reference
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(a) 0.78% (b) 12.50%

(c) 50.00%

Figure 4.8: cp-distributions on airfoil surface comparing FIs with different numbers of
reference points at α = 5.5◦. The legend of Subfigure 4.8c applies to all
three cases.

solution cf ≤ 0 can be observed behind the shock and corresponds to a separated flow.
Thus, the FI result is quantitatively wrong but qualitatively right.

At α = 3◦, the reference solution exhibits a small, reattaching flow separation at x/c ≈ 0.6,
whereas the baseline solution is fully detached after the shock. Again, the FI correctly
shifts the shock position forward. As previously, the FI result matches the baseline solu-
tion behind the shock. Consequently, in this case, the result is wrong quantitatively and
qualitatively.

Depending on the purpose of an FIML model, these findings must be paid attention to. A
possible mitigation of the unsatisfying results could be to use cf as an additional reference
quantity. However, cf is typically not measured in experiments.

Further Findings and Limitations

The previously investigated cases only show small differences. Furthermore, the shock
is moved forward in all cases. So the question arises of how the FI handles cases with
larger differences and cases where the shock in the reference lies behind the baseline.
Two synthetic test cases are designed to investigate these questions. For case 1, an SA
simulation at α = 3.5◦ is corrected with an RSM simulation at α = 5.5◦. In this case, the
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(a) α = 3.0◦ (b) α = 5.0◦

Figure 4.9: cf -distributions on airfoil surface comparing SA (baseline) and RSM (refer-
ence) and FI result.

shock must be moved forward. Case 2 uses an SA simulation at α = 5.5◦ as the baseline
that is corrected with an RSM at α = 3.5◦ as reference. To limit computational effort,
for both cases, the FI is limited to 100 iterations. While case 1 reached convergence, case
2 did not. Nevertheless, the results are investigated.

(a) Case 1: Baseline is SA at α = 3.5◦ and
reference is RSM at α = 5.5◦.

(b) Case 2: Baseline is SA at α = 5.5◦ and
reference is RSM at α = 3.5◦.

Figure 4.10: Synthetic test cases with baseline and reference solution from different
angles of attack.

Figure 4.10 presents the resulting cp-distributions of the FIs for both cases. FI is capable
to move the shock forward and handle larger differences. As Subfigure 4.10b shows the FI
approach can also handle a shock in the reference solution that is placed further to the rear.
The pressure distribution for this case exhibits a kink at the location of the shock in the
baseline solution. A limitation of the FI approach that becomes clear is that no correction
of the pre-shock pressure plateau is possible. The β correction is only influencing the
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production term P of the SA turbulence model. The production of the baseline SA
solution in Figure 4.11 can only be found at x/c > 0.45 (compare Subfigure 4.10a). This
corresponds to the post-shock region. In a subsonic flow, information can travel upstream,
so it is still possible to influence the pre-shock region. However, the influence seems to be
negligible. Consequently, the FI approach is not suitable for correcting differing stagnation
pressures, e.g. caused by differing free-stream conditions.

Figure 4.11: SA-production P for SA at α = 5.5◦.

Another finding concerns the placement of reference points at selected locations only.
Figure 4.12 presents a case at α = 5.5◦ with reference points at the rear end only. The FI
result leads to a perfect result at the reference points. However, the shock is unlike the
reference data located behind the baseline solution. The correction of isolated parts of
the flow, e.g. the airfoil outflow, leads to diverging interests. This means that cases with
strongly disagreeing interests regarding the correction variable must lead to strong local
corrections.

Figure 4.12: cp-distributions on airfoil surface comparing FI with reference points at
rear only to baseline and reference solutions.
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4.2.2 Resulting Correction Fields

Based on the findings from subsection 4.2.1 FIs are executed. Therefore, the regularisation
parameter λ must be chosen. Subsequently, the resulting correction fields can be analysed.

Regularisation

The regularisation parameter λ defines the influence of the l2-regularisation term I2 in
the cost function I (see equation 3.4) and therefore the trust in the reference solution. A
small λ reduces the influence of the regularisation and represents a high confidence in the
reference solution.

An optimal value for the regularisation parameter can be determined using the L-curve
criterion [62]. By plotting I1 and I2 in a log-log plot, λopt can be found at the curves
infliction or elbow point. For λ < λopt the difference of the FI result to the reference
(I1) does not decrease significantly, whereas the modifications due to large β-values (I2)
increases strong and vice versa for λ > λopt [15].

Subfigure 4.13a presents the L-curve for α = 2.5◦ and Subfigure 4.13b the corresponding
cp-distributions for different λ values. According to the L-curve criterion λopt,2.5◦ = 10−10

is chosen. Baseline and reference solution as well as the solutions for different regularisa-
tions are close together when comparing the pressure distributions. However, the selected
regularisation does lead to a good match of the reference points.

(a) L-curve. (b) Pressure distributions of SA, RSM, and FI for mul-
tiple λ’s.

Figure 4.13: Selection criteria of regularisation at α = 2.5◦.

In contrast to the previously depicted angle of attack, the L-curve criterion does not lead to
a result for α = 4.0◦ as Subfigure 4.14a shows. Consequently, the optimal regularisation is
chosen by a visual inspection of the cp-distributions in Subfigure 4.14b. λopt,4.0◦ = 10−12

is chosen as no visual improvement can be seen for the next smaller value. Thus, the
selected value yields a good compromise between matching the reference while still being
regularised as much as possible.

Table 4.2 gives the resulting regularisation parameters at each angle of attack. It also
denotes whether the values are selected by the L-curve criterion (L) or, in case this does
not deliver clear results, whether the values are selected by comparing the cp-distributions
for multiple values of λ.
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(a) L-curve (b) Pressure distributions of SA, RSM, and FI for mul-
tiple λ’s.

Figure 4.14: Selection criteria of regularisation at α = 4.0◦.

α [deg] 0.0 0.5 1.0 1.5 2.0 2.5
λ [-] 10−12 10−12 10−12 10−12 10−12 10−10

S S S S S L

α [deg] 3.0 3.5 4.0 4.5 5.0 5.5
λ [-] 10−10 10−10 10−12 10−12 10−12 10−12

L L S S S S

Table 4.2: Selected values for λ. The letters in the last row denote selection by L-curve
criterion (L) or selection by comparing cp-distributions (S).

A further refinement of the tested values for λ would be possible and might lead to
improved results. However, creating an L-curve is very costly as it requires computing
multiple FIs. The resulting values in Table 4.2 are close together. Thus, when the
investigation is repeated on another test case, it might be worth considering only choosing
the optimal regularisation on a subset of angles of attack and choosing a default value
that is applied to all cases.

Analysis

Figure 4.15 presents the resulting correction field, a close-up of the correction field, and
the distribution of the pressure coefficient on the airfoil surface for the FI results at
α = 1.5◦ and α = 4.5◦. Subfigures 4.15a and 4.15b show that most of the computational
domain is not corrected by the FI, resulting in β ≈ 1. Deviations from the baseline SA
model can be found close to the airfoil, especially on the rear upper surface, and in the
wake. The wake exhibits a periodic structure with alternating correction values above and
below unity. The cp-distributions in subfigures 4.6a and 4.6b exhibit matching reference,
baseline, and FI solutions on the entire lower surface and the upper surface before the
shock. At both angles of attack, the shock is correctly moved forward by the FI. As for
α = 1.5◦, no further deviations than the shock location are present between the baseline
and the reference solution, the entire corrections must belong to the correction of the
shock. Subfigure 4.15c visualizes that β < 1 behind the shock: the turbulence production
is decreased. A more complex β-field can be seen for α = 4.5◦ in Subfigure 4.15d. At
this angle of attack, a mismatch between reference and baseline solution in the entire
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post-shock region can be seen. The FI gives a good correction except very close to the
trailing edge, where it falls back to the baseline surface pressure distribution. However,
the more complex correction field at this angle of attack is due to the larger differences.

(a) β-field inversion result at α = 1.5◦. (b) β-field inversion result at α = 4.5◦.

(c) Close-up of Subfigure 4.15a. (d) Close-up of Subfigure 4.15b.

(e) Inversion result of cp on airfoil surface at
α = 1.5◦.

(f) Inversion result of cp on airfoil surface at
α = 4.5◦.

Figure 4.15: Inversion results at α = 1.5◦ and α = 4.5◦. The β-fields use the same
colour range. For the close-ups, the colours are amplified.

Figure 4.16 depicts how the correction affects the global force coefficients cl, cd, and
cmy. A good correction can be seen at all angles of attack for all three coefficients. It
must be noted that even though the drag is influenced by the skin friction, which is
according to Figure 4.9 not corrected by the FI, the corrected values are very close to the
reference solution. While the correction of the drag coefficient only leads to a quantitative
improvement, lift and moment coefficients show a qualitative and quantitative correction.
For the baseline solution lift is increasing monotonously with the angle of attack, while for
the reference solution a slight decline of lift for large α can be seen. Thus, the maximum
lift cl,max that defines the beginning of the stall region can be found. The longitudinal
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stability of an aircraft is decisively influenced by the derivative by dcmy/dα. While the
SA model predicts a non-positive derivative at all angles of attack, the FI correctly leads
to a change in gradient similar to the RSM solution.

Figure 4.16: cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106
comparing SA, RSM, and FI.

4.3 Machine Learning
In section 4.2 the FI produces correction fields that improve RANS simulations by mul-
tiplying the correction term β with the production term P of the SA turbulence model.
This section aims to establish a functional relationship of the mean flow variables to the
correction term enabling a prediction on unseen cases.

First, the dataset is described and investigated in subsection 4.3.1. Subsequently in
subsection 3.4.3, possible flow features are evaluated. Using generic models, different
considerations regarding the dataset and the features are compared in subsection 4.3.3.
Finally, the hyperparameters of the best model are optimised in subsection 4.3.4.

4.3.1 Dataset

For 12 angles of attack, a correction field with β as a spatially distributed variable is
available. With 82 624 nodes in the mesh this results in 991 488 data points. The histo-
gram in Figure 4.17 presents the number of occurrences of values for β. It becomes clear
that β ≈ 1 is severely overrepresented. This finding can be confirmed by looking at the
correction fields in 4.2.2: β ̸= 1 values are only present in certain areas on the airfoil
surface and the wake.

An integral part of ML models is minimizing a loss function between true and predicted
values. However, if one value is strongly overrepresented the ML model learns that
predicting the overrepresented value, e.g. β ≈ 1, results in a small value for the loss
function. Thus, strategies to mitigate this problem must be found. One option is to use a
problem-specific cost function that applies weight to underrepresented values. However,
in this thesis two different ways to manipulate the dataset are taken into account: an
areal selection of certain mesh nodes, and a reduction of values close to β = 1.
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Figure 4.17: Number of occurrences of β in the available data (left). Same figure with
the logarithmic y-axis (right).

Area Selection

The FI results in a correction term for each node in the computational domain. How-
ever, Jäckel concludes that the quantities of interest, i.e. cp, cl, cd, and cmy, are mostly
influenced by the corrections in certain areas [15]. Whereas the referenced study distin-
guishes different areas on the airfoil, here a more robust selection is done: based on a
visual investigation of the available data, a rectangular area with −0.01 ≤ x/c ≤ 1.5 and
−0.1 ≤ z/c ≤ 0.15 is defined. Nodes located in the defined area are selected for the ML
model training. Figure 4.18 gives a visual representation of this approach and shows the
resulting number of β occurrences for α = 4.5◦. The selected area contains 47.5% of all
nodes. It becomes clear that this approach does not only result in a reduction of values
close to 1 but also removes the most extreme values. The highest correction values can
be found in the wake outside the selected area.

(a) Correction field with selected area for α =
4.5◦.

(b) Resulting occurrences of β when applying
area selection to entire dataset.

Figure 4.18: Visual representation and the result of area selection.

To evaluate the influence of the selection, the results of steady simulations using the
full and the selected correction field are compared. The mean absolute percentage error
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(MAPE) of the integral force and moment coefficients cl, cd, and cmy is computed:

MAPE(cl) = 9.89 · 10−5%

MAPE(cd) = 1.43 · 10−3%

MAPE(cmy) = 12.86 · 10−4%

Only very small deviations are caused by the area selection approach. Furthermore,
training an ML model with less data are faster. Consequently, the approach is considered
for further work in this thesis.

Reduction of β ≈ 1

Adaptive sampling is another strategy proposed in multiple publications concerning the
FIML approach that might be used to mitigate the problem of imbalanced datasets [16,
63]. Based on the β value of a sample the likelihood of being included in the dataset
is determined. In this thesis, a simple approach is used: only a given percentage of
the values in the range 0.99 ≤ β ≤ 1.01 is included. Figure 4.19 presents the resulting
β-distributions for three percentages.

Figure 4.19: Number of occurrences of β after reducing the values 0.99 < β < 1.01
(left). Same figure with the logarithmic y-axis (right).

4.3.2 Feature Selection

In section 3.4.3 five features are introduced. These features are investigated as initial
features regarding their value range and correlation. As tests on a generic model in
subsection 4.3.3 show, the initial features are not sufficient, further features are selected
and also investigated.

For the subsequent evaluations the data from all angles of attack, except α = 1.5◦ and
α = 4.5◦, are aggregated and analysed. The excluded cases are later used as test cases
and therefore should not influence the feature selection.

Initial Features

As other studies have shown, the feature values might span over multiple orders of mag-
nitude [16]. This is unfavourable for many ML models because the features are usually
scaled before being used in most ML approaches. Consequently, a large portion of the
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samples would concentrate on a similar feature value. Applying a logarithm to a feature
with such a distribution can mitigate this issue. Figure 4.20 shows the distribution of η1
before and after the application of a logarithm. However, the logarithm does not return
finite values for all sample points. In the case of log(η1) 17.7% of the values are infinite
and unusable for an ML model. Thus, these sample points are removed from the dataset.
However, this also leads to a loss of information.

Similar results can be seen for the remaining features. For conciseness, the distributions
are not shown. The logarithm is applied to all of the five initial features.

Figure 4.20: Distribution of η1 before (left) and after (right) applying a logarithm.

Further Features

Further features are investigated. The listed features are chosen due to their availability in
the field solution. Three differently important requirements are stated in subsection 3.4.3.
The local availability is mandatory, as the ML model expects a fixed number of inputs.
Dimensionless features are not necessary for ML models, but this way consistency of
dimensions is ensured. Non-dimensional features can be ensured by dividing the selected
variable with the free-stream variables of the same dimension. Galilean invariance is the
most restrictive requirement, as it prohibits many variables. With Galilean invariance
ensured, the model can be applied regardless of the inertial reference frame. This is not
true for features that contain a velocity, since the velocity would be different in a steadily
moving reference frame. However, the main goal of this thesis is not to build a model
that is applicable in all conditions but to investigate whether the model can be applied
to unsteady simulations. Thus, not all of the features satisfy this requirement. The
investigated features are listed below:

• η6 =
ρ
ρ∞

: ratio of density to free-stream density.

• η7 =
µt

µ
: ratio of dynamic eddy viscosity to dynamic viscosity.

• η8 = M : local Mach number.

• η9 = cp: pressure coefficient.

• η10 =
pt
p∞

: ratio of total pressure to free-stream pressure.

• η11 =
uτ

|u∞| : ratio of friction velocity at nearest wall point to free-stream velocity.

• η12 =
ux

|u∞| : ratio of velocity in x-direction to free-stream velocity.

• η13 =
uz

|u∞| : ratio of velocity in z-direction to free-stream velocity.
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• η14 =
ρux

ρ∞|u∞| : ratio of x-momentum to free-stream momentum.

• η15 =
ρuz

ρ∞|u∞| : ratio of z-momentum to free-stream momentum.

• η16 = | dp
dx
|/p∞

lref
: magnitude of pressure gradient in x-direction non-dimensionalised

with pressure over Reynolds reference length.

• η17 = |dp
dz
|/p∞

lref
: magnitude of pressure gradient in z-direction non-dimensionalised

with pressure over Reynolds reference length.

Features η16 and η17 exhibit numerous negative values. Thus, the magnitude is used to
be able to apply a logarithm without losing too many samples.

Summary and Evaluation

Table 4.3 summarizes all features and shows whether a feature satisfies Galilean in-
variance, whether, based on a visual inspection, a logarithm should be applied, and how
many samples must be removed due to the application of the logarithm. Each sample
that contains a non-finite feature is removed. Overall, 17.7% of the samples are removed.

Feature η1 η2 η3 η4 η5 η6 η7 η8 η9
Galilean invariance ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X

log ✓ ✓ ✓ ✓ ✓ X ✓ X X
Removed samples [%] 17.7 1.5 0 1.5 0.8 0 1.5 0 0

Feature η10 η11 η12 η13 η14 η15 η16 η17
Galilean invariance X X X X X X X X

log X X X X X X ✓ ✓
Removed samples [%] 0 0 0 0 0 0 0 0

Table 4.3: Features to be investigated. Row Galilean invariance shows whether this
requirement is satisfied. The row log shows if a logarithm should be applied.
Removed samples show the number of samples removed due to the application
of the logarithm.

The features are evaluated regarding their correlation with each other and with the target
value. Three correlation coefficients as introduced in 3.4.3 are compared. Figure 4.21
presents Spearman’s rank correlation between all features and the target. Similar plots
for the Pearson correlation (see Figure A.1) and the distance correlation (see Figure
A.2) can be found in the Appendix A.

Across all three metrics, none of the features shows a really strong correlation to the
target. However, only η17 has a correlation of less 0.1 on all three metrics. As this is
an indication that this feature is not beneficial for an ML model, it is removed. A high
correlation between two features indicates that not both features are necessary as they
deliver similar information. Here, all feature pairs that have a correlation of above 0.9 or
below −0.9 for all three correlation coefficients are listed:

• η1 and η5: as due to η1 17.7% of the samples are removed (see Table 4.3) it should
be removed.

• η6 and η9: as η9 does not satisfy Galilean invariance and exhibits smaller correl-
ation with β it is removed.
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Figure 4.21: Spearman’s rank correlation coefficient between all features and the target.

• η8 and η12: both features show similar correlation with the target. η8 is directly
available in the solution and is kept.

• η13 and η15: both show similar performance, η13 is kept.

The presented considerations are based on the correlations only. However, it is also
possible to find causal explanations: η8 = M is the ratio of the local flow velocity to
the speed of sound. η12 is the ratio of the velocity in the x-direction to the free-stream
velocity. For the present simulations, the free-stream velocity and the speed of sound are
fixed. Furthermore, the flow is moving fast in the x-direction. Thus, the z-component is
very small. Consequently, both features describe a very similar value: the flow velocity
in the x-direction.

Four possible sets of features are used for the ML model training. The initial features only,
all features, the features that are selected after evaluating the correlation coefficients, and
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a subset of the latter that only contains features that are Galilean invariant:

ηinitial = {η1, η2, η3, η4, η5} (4.2)
ηall = {η1, η2, η3, η4, η5, η6, η7, η8, η9, η10, η11, η12, η13, η14, η15, η16, η17} (4.3)

ηselection = {η2, η3, η4, η5, η6, η7, η8, η10, η11, η13, η14, η16} (4.4)
ηGalilean = {η2, η3, η4, η5, η6, η7} (4.5)

4.3.3 Generic Test Models

In this subsection two regression models, one based on radial basis functions (RBF) and
one based on a fully-connected neural network (FCNN), are used to test the influence of
manipulations of the dataset and the features. First, three test metrics are introduced,
before two generic models are evaluated. For test purposes the data at two angles of
attack are used: αtest = {1.5◦, 4.5◦}. These data are selected as they represent one case
from the linear region of the α-cl curve and one case from the non-linear region (see
Figure 4.5). The remaining angles of attack can be used for training purposes. Two
sets are defined to evaluate the influence of the amount of training data: αtrain, small =
{0.0◦, 1.0◦, 2.0◦, 3.0◦, 4.0◦, 5.0◦} and αtrain, large = {0.0◦, 0.5◦, 1.0◦, 2.0◦, 2.5◦, 3.0◦, 3.5◦, 4.0◦,
5.0◦, 5.5◦}.

Test Metrics

Three metrics are used to compare the predicted values βpred ∈ Rn to the true values
βtrue ∈ Rn, where n is the number of samples. The following descriptions are based
on [64].

The coefficient of determination R2 is a measure for the proportion of the variance of
βtrue that is explained by the model. A perfect prediction yields 1.0, while a model that
predicts the mean of true value regardless of the input has a score of 0.0. Negative scores
are possible if the model is arbitrarily worse. With βtrue the arithmetic mean of βtrue it
is defined as

R2
(
βtrue,βpred

)
= 1−

∑n
i=1 (βtrue,i − βpred,i)

2∑n
i=1

(
βtrue,i − βtrue

)2 . (4.6)

The mean absolute error (MAE) is the arithmetic mean of the l1-norm loss and defined
as

MAE
(
βtrue,βpred

)
=

1

n

n∑
i=1

|βtrue,i − βpred,i| . (4.7)

Similar to the MAE, the mean squared error (MSE) is the arithmetic mean of the l2-norm
loss. In contrast to the MAE, it is more sensitive to outliers. The following equation gives
a definition:

MSE
(
βtrue,βpred

)
=

1

n

n∑
i=1

(βtrue,i − βpred,i)
2 . (4.8)
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Radial Basis Function Regression

The first model that is tested is an RBF regression model as introduced in 3.4.4. The
plan is to use the training dataset αtrain, small with the features αinitial to initially compare
the RBF model and the FCNN model that is described in the next paragraph. However,
fitting an RBF model requires computing a matrix of size Rn,n with n the number of
sample points. This exceeds the computational infrastructure that is accessible to the
author. Thus, αtrain, RBF = {1.0◦, 4.0◦} is used instead. Several layouts, including varying
augmentation parameters, regularisations, and basis functions are investigated. However,
no satisfactory results are achieved. The results of one exemplary model are presented.

An RBF based on a thin plate spine according to φ = r2ln(r) is used. The regularisation
at each sample location is set to 10−8. No trend function is added to the RBFs [47]. Thus,
for a point far away from a sample point the resulting value of the regression function is
0. Consequently, the model is fitted to predict β−1, because this enforces a prediction of
β = 1, i.e. an unchanged turbulence model, at locations far away from the sample points.
The resulting metrics on the training and test data are summarised in Table 4.4. The
model gives near-perfect predictions on the training data but is not able to generalize on
the test cases. Additional investigations might deliver further insights and improvements.
However, since the FCNN which is presented next, delivers much more promising results,
the RBF approach is not being investigated further.

Training Test

R2 MAE
·105

MSE
·108 R2 MAE

·102
MSE
·102

exemplary RBF 0.999 4.00 3.91 −3.123 2.28 1.58

Table 4.4: Resulting scores for presented RBF model.

Fully-Connected Neural Network

A fully-connected neural network according to subsection 3.4.4 is investigated to see
whether it can capture the structures in the data. To test the capabilities, a generic
model with four hidden layers is used. The four layers contain 100, 85, 70, and 55 neur-
ons with ReLU activation functions each. With a dropout rate of 0.1, 10% of the neurons
in each layer are deactivated at each training step to prevent overfitting. In- and outputs
are scaled linearly to a range between 0 and 1. During network training, the mean squared
error (MSE) between predicted and true target values is used as a loss function to update
the model parameters.

The model is trained using the gradient-based optimisation algorithm Adam with SMARTy
default settings [47, 65]. The initial learning rate is multiplied with a factor of 0.1 after
1000, 2000, and 3000 training epochs. 30% of the training data are selected randomly to
be used as validation data. The training is conducted in batches of 4096 samples. Finally,
the training is stopped after 4000 epochs or in case an early stopping criterion is fulfilled:
if the mean absolute error (MAE) between the predicted and true value on the validation
data does not improve for 500 epochs, the training is stopped.

Training the model on the αtrain,small using the features ηinitial results in the metrics presen-
ted in the first row of the Table 4.5. Figure 4.22 visualizes the predictions of the ML model
for the training and test samples. Even though the predictions are far from perfect the
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Figure 4.22: Predicted versus true target values from training and test data for FCNN
no. 1.

figure shows that the FCNN is capable of capturing underlying structures in the data. It
must be mentioned that a βprediction ≈ 1 is vastly overrepresented.

Systematic Model Evaluation

The previous paragraph shows that an FCNN can capture the given data to some extent,
but is far from satisfactory. Subsections 4.3.1 and 4.3.2 present considerations regarding
the feature selections and manipulations of the dataset. Using the presented generic FCNN
model, the influence of the individual approaches is evaluated. Based on the baseline result
present in the previous paragraph (Table 4.5, no. 1) changes are done systematically, i.e.
in contrast to a full factorial test, the influence of changes of individual variables is tested,
but not all combinations.

First, similar to case no. 1, using αtrain,small, the feature sets ηall, and ηselection are evaluated
(no. 2 and 3): ηselection is the best set of features as it performs better on all training and
test metrics except the coefficient of determination on the training data.

Trials no. 4 to 9 evaluate the influence of manipulations on the dataset: applying no
reduction, applying the area selection, applying a down selection of the samples with
0.99 < β < 1.01, or applying a combination of the latter two. According to the metrics,
an application of area selection only (no. 5) yields the best results.

For the previous trials, the validation samples are selected randomly from all training
points. Trial no. 10 tests the hypothesis of whether it is beneficial to use the data from
selected angles of attack exclusively for validation purposes to improve the capability of
the network to generalize. The metrics must be compared to trial no. 9 and show that
randomised validation data leads to better results.

The current best approach (no. 5) must also be trained on ηtrain,small as the smaller dataset
leads to better results on the test data in direct comparison (no. 3 vs no. 4): Trial no.
11 presents the results of the small dataset using the area selection approach and exhibits
promising metrics with an R2-score of 0.967 on the training data and 0.898 on the test
data.
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No. Dataset Features Training Test

R2 MAE
·103

MSE
·103 R2 MAE

·103
MSE
·103

1 small,
no reduction

ηinitial 0.511 6.45 2.19 0.574 7.57 1.63
2 ηall 0.586 4.77 1.85 0.565 6.59 1.67
3 0.537 4.10 1.74 0.635 5.35 1.15

4 large,
no reduction 0.631 4.33 1.28 0.607 5.51 1.25

5 large,
area 0.942 4.13 0.22 0.884 6.73 5.42

6 large,
50%

ηselection

0.575 7.36 2.68 0.524 5.42 1.51

7 large,
10% 0.637 19.91 6.80 0.608 5.82 1.24

8 large,
5% 0.624 26.25 9.32 0.576 6.30 1.34

9
large,
area +
10%

0.944 13.06 0.85 0.867 7.85 0.62

10

large,
area +
10% +

sep. val.

0.927 14.92 1.16 0.814 9.92 0.87

11 small,
area 0.967 3.29 0.12 0.898 6.67 0.47

12 small,
area ηGalilean 0.942 4.19 0.21 0.700 9.57 1.40

Table 4.5: Influence of feature selection and dataset on generic FCNN. small : training
data are αtrain, small. large: training data are αtrain, large. no reduction: dataset
is not altered. area: area selection is applied. x%: only x% of the samples
with 0.99 < β < 1.01 are included. sep. val.: train and validation data
are not split randomly (70%/30%), but α = {0.5◦, 2.0◦, 4.0◦} are used for
validation.

Finally, trial no. 12 investigates the outcome using only features that hold Galilean
invariance. While the results on the training data do worsen only slightly, a strong
degradation can be seen in the test data. Consequently, the additional non-Galilean
invariant features contained in ηselection benefit the generalisation.

4.3.4 Hyperparameter Optimisation

The performance of an FCNN is significantly influenced by the network topology and how
it is trained. Parameters that influence the mentioned areas are called hyperparameters.
In contrast to those parameters that are updated during network training, i.e. weights and
biases, the hyperparameters must be chosen to a fixed value before the network training.
The generic FCNN in subsection 4.3.3 uses a set of arbitrarily chosen hyperparameters. By
performing a hyperparameter optimisation (HPO) an optimised set of hyperparameters
can be found.
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Figure 4.23: Predicted versus true target values from training and test data for FCNN
no. 11.

Setting the minimisation of the MAE on the validation samples as the optimisation target,
an HPO is performed using the Python library optuna [66]. The following hyperparamet-
ers are used as optimisation variables. Explanations are given for parameters that have
not been introduced previously in this thesis:

1. Number of neurons in the first hidden layer.

2. Maximum number of hidden layers.

3. Shrinkage factor: factor defining the number of neurons in the subsequent hidden
layers.

4. Dropout rate: number of neurons that are deactivated during training to improve
generalisation.

5. Initial learning rate.

6. Gamma: a factor that is used to adapt the learning rate after a given number of
steps that is defined by the milestone factor.

7. Milestone factor: defines two milestones at milestone factor x 1 and milestone factor
x 2 training iterations at which the learning rate is multiplied with gamma.

8. Batch size.

Table A.1 can be found in the Appendix A and lists the value ranges. All the remaining
settings, as well as the sampling strategy and the features, are identical to FCNN no. 11
from Table 4.5.

The HPO is run for 40 trials, i.e. 40 different FCNNs are trained and evaluated. Optuna
uses a combination of random search and Bayesian optimisation to determine the hyper-
parameters for each trial. Trying to find the optimum with only 40 trials while varying
8 hyperparameters may not be sufficient, but it can give an impression of to what extent
improvements over the baseline model are possible. A larger number of trials might lead
to a better result, however, depending on the network topology and the learning rate,
training a neural network can be very costly.
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Table 4.6 presents training and test metrics for the best model of the systematic test in
subsection 4.3.3 and the model that results from the HPO. The corresponding hyperpara-
meters are listed in Table A.1 in the Appendix A. An improvement can be seen regarding
all three train metrics, however, regarding the test metrics, the optimised model does only
perform slightly better on the MAE. Consequently, the optimised FCNN is less capable
of generalising on unseen data and to some degree overfitted to the training data. The
HPO leads to a larger number of neurons per hidden layer and more hidden layers. The
fact that the weight of each neuron is tuned towards the training data underlines the
assumption that the deeper and wider network is overfitted to the training data. It must
be noted that two hyperparameters result in values on the edge of the sampling space.
However, because an HPO requires a lot of time and computational resources and the
first 40 trials do not lead to an improvement over the baseline, the HPO is not further
extended within this thesis.

Training Test

R2 MAE
·103

MSE
·103 R2 MAE

·103
MSE
·103

FCNN No. 11 0.967 3.29 0.12 0.898 6.67 0.47
HPO result 0.977 2.34 0.08 0.884 6.39 0.54

Table 4.6: Comparison of training and test metrics of HPO result and previous best
FCNN model.

Considering that the optimised FCNN does not exhibit an overall improvement regarding
the evaluated metrics, and contains more neurons, which demands more storage space
and training time, the following investigations are not done using the optimised FCNN,
but FCNN no. 11.

4.4 Application to Steady Simulations
To conclude the investigation of the FIML approach on steady cases, the trained model
is applied within the RANS solver of the DLR-TAU code as described in section 3.5. A
correction period of 500 inner iterations between evaluations of the trained ML model
is chosen. Other settings remain unchanged compared to the baseline SA simulation.
Convergence is reached at all angles of attack. Figure 4.24 presents the resulting lift,
drag, and pitching moment coefficients. Overall, the augmented simulations, i.e. the
RANS simulations with the SA model that is corrected using the trained ML model,
match with the FI solutions and hence the reference data.

In addition to the global forces and the surfaces plots that are presented up to this point
figures A.4 and A.5 in the Appendix A present field solutions of cp at α = 1.5◦ and
α = 4.5◦. The augmented simulations show improved field solution over the baseline SA
solution.

Investigation of α = 5.5◦

The strongest deviations can be seen for α = 5.5◦, most obviously for cmy. As Figure 4.25
shows, the augmented SA solution is closer to the reference solution than the FI at the
shock. However, in the rear shock region, the augmented SA solution is slightly closer to
the baseline solution than the FI solution.
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Figure 4.24: cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106
comparing SA, RSM, FI, and SA augmented using the trained ML model.

To investigate why the result at α = 5.5◦ is worse than for the other angles of attack,
first, the β-field of the FI for the case in question is presented in Subfigure 4.26a. The
contour lines in the plot are at β = 0.5. Subfigure 4.26b presents the difference between
the correction field that results from the augmented SA simulation and the FI result. It
becomes clear that errors are especially high in regions with β < 0.5 in the FI result.

The feature distribution of η11 over β is presented in Figure 4.27 (or η7 over β in Figure
A.3 in the Appendix A). The area of β < 0.5 and η11 < 0.3 contains samples of the
α = 5.5◦ case, but not of the other angles of attack. The α = 5.5◦ sample is not in
the span of the training set of the ML correction model. Consequently, the sample is a
case of extrapolation. This explains the imperfect prediction in areas where β < 0.5 is
expected according to the FI result. Nevertheless, the result is still an improvement over
the baseline model.

Figure 4.25: Comparison of cp-distributions of SA, RSM, FI, and SA augmented using
the trained ML model at α = 5.5◦

Evaluation

Applying the ML model that is trained as explained in the previous sections yields a good
correction of steady RANS simulations with the SA model. As the model can yield good
correction results over a varying angle of attack it implicitly knows dβ/dα even though
the predictions are made nodewise based on local flow features and not with α as an input
variable. Given these advancements, the trained model can now be applied to unsteady
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(a) β-field of FI result at α = 5.5◦ with con-
tour lines at β = 0.5.

(b) Comparison of β-field of FI result and aug-
mented ML simulation at α = 5.5◦.

Figure 4.26: Synthetic test cases with baseline and reference solution from different
angles of attack.

Figure 4.27: Comparison of η11 over β for all samples vs. α = 5.5◦ samples.

simulations with a pitching airfoil to evaluate how a model trained on steady data affects
unsteady simulations.

4.5 Unsteady Case Description and Preparation
Analog to subsection 4.1.2, the objective of this section is to produce unsteady simulations
with the SA turbulence model as the baseline solution and the RSM turbulence model
as the reference solution. The unsteadiness is caused by a pitching motion of the rigid
airfoil. This type of isolated motion is chosen as it only contains a temporal change of
the angle of attack and thus is a suitable test case for the effect of an ML model that is
trained to predict dβ/dα.

4.5.1 Data Generation

The same airfoil and mesh as introduced in subsection 4.1.2 are used for the unsteady
simulations. Furthermore, no changes are made regarding the turbulence models.



4.5 Unsteady Case Description and Preparation 47

Flow Conditions

Unsteady simulations do not require a steady solution as a starting point, however, start-
ing from a converged steady solution reduces the computational effort. Based on section
4.1, steady simulations are available for multiple angles of attack. As the goal is to apply
the ML model trained on steady data to unsteady simulations it is obvious to use the avail-
able steady simulations as a starting point. Three angles of attack, each corresponding
to a different flow condition, are selected:

• α = 1.5◦: This case is located on the linear region of the cl-α-curve, SA and RSM
are very close together. FI and augmented SA simulation both lead to good results.

• α = 3.0◦: Placed at the beginning of the non-linear region of the cl-α-curve, this
case is stronger affected by non-linearities. Furthermore, differences between SA and
RSM become visible. Both FI and augmented SA simulation yield good corrections.

• α = 4.5◦: Even larger differences between SA and RSM can be found for this case.
Being placed in the non-linear region of the cl-α-curve, this is the most challenging
correction of the three angles of attack. FI and augmented SA simulation both lead
to good correction results.

Given the steady solution at an angle of attack, the motion and therefore the unsteadi-
ness of the harmonically pitching airfoil is defined by two variables, both introduced in
section 2.2: the pitching amplitude θ̂ and the reduced frequency k. Table 4.7 presents the
combinations of k and θ̂ that are computed at each of the three mean angles of attack.
At θ̂ = 0.001◦ the influence of the reduced frequency is evaluated. The investigation is
conducted at 8 reduced frequencies between 0.01 and 1.0. With k = 0.01 as a very small
reduced frequency that is close to quasi-steady conditions, i.e. k → 0, and k = 1.0 repres-
enting pronounced unsteadiness. In addition, k = 0.3 is selected as a reduced frequency
at which the influence of the amplitude is investigated. In addition to θ̂ = 0.001◦, three
more amplitudes are evaluated, each an order of magnitude larger previous one.

θ̂

k
0.01 0.1 0.2 0.3 0.4 0.5 0.75 1.0

0.001◦ X X X X X X X X
0.01◦ X
0.1◦ X
1◦ X

Table 4.7: Combinations of reduced frequency and pitching amplitude considered for
the unsteady simulations.

Computation

For the unsteady dual time-stepping RANS computation a convergence criterion for the
inner iterations in each physical time step must be set. In addition, the physical time
step ∆tphysical must be set small enough to accurately depict the unsteady flow behaviour,
but as large as possible to reach a converged simulation as fast as possible. The two
different types of convergence must be distinguished: the first concerns the convergence
of the inner iterations with each time step, and the second concerns the decay of transient
oscillation of quantities of interest, e.g. cl(t) or cmy(t).
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A Cauchy convergence criterion is used to monitor the change of cl, cd, and cmy. If the
values change less than ∆cl,Cauchy = 1 ·10−4, ∆cd,Cauchy = 1 ·10−5, ∆cmy,Cauchy = 5 ·10−6

over an episode of 200 inner iterations the physical time step has reached convergence.
This means a minimum number of 200 inner iterations is performed for each physical time
step.

k [-] 0.01 0.1 0.2 0.3 0.4 0.5 0.75 1.0

Time steps per period [-] 8192 1024 512 256 256 256 128 128
∆tphysical · 104 [s] 3.09 2.47 2.47 3.29 2.47 1.98 2.63 1.98

Table 4.8: Time steps per pitching period and physical time step size ∆tphysical at each
reduced frequency k.

The physical time step size is determined by trial and error until a satisfying progression of
cl(t) and cmy(t) can be observed for an exemplary simulation. Subsequently, the number
of physical time steps per oscillation period is adapted in such a way that similar physical
time step sizes are obtained for each reduced frequency. Table 4.8 shows the resulting
values. The number of oscillation periods, and hence the overall number of physical time
steps, is determined for each case and thus not listed in this thesis.

4.5.2 Resulting Data

Due to the excitation of the airfoil, the forces acting on it are changing with time. The
following investigation takes cl(t) and cmy(t) into account. Figure 4.28 presents the pro-
gression of the excitation signal and the two force coefficients over time for the exemplary
case α = 3.0◦, θ̂ = 0.001◦, and k = 0.3 of the reference simulation. At the start of the un-
steady simulation, transient effects are present. After the transient effects have decayed,
a steady magnitude and phase shift between force coefficients and excitation signal can
be observed.

Figure 4.28: Excitation θ and resulting force coefficients cl, cmy vs. number of excitation
periods for α = 3.0◦, θ̂ = 0.001◦, and k = 0.3 for the reference simulation.

Frequency Domain Analysis

Investigating the oscillation behaviour in the time domain may be inaccurate as phase
shift or magnitude can not be read directly from a plot over time. Consequently, the
signals are transferred to the frequency domain for further analysis. Using a fast Fourier
transform (FFT), a discrete time-dependent signal is transferred to the frequency domain
efficiently [67]. The result of the FFT is a spectrum of complex values that determine
the contribution of discrete frequencies to the original signal [68]. By dividing the result
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corresponding to the smallest frequency of the FFT of a quantity of interest by the result
corresponding to the smallest frequency of the FFT of the excitation signal, a frequency
response function (FRF) is obtained. The result of the FRF is a complex value which can
be split into a magnitude and a phase.

Computing the FRF over an analysis window of one excitation period which is sliding
over the time domain signal yields Figure 4.29. Analog to Figure 4.28 transient effects are
present in the first periods before the signal settles on steady values for the magnitude
and phase.

Figure 4.29: Sliding FFT of cl/α vs. number of excitation periods for α = 3.0◦, θ̂ =
0.001◦, and k = 0.3 for the reference simulation.

Data at α = 3.0◦

The resulting magnitude and phase values can now be analysed over the reduced frequency,
i.e. in a Bode plot, or over the amplitude of the excitation signal. Subfigure 4.30a
presents the Bode plot for α = 3.0◦, comparing the SA baseline model with the RSM
based reference data. Differences in both, the magnitude in the upper plot and the phase
in the lower plot of cl/α can be seen at almost all reduced frequencies. However, at
k = 0.75 and k = 1, both results are close together. The RSM results exhibit a larger
peak in the magnitude plot and stronger phase shifts. Thus, the SA model should be
corrected in these areas. Subfigure 4.30b presents the same values on the y-axis over the
excitation amplitude. While SA is almost constant over θ̂, RSM varies slightly. However,
the small scale of the plot must be noticed.

Figure 4.31 presents how the lift changes with two different excitation amplitudes over
one excitation period. For θ̂ = 0.001◦ an elliptic hysteresis curve can be seen for both
turbulence models (see Subfigure 4.31a). The shape of the ellipses corresponds to the
magnitude and phase. The position of the ellipses corresponds to the gradient of the
steady cl-α curve (see Figure 4.5) in combination with unsteady effects. At a higher pitch
amplitude, the resulting curve is no longer an ellipse (see Subfigure 4.31b). The complex
shape of the hysteresis curve is an indicator of non-linear effects. For the RSM model,
a stronger deviation from the elliptic shape can be seen. This might explain why RSM
deviates stronger from the constant magnitude and phase trend in Subfigure 4.30b.

More data at different angles of attack is not shown at this point to keep the text concise
and because similar plots, extended with corrected simulation results, are shown in section
4.6.
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(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

Figure 4.30: Unsteady baseline and reference results in the frequency domain for α =
3.0◦.

(a) θ̂ = 0.001◦. (b) θ̂ = 1◦.

Figure 4.31: Unsteady portion of the lift coefficient normalised with pitch amplitude
(cl − cl)/θ̂ over pitch angle normalised with pitch angle θ/θ̂ for SA and
RSM at α = 3.0◦, k = 0.3, and two different amplitudes.

4.6 Correction of Unsteady Simulations
The final step of this test case is to apply the correction model trained on steady data
(see sections 4.2-4.4) to unsteady simulations and to compare the results to the unsteady
RSM reference data (see section 4.5).

4.6.1 Approaches

Multiple approaches are tested to correct the unsteady simulation. While the main ob-
jective is to investigate the effect of coupling the trained ML model with the unsteady
solver, two approaches that use a steady β-field are tested as well.
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FI-Based Steady β-Field

The FIs in section 4.2 deliver a β-field containing a spatially varying correction term
that is valid for the steady flow conditions of each case. Instead of applying a trained
ML model the steady β-field is applied as an input-invariant correction to the unsteady
simulation. Given the assumption that the flow field of an unsteady flow with very small
excitation amplitudes is close to the steady flow field, the idea of applying a steady β-field
is that also the correction field is valid if the unsteady effects are small enough.

The FI-based steady β-field is applied using a dummy correction model that constantly
predicts the same correction field. The same Cauchy convergence criterion with 200
iterations for evaluation as for the baseline and reference simulation is used. According
to section 3.5, a number of subiterations in each physical time step might be performed.
Even though this is not necessary, as the β-field does not change, 5 subiterations are
performed in each physical time step to be consistent with the application of the actual
ML-based correction model.

ML-Based Steady β-Field

The application of an ML-based steady β-field is similar to the previous approach, but
instead of using a steady β-field that results from an FI, this approach uses the β-field
that results from an ML-augmented steady simulation. For the steady simulations, the
area selection approach is applied. Thus, the steady correction fields that are applied to
unsteady simulations only contain non-unity values in the selected area. In contrast to
FI-based steady β-fields this approach can be used at mean angles of attack without an
FI result. The convergence and subiteration settings are chosen analogues to the previous
approach if not stated differently.

Applied ML Model

Applying the steadily trained ML model to unsteady simulations serves the goal of in-
vestigating whether the implicitly learned dβ/dα relationship delivers a benefit. It is
expected that with increased unsteadiness the steady correction model depreciates in ac-
curacy as temporal derivatives gain importance. Per default, the ML model is evaluated
five times per physical time step, i.e. 5 subiterations are performed, and the Cauchy
convergence settings are set as mentioned above. As a steady start, this approach uses a
steady simulation result that is augmented using the same model.

Assessment

Some advantages and disadvantages of the three approaches are known before the investig-
ation of the results. Table 4.9 gives an overview. The listed advantages and disadvantages
are not weighed, and refer to a comparison of the approaches with one another and not
with further approaches.

4.6.2 Results

The results in this subsection are described per mean angle of attack α. Due to issues
with the numerical stability for α = 4.5◦, investigations on unsteady simulations without
excitation are made before the results with excitation are examined. To be concise, all
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Approach Advantages Disadvantages

FI-based
steady β-field

- Most accurate correction
field

- Correction term available
in entire domain

- Correction valid for single
angle of attack

- FI solution must exist at α

ML-based
steady β-field

- Not limited to certain
angles of attack

- Correction available in
selected area only

- Correction valid for single
angle of attack

- Predictions influenced by
accuracy of ML model

Applied ML
model

- Model valid at a
range of α

- dβ/dα relationship
implicitly learned

- Correction available in
selected area only

- Possibly numerically least
stable (RANS solver
coupled with ML model)

- Predictions influenced by
accuracy of ML model

Table 4.9: Advantages and disadvantages of the different models

investigations in the text are done regarding cl. The corresponding plots for cmy can be
found in the Appendix A.

α = 1.5◦

Figure 4.32 presents the results of the unsteady simulations with α = 1.5◦, comparing
SA and RSM with the three correction approaches. The Bode plot in Subfigure 4.32a
presents a monotonously decreasing magnitude with increasing k. Starting close to 0
for k = 0.01, the phase decreases up to k = 0.2 before it increases. Overall, SA and
RSM are very close together. Thus, this case is less a check of the ability to correct, but
rather a check of whether the correction models cause deterioration when a good baseline
solution is present. The applied ML model is visibly close to the RSM solution, the FI-
and ML-based steady β-fields deviate from the SA solution in the wrong direction, i.e.
the results are further away from the RSM solution. With increasing reduced frequency
the differences between all approaches become negligible.

The trend at θ̂ = 0.001 can be observed at all tested amplitudes as Subfigure 4.32b depicts.
Note that the scales on the axes are very small. All approaches lead to a roughly constant
relationship between magnitude and amplitude, respectively phase and amplitude. The
hysteresis plots in subfigures 4.32c and 4.32d confirm the findings, the results are not
distinguishable visibly, however, some variance can be seen. At both amplitudes, the
hysteresis plots present an ellipse. Consequently, the flow is dominated by linear effects.

To summarize the findings, the applied ML model leads to the best results for small
differences between baseline and reference. The steady β-fields yield a small deterioration
in some cases.
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(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure 4.32: Unsteady results at α = 1.5◦ for cl. All plots use the same colour scheme.
Figure A.6 in the Appendix A presents the corresponding results for cmy.

α = 3.0◦

Larger differences between SA and RSM results can be observed at α = 3.0◦ as already
discussed in subsection 4.5.2 and presented in Figure 4.33. The applied ML model delivers
ambiguous results: at most reduced frequencies in the Bode plot in Subfigure 4.33a the
resulting magnitude and phase is close to the baseline solution. Near the resonance peak
at k = 0.5, the applied ML model corrects the magnitude in the right, but the phase in
the wrong direction. With increasing excitation amplitude the behaviour remains (see
Subfigure 4.33b). However, at θ̂ = 1 the result deviates from the previously constant
trend. The corresponding hysteresis plot in Subfigure 4.33d confirms that the applied
ML model predicts a significantly different flow behaviour. In addition to unsatisfactory
results at small amplitudes, the application of the ML model loses validity at larger
amplitudes.

More promising, but not sufficiently accurate results can be seen for the steady β-fields,
both FI- and ML-based lead to congruent results. For all investigated points the corrected
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result lies between SA and RSM, for some cases closer to RSM, for some closer to SA.
Consequently, the correction using steady β-fields does not always yield good corrections,
however, it does not impair the baseline solution. The correction at higher reduced
frequencies yields better results than closer to the quasi-steady case. With increasing
amplitude, the steady β-fields have a stable behaviour. However, comparing the shapes
of the hysteresis curves in subfigures 4.33c and 4.33d the correction with steady β-fields
are closer to SA than RSM.

In contrast to the previous case, the results of this mean angle of attack favour the
correction using steady correction fields over the applied ML model.

(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure 4.33: Unsteady results at α = 3.0◦ for cl. All plots use the same colour scheme.
Figure A.7 in the Appendix A presents the corresponding results for cmy.

α = 4.5◦ without Excitation

At α = 4.5◦, the ML-based steady β-field and the applied ML model do not converge to
steady magnitude and phase values. Thus, before the available results are investigated,
unsteady simulations without excitation are conducted to investigate the convergence
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(a) 2nd order unsteady scheme, 200 iterations
for Cauchy convergence.

(b) 1st order unsteady scheme, 200 iterations
for Cauchy convergence.

(c) 2nd order unsteady scheme, 1000 iterations
for Cauchy convergence.

(d) 1st order unsteady scheme, 1000 iterations
for Cauchy convergence.

Figure 4.34: Influence of unsteady order scheme and the number of iterations to evaluate
the Cauchy convergence for simulations without excitation applying an
ML-based steady β-field. Note that the axes use different scales.

issues. The initial settings of this test are analogue to the previous investigations of
k = 0.3. The influence of the following parameters is tested:

• Number of subiterations.

• Interval for evaluation of Cauchy convergence, i.e. the minimum number of inner
iterations.

• Unsteady order scheme. The previous simulations use a 2nd order scheme, i.e. two
past physical time steps are used to compute the next one. A 1st order scheme is
tested.

• Physical time step size.

Not all parameter combinations are tested and only selected results are presented in this
thesis.

Subfigure 4.34a presents how cl and cmy progress using the same settings as previously
described for the cases with excitation. The oscillations diverge over time. While the
mentioned figure concerns the correction using an ML-based steady β-field, convergence
is reached for the FI-based steady β-field (not depicted). For the steady simulations,
the FI and applied ML model are close together, furthermore, both produce very similar
results for the unsteady simulations at α = 1.5◦ and α = 3.0◦. However, the difference



4.6 Correction of Unsteady Simulations 56

(a) Half physical time step size, 200 iterations
for Cauchy convergence.

(b) Half physical time step size, 1000 itera-
tions for Cauchy convergence.

(c) Quarter physical time step size, 200 itera-
tions for Cauchy convergence.

(d) Quarter physical time step size, 1000 iter-
ations for Cauchy convergence.

Figure 4.35: Influence of physical time step size (in comparison to ∆tphysical for k = 0.3
in 4.8) and the number of iterations to evaluate the Cauchy convergence
for simulations without excitation applying the trained ML model. Note
that the axes use different scales.

between FI- and ML-based steady β-field, i.e. the noise in the ML prediction, leads to
numerical instability at α = 4.5◦ where strong non-linearities are present.

Switching from a 2nd to a 1st order unsteady scheme still results in divergence, however,
much slower (see Subfigure 4.34b). When increasing the number of iterations for Cauchy
convergence from 200 to 1000, convergence is reached. Using the 1st order scheme the
oscillation settles faster.

Transferring the settings that yield convergence for the ML-based steady β-field to the
applied ML model does not lead to a converging unsteady simulation (not depicted).
Thus, Figure 4.35 compares the influence of the physical time step size to the influence of
increasing the number of iterations for the evaluation of the Cauchy convergence. As,
according to the previous findings, the 1st order unsteady scheme is more stable, it is
used in all cases. In all four subfigures, the simulation becomes unstable at some point.
Decreasing the physical time step size seems to be more effective than performing more
inner iterations.

Varying the number of subiterations does also not lead to convergence and is not depicted
here. In conclusion, no combination of settings that produces a stable unsteady simulation
using the applied ML model is found.
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α = 4.5◦ with Excitation

No settings that allow a stable computation using the applied ML are found for the
simulation without excitation. Consequently, no stable simulations with excitation are
expected and thus this approach is not investigated. The ML-based steady β-field is
applied with an increased number of 1000 iterations for the evaluation of the Cauchy
convergence, and using both types of unsteady scheme order. However, the simulations
only converge at a couple of combinations of reduced frequency and excitation amplitude.
Even though this shows that convergence of the ML-based steady β-field approach is
possible, no combination of satisfactory settings could be found within the duration of
this thesis. Consequently, the following comparison includes SA, RSM and FI-based
steady β-field only.

(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure 4.36: Unsteady results at α = 4.5◦ for cl. All plots use the same colour scheme.
Figure A.8 in the Appendix A presents the corresponding results for cmy.

Figure 4.36 presents the results of the unsteady simulations at α = 4.5◦. The Bode plot
shows a very good correction using the FI-based steady β-field (see Subfigure 4.36a). The
correction is consistent with increasing amplitude up to θ̂ = 0.1. Keeping in mind the
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small scale on the axis for the magnitude, this can be seen in Subfigure 4.36b. Regarding
the shape of the hysteresis plots the previous findings are confirmed. At a small amplitude,
the corrected simulation approaches the reference, however, it starts to deviate at larger
amplitudes (see subfigures 4.36c and 4.36d).

The resonance peak of the RSM reference solution at α = 4.5◦ is about three times higher
than at α = 3.0◦, compare subfigures 4.33a and 4.36a. A peak in the magnitude that
approaches infinity corresponds to a buffet onset [69]. Therefore, it is not surprising that
the simulations α = 4.5◦ that are closer to buffet onset are numerically more sensitive.

Consistency for k → 0

For quasi-steady simulations with k → 0, one would expect the unsteady results to ap-
proach the steady results. However, even though good corrections of steady simulations
are achieved at all of the three considered angles of attack this is not the case for the
unsteady simulations, e.g. at α = 3.0◦ all correction approaches at k = 0.001 are closer
to SA than RSM.

Figure 4.37: cl (left), and dcl/dα (right) over α for M = 0.75 Re = 6.0 · 106 comparing
SA, RSM, FI, and SA augmented using the trained ML model. Figure A.9
in the Appendix A presents the corresponding results for cmy.

The previous unsteady investigations in the frequency domain concern the magnitude
and phase ratio of cl/α. Thus, Figure 4.37 depicts the gradient dcl/dα of the steady
simulations. The derivatives are computed using a 2nd order central finite difference and
are therefore not available for α = 0◦ and α = 5.5◦. In contrast to the good match between
the global force coefficients of the FI and the augmented simulation to the reference data,
the derivatives do not match the reference at all angles of attack. However, the plot
confirms that the investigated values of the unsteady simulations approach the value of
the steady derivatives for k → 0. Consequently, the correction model can be just as good
regarding the unsteady simulation as the corresponding reference case. Interestingly, the
effect is not only present for the ML model that is trained on multiple angles of attack
but also for the steady β-field corrections that do not contain information about the
neighbouring angles of attack.

4.7 Findings
This section briefly summarizes the findings of chapter 4. The full conclusion for this
thesis can be found in chapter 6.
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The FI is capable of correcting a surface cp-distribution using a number of reference points
that are realistic for an experimental setup. The corrections with cp as reference quantity
yield good correction of the resulting integral values, however, cf is not corrected. Fur-
thermore, differences between reference and baseline that are not caused by the turbulence
model may not be corrected using the FI.

Using the area selection approach for the ML part yields improved results while decreasing
the number of training samples and thus the computational effort. In addition, the
systematic test shows that adding features to the ones that are found in literature improves
the ML accuracy. An FCNN with model R2 ≈ 0.9 is be obtained, however, the presented
HPO does not lead to further improvement. Nevertheless, by applying the resulting ML
model within RANS simulations good corrections on steady simulations can be achieved,
as long as no extrapolation is necessary.

Generally, the application of a steadily trained ML model within an unsteady simulation
is possible, however, with high non-linearities, the simulations do not converge. Fur-
thermore, when strong non-linearities are present, small deviations between a FI- and
ML-based steady β-field lead to numerical instabilities for the ML-based approach. The
unsteady simulations close to k → 0 are just as good as the corresponding steady results,
including the derivatives of the steady results. Consequently, regarding the stability and
the accuracy of the correction, the FI-based steady β-field approach must be favoured
over the ML-based steady β-field approach, which must be favoured over the applied ML
model. However, the best-rated approach is only available where steady reference data
are available.



Chapter 5

Experimental Test Case
Given the findings of the numerical test case in chapter 4, this experimental test case serves
the purpose of investigating whether and to what extent the outcomes can be generalised.
In contrast to the numerical test case, the necessary steps of the FIML approach are just
executed, but no investigations are repeated.

In section 5.1 the experimental data are described and prepared to serve as reference
data for the FI in section 5.2. Subsequently, ML models are trained and applied within
steady simulations in section 5.3. Finally, section 5.4 conducts an exemplary unsteady
simulation.

5.1 Case Description and Preparation
Airbus RWC.01_1 is a database containing wind tunnel measurements of the RAE 2822
airfoil from 2016, the airfoil that is also used for the numerical test case. The scope of
the campaign is to validate and extend the measurements by Cook et al. [57]. The meas-
urements come from the pilot facility of the European Transonic Wind Tunnel and are
made available to the author by the DLR. In contrast to CFD simulations, an experiment
cannot be two-dimensional. However, measurements from the test section’s centerline are
used for this study, and three-dimensional effects are assumed to be negligible. Further-
more, the data are already corrected regarding effects caused by the wind tunnel, e.g.
blockage [70].

For each sampling point, M , Re, and α are known, furthermore, total pressure ptot and
total temperature Ttot are known, as these quantities are used to set the Reynolds
number. The force coefficient in inertial z-direction is measured. Pressure is measured at
74 locations on the airfoil, 46 on the upper and 28 on the lower side. One pressure sensor
constantly produces outliers and must be disregarded. Given the measurements, cp can
be calculated according to equation A.1 in the Appendix A.

5.1.1 Test Case Selection

Within the test campaign measurements with fixed transition, caused by flow tripping,
and free transition measurements are conducted. As reference data for this test case, free
transition data are selected. Just as for the previous RANS simulations of the numerical
test case, no transition model for the laminar to turbulent transition is used, i.e., the
flow is assumed to be fully turbulent. Even though this means the numerical solution
assumes fundamentally different physical behaviours than the reference data, performing
an FI with the described conditions might deliver further insights into the technique’s
capabilities.

60
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Figure A.10 in the Appendix A presents the flow conditions in the database. Overall
7719 measurement points are available. However, approximately 10 measurement points
correspond to the same free-stream conditions to account for variance. Data with similar
free-stream flow conditions to the numerical test case, i.e. Mach and Reynolds num-
ber, are selected. Thus, it is tested whether the findings from the numerical test case
can be generalised to a different type of reference data without considering entirely new
circumstances. The measurement series 488 is a polar with M ≈ 0.73, Re ≈ 6.5 · 106 and
angles of attack between −1.12◦ and 5.74◦.

Averaging

The arithmetic mean is calculated and used since multiple measurements are available at
each of the 16 free-stream conditions. Table A.2 in the Appendix A lists the averaged
data and the deviations. Deviations from the mean are present and must be kept in mind,
however, from this point on, only the mean values are considered. In contrast to a perfect
polar with constant free-stream conditions, M and Re do slightly decrease with increasing
angle of attack.

Figure 5.1 displays three selected averaged cp-distributions, as well as the maxima, and
the standard deviation. Strong variance in the experimental data can be seen in Subfigure
5.1b at the shock location. Regarding the FI approach, the variance in the reference data
must be considered, as the correction can not be more accurate than the reference data.
Besides the shock no visibly strong variance is present.

(a) M = 0.74, α = 0.71◦, and
Re = 6.44 · 106.

(b) M = 0.72, α = 3.10◦, and
Re = 6.37 · 106.

(c) M = 0.72, α = 5.20◦, and
Re = 6.33 · 106.

Figure 5.1: cp-distributions of averaged experimental data as well as standard deviation,
minima, maxima.

Just as CFD simulations have sources of error, experiments are also imperfect. Neverthe-
less, from this point onwards, the averaged experimental data are treated as the ground
truth.

5.1.2 Interpolation of Experimental Data to Numerical Mesh

Spatially distributed FI reference data must be available at the same locations as the ones
where CFD solutions are available. However, the locations of the pressure measurements
do not coincide with the mesh nodes, thus, an interpolation of the data are necessary.
Two possibilities are considered:

1. Linear interpolation: using linear interpolation, the reference data are made avail-
able at specified locations of the CFD mesh. This allows to have reference data at
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more mesh locations than reference points are available. The original values of the
reference data are altered based on an assumption, e.g. linear relationship between
value and location.

2. Nearest neighbour: for each reference data point, the nearest neighbouring point
in the CFD grid is calculated. Then, the reference data are transferred to the
new locations. The reference values remain unchanged, however, for coarse CFD
grids larger changes in position might occur. This could have an especially severe
influence on the shock location.

Figure 5.2: Nearest neighbours of experimental data in CFD mesh.

Figure 5.2 presents the results of the nearest neighbour approach. Note that only the
surface mesh is considered. Furthermore, it must be noted that the experiment uses a
thickened trailing edge. Except in the thickened area, differences between the nearest
neighbours and the measurement locations are not visible. The CFD mesh appears to be
fine enough. Consequently, the nearest neighbour approach is used for further investiga-
tions, as it does not alter the reference values in contrast to the interpolation approach.

5.1.3 Resulting Data

Given the experimental reference data, CFD solutions with the baseline SA turbulence
model are produced analogue to the numerical test case (see subsection 4.1.2). The
simulations use the averaged free-stream conditions as an input. In addition to M , Re,
and α, the available information regarding total pressure and total temperature is also
passed as an input parameter.

The resulting CFD solutions can be compared to the reference data. The global force
in the experiment is measured in the inertial reference system and is only available in
z-direction. In contrast, the RANS solution contains the forces in a body-fixed reference
system. Thus, the forces of the corresponding numerical solutions must be transformed
into the inertial coordinate system. According to the sketch in Figure A.11 in the Ap-
pendix A, the force coefficient in the inertial z-direction can be calculated using the lift and
drag coefficients cl, cd and the angle of attack α (assuming the flow in inertial x-direction)
with the following equation:

cz,inertial = cl · cosα− cd · sinα. (5.1)

In Figure 5.3 a comparison of cz,inertial of the experimental data and the SA simulations
as well as cl of the SA simulations can be seen. cz,inertial of the SA simulations contains
slightly smaller values than cl, however, the differences are very small and especially in the
linear region negligible. The measured forces are higher than the SA simulations forces.
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Figure 5.3: cz,inertial respectively cl vs. α comparing SA simulations and experimental
data.

Differences can be seen in the linear as well as in the non-linear region. While for the
numerical result a decreasing force for the stall region (α > αcl,max ≈ αcz,inertial,max ≈ 5.20◦)
can be seen, the experiment shows an untypical behaviour with an increasing force.

Figure 5.4 compares the experimental and SA cp-distributions at four selected angles of
attack. At α = 0.07◦ and α = 3.29◦ only small deviations, especially in the post-shock
region are present (see subfigures 5.4a and 5.4b). At α = 4.70◦ in Subfigure 5.4c a
separation bubble was measured behind the shock, this flow feature is not captured in
the SA simulation. An entirely different flow behaviour can be seen in Subfigure 5.4d at
α = 5.20◦: while the SA solution contains a clear shock, the pressure in the experiment
is continuously increasing after the pressure plateau.

The good match of some cp-distribution indicates that the SA simulation is conducted
using appropriate settings. However, mismatches between SA and experiment show room
for improvement of the SA simulation where the FIML approach is to be applied.

5.2 Field Inversion
The general considerations regarding the reference quantity of the FI are similar to the
numerical test case and cp on the airfoil surface is selected (see subsection 4.2.1). For the
experimental test case, no evaluation regarding the amount of reference data are done,
and all available measurement points are used.

5.2.1 Regularisation

One of the findings of the numerical test case concerns the fact, that the resulting regular-
isation parameters are all in a very similar range. Thus, the expensive process of producing
an L-curve is not done for all data points, but only at two selected ones: α = 1.41◦ from
the linear region and α = 4.70◦ from the non-linear region. To be concise, the resulting
plots can be found in the Appendix A. For both cases, the L-curve criterion does not
deliver a clear result, thus, an investigation of the pressure distributions is done. For
α = 1.41◦, the FI is mostly ineffective and the results are close to the baseline, regardless
of λ (see Subfigure A.12a). Based on the L-curve and the pressure distributions of the
α = 4.70◦ case, λopt = 10−12 is selected as no further improvement can be achieved with
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(a) M = 0.74, α = 0.07◦, and Re = 6.49 · 106. (b) M = 0.72, α = 3.29◦, and Re = 6.42 ·106.

(c) M = 0.72, α = 4.70◦, and Re = 6.36 · 106. (d) M = 0.72, α = 5.20◦, and Re = 6.33 ·106.

Figure 5.4: Comparison of cp-distributions of experimental data and SA simulation.

smaller regularisation parameters (see Figure A.13). This selection of λopt is to some
extent subjective, different values might be suitable as well.

5.2.2 Resulting Corrections

Regarding the four angles of attack that are compared in subsection 5.1.3, satisfactory
corrections are achieved. In Figure A.14 in the Appendix A the FI pressure distributions
are presented. As a new flow feature, the post-shock separation bubble that is not present
in the numerical test case is corrected using the FI approach.

In Figure 5.5 the cz,inertial-α-curve show a good match of the FI result with the experimental
reference at negative angles of attack and in the non-linear region. For the two highest
angles of attack, the FIs did not converge within a reasonable time, i.e. one week of run
time on a high-performance computing cluster. However, corrections in the right direction
are visible. In between these regions, the FI does not lead to improvements, a worsening
of the results can be seen.

To further investigate one of the cases with a bad FI performance, the surface pressure
and the turbulent eddy viscosity field at α = 1.41◦ are visualised in Figure 5.6. The
cp-distribution shows different flow behaviours for the experimental and the numerical
data (see Subfigure 5.6a): while the numerical solutions contain a small shock, this is
not visible in the experimental data. The fully turbulent numerical approach does not
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Figure 5.5: cz,inertial vs. α comparing SA simulations, experimental data, and FI result.

(a) cp-distribution. (b) νt with contour lines at νt = 10−4.

Figure 5.6: M = 0.73, α = 1.41◦, and Re = 6.45 · 106.

match the free-transition experiment with laminar flow close to the leading edge. The
turbulent eddy viscosity plot shows that the turbulent model does not affect the flow close
to the leading edge. Thus, the FI is also ineffective in this area and not able to match the
experimental pressure distribution.

Overall, the findings regarding FI from the numerical test case are confirmed using the
experimental data: the approach can lead to good corrections of the turbulence model,
but is not capable of correcting differences that are not caused by the turbulence model.
Nevertheless, the obtained data are used for further study to evaluate the impact on the
next steps of the FIML approach.

5.3 Machine Learning and Application to Steady Sim-
ulation

Investigations regarding the ML model use the results from the numerical test case (see
section 4.3): the same FCNN model structure, input features, area selection approach,
and trainer settings as for model no. 11 from Table 4.5 are considered.
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5.3.1 Application Model Trained on Numerical Data

Before an FCNN is trained on the experimental data, the final model from the numerical
test case is applied to correct the simulations of this test case. The application of the
model within the steady RANS simulations is analogue to section 3.5 and therefore not
further described here. Figure 5.7 presents the effect of the correction model on cz,inertial.
The correction is not successful. The resulting curve matches the SA simulation or does
result in corrections in the wrong direction. Selected pressure distributions might be
found in the Appendix A in Figure A.15 and confirm the result. Small corrections of the
shock position and the post-shock pressure distribution are corrected in the numerical test
case. Stronger deviations, with additional features such as separation bubbles, can not be
corrected, as these features are not seen during training. Consequently, the application
of the ML model, trained along one polar, to an unseen polar with a different kind of
reference data are not suitable.

Figure 5.7: cz,inertial vs. α comparing SA simulations, experimental data, FI result, and
augmented SA simulation using the ML model trained on the numerical test
case.

5.3.2 Training and Application of ML Model using Experimental
Data

Two FCNNs are trained using the available FI results from section 5.2. Taking into
account that the two FIs at α > 5.0◦ are not converged, the first FCNN case 1 takes
the entire polar into account, and the second FCNN case 2 excludes the unconverged FIs
from the training data.

Case 1

Following the prior considerations, the ML model case 1 is trained on every second angle
of attack. Subfigure 5.8b presents the prediction accuracy regarding the training data
(30% of the training data are used for validation during training). The predictions in the
plot are close to perfect prediction, however, some variance can be seen. Furthermore,
numerous mispredictions with β ≈ 1 can be seen. The prediction metrics on the training
data of R2 = 0.907, MAE = 11.80 · 10−3, and MSE = 2.62 · 10−3 are partially close to the
numerical test case and partially below.

Subfigure 5.8a presents the cz,inertial predictions. The augmented simulations match the
SA simulations in the linear region. Within the non-linear region, a severe overprediction
of the force coefficient can be seen.
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(a) cz,inertial vs. α comparing SA simulations,
experimental data, FI result, and augmen-
ted SA simulation using the ML model case
1.

(b) Predicted versus true target values from
training and test data for FCNN case 1.

Figure 5.8: Experimental FCNN case 1.

In Figure A.16 in the Appendix A selected cp-distributions are displayed. Except at
very small angles of attack the ML model predictions do not match with the FI, the SA
simulation or the reference data. Despite the mediocre metrics, the applied ML model
can not capture the underlying structures in the flow.

Case 2

One possibility to improve the ML model might be to exclude the FIs that are not con-
verged from the training data, as these might deliver skewed information. Training the
model on every second angle of attack with α < 5.0◦ results in the following metrics:
R2 = 0.891, MAE = 8.67 · 10−3, and MSE = 1.45 · 10−3. The improved MAE and MSE
come with the prediction distribution in Subfigure 5.9b. Regarding the force coefficient,
a similar behaviour to FCNN case 1 can be seen in the linear region in Subfigure 5.9a.
Nevertheless, in the non-linear region, a clear improvement is visible. The augmented
result is close to the reference, however, not perfect.

(a) cz,inertial vs. α comparing SA simulations,
experimental data, FI result, and augmen-
ted SA simulation using the ML model case
2.

(b) Predicted versus true target values from
training and test data for FCNN case 2.

Figure 5.9: Experimental FCNN case 2.
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Comparing the cp-distributions of this case (see Figure 5.10) to the ones of case 1 (see
Figure A.16 in the Appendix A), an improvement can be seen. While FCNN case 1
predicts kinks in the shocks, this attempt gives a good correction of the shock position in
some cases, e.g. at α = 4.70◦ in Subfigure 5.10c. However, a correction of the separation
bubble is not achieved. Furthermore, for the cases that are excluded from the training
data, e.g. α = 5.2◦ in Subfigure 5.10d, flow features such as the steadily increasing
pressure after the pressure plateau are not covered by the correction.

A comparison of the β-fields that are predicted and that are a result of the FI backs up
the finding that the ML model is not able to capture all the flow features (see Figure A.17
in the Appendix A).

(a) M = 0.74, α = 0.07◦, and Re = 6.49 · 106. (b) M = 0.72, α = 3.29◦, and Re = 6.42 ·106.

(c) M = 0.72, α = 4.70◦, and Re = 6.36 · 106. (d) M = 0.72, α = 5.20◦, and Re = 6.33 ·106.

Figure 5.10: Comparison of cp-distributions of experimental data, SA simulation, FI,
and ML model case 2.

No satisfactory ML model could be trained. Important flow features, such as the separ-
ation bubble, are not covered by the models. Thus, a simple transfer of the ML model
to the experimental test case is not possible. Next to a reevaluation of hyperparameters
of the model, the input features could potentially be a factor that significantly influences
the outcome and should therefore undergo a repeated feature selection. However, these
improvements are not done within this thesis.
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5.4 Exemplary Unsteady Simulation

Given the non-satisfactory results regarding unsteady augmented simulations (see section
4.6), the lack of generalizability of the ML model (see section 5.3), and the fact that no
experimental unsteady reference data for the RAE2822 airfoil are available to the author,
a profound study of unsteady augmented simulations for the experimental test case is
not meaningful. Nevertheless, one exemplary unsteady simulation is conducted to show
that generally, a correction of unsteady simulations with experimental reference data are
possible. Correcting unsteady simulations with a steady FI-based β-field leads to the best
results on the numerical test case, furthermore, the FI can deliver a good correction for
the steady simulations of the experimental test case. Thus, a correction based on a steady
FI-based β-field is chosen for the exemplary unsteady simulation.

(a) cl (b) cmy

Figure 5.11: Hysteresis plot due to pitch excitation for experimental test case at α =
4.16, k = 0.3, and α̂ = 0.001◦.

The unsteady simulations lead to the hysteresis plots in Figure 5.11 with oscillations
around the following mean coefficients: cl,SA = 0.975, cl,FI-based steady β-field = 1.012, cmy,SA =
−0.086, and cmy,FI-based steady β-field = −0.096. Even though no reference data are available
one can notice that the mean values of cl are close to steady cz,inertial values in Figure 5.5.
Note that the differences between cl and cz,inertial are very small. An evaluation of the
hysteresis plot without reference data are not useful, however, a change in the shape of
the curves can be seen.

5.5 Findings
This section gives a summary of the findings of chapter 5. The full conclusion is available
in chapter 6.

Using a fixed value for λ reduces the computational effort, however, two FIs did not
converge, possibly this could be prevented by individual evaluations of the regularisation.
The chosen structure of the FI is not able to correct effects that are not due to the
turbulence model itself, e.g. transition. Thus, restrictions are not caused by the type of
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reference data, e.g. experimental or numerical, but rather by the physical effects in the
reference data.

An application of the ML model trained on the numerical test case to the experimental
test case does not produce accurate results. However, using the considerations regarding
the ML model from the numerical test case enables correcting flow features that are
present in the numerical test case, but additional features, e.g. separation bubbles, are
not covered. Furthermore, the exclusion of FIs that did not reach convergence from the
training data benefits the prediction accuracy.

Generally, corrections on unsteady simulations with experimental reference data seem to
be possible. However, only an example test case with a low informative value is examined.



Chapter 6

Conclusions and Outlook

6.1 Conclusions
The main objective of this thesis is to investigate if the field inversion and machine learning
(FIML) methodology can correct turbulence models such that improved predictions at
steady transonic flow conditions including shocks are obtained and how this affects a
subsequent unsteady response analysis. This thesis uses two test cases that build upon
each other to investigate different aspects of the FIML approach regarding steady and
unsteady simulations.

Summary of Results

Using the two-dimensional RAE 2822 airfoil, a first test case is designed to correct the
Spalart-Allmaras (SA) turbulence model with the FIML approach and higher fi-
delity numerical reference data based on Reynolds-averaged Navier-Stokes (RANS)
equations closed with a Reynolds stress model (RSM). Steady RANS simulations with
varying angles of attack are generated at transonic flight conditions including shocks:
M = 0.75, Re = 6.0 · 106. Sampling data points along one polar is chosen to gain inform-
ation about how the flow fields and the associated FIML correction change with the angle
of attack. A dataset containing baseline and reference data with small differences in the
linear region and stronger differences in the non-linear region is generated.

Before applying the field inversion (FI) approach to the test case dataset, several in-
vestigations with regard to a realistic application are conducted. Considering typical
experimental set-ups cp on the airfoil’s surface is selected as a reference quantity. A
study regarding the number of reference points shows an increasing error for very small
numbers of reference points and convergence issues if the number of reference points is
too high. The accuracy of the FI depends on the resolution of the flow phenomena that
require correction, however, this is not known a priori. For the present test case, 32 to
64 reference points on the airfoil’s surface deliver a good compromise between accuracy
and computational effort. Corrections based on a reference quantity deliver good results
regarding the reference quantity and related variables, however, no satisfactory correction
of unrelated quantities can be achieved. Furthermore, the FI approach is limited to cor-
recting inadequacies caused by the turbulence model, e.g. a correction of deviations due
to differing free-stream conditions is not possible. Given the results of the investigations
FIs for the test case dataset are performed. Good correction results at all angles of attack
with small imperfections at the trailing edge of the airfoil are achieved.

Considerations regarding the resulting imbalanced dataset with overrepresented β ≈ 1
samples and the selection of input features are discussed before two generic ML models are
trained: a fully-connected neural network (FCNN) and an interpolation model based on
radial basis functions. Most promising results are achieved using the FCNN in a selected

71
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area around the airfoil. Starting from a set of features found in literature a set of 12 locally
available, dimensionless, partially non-Galilean invariant features is selected based on
the correlation to the target quantity. No improvements are achieved trying to tune the
FCNN within a hyperparameter optimisation. Given the investigations, the resulting
FCNN achieves a coefficient of determination R2 ≈ 0.9 when predicting the correction
field at two selected test angles of attack. Applying the resulting model within a RANS
simulation leads to corrected cp-distributions as well as qualitatively and quantitative
improvements of the force coefficients cl, cd, and cmy. Decreased accuracy in cases with
extrapolation can be seen.

The ML model that implicitly knows dβ/dα as a consequence of training it along one polar
is applied to correct unsteady dual time-stepping RANS simulations with a harmonically
pitching airfoil. Additionally, the influence of applying steady β-fields as an alternative
correction method is evaluated. At a small mean angle of attack with small deviations
between SA and RSM, the correction approaches yield small or no deterioration over
the baseline solution, as long as the amplitude is small enough. For cases with strong
differences between SA and RSM, steady β-fields lead to better results than the application
of the FCNN model. With strong non-linearities in the flow field, the unsteady simulations
using the ML model or an ML-based steady β-field do not converge. The correction
using an FI-based steady β-field yields good corrections where the excitation amplitudes
are smaller than one degree. For the quasi-steady case, the resulting corrections are
consistent with the steady simulations. Here, not only the quantities of interest but also
their derivatives with respect to the angle of attack are important.

A second test case with experimental reference data from wind tunnel measurements of
the RAE 2822 is designed in such a way that the findings of the numerical test case can be
examined regarding their generalisability towards experimental data sources. Data with
similar free-stream conditions to the first test case are selected and transferred to the
numerical mesh using a nearest neighbour approach. The findings regarding FI confirm
the outcome of the first test case: differences unrelated to the turbulence model, e.g.
laminar flow, cannot be corrected using the chosen FIML approach. However, additional
flow features such as post-shock separation bubbles are corrected. An easy transfer of the
ML approach to this test case is not possible. The post-shock separation bubble is not
captured. Thus, considerations that are specific to flows along one polar do not easily
generalise.

Evaluation Regarding the Research Objective

After summarizing and reviewing the findings of this thesis, statements regarding the re-
search (sub-)objectives stated in the introduction can be made. Therefore, four takeaway
points are formulated to give a concise overview of the main outcomes of this thesis:

• By using FI for inadequacies caused by the SA turbulence model in transonic
flow fields including shocks, accurate corrections of the reference quantity and
related quantities can be achieved with a realistic number of reference points.

• Training an FCNN to give a node-wise prediction of the correction factor β and
applying the model within a RANS solver yields accurate results as long as no
extrapolation is required. The biggest improvements regarding the ML model
are achieved by the local application of the correction approach and the usage of
additional features.
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• Applying steady β-fields to correct unsteady simulations delivers good results for
excitation amplitudes up to at least one degree. Applying the ML model is not
only inferior regarding the accuracy but in some cases with strong non-linearities also
regarding the convergence of the numerical simulation. The accuracy of all tested
correction approaches is limited by the performance on the corresponding
steady cases.

• A general strategy for handling experimental reference data is presented. How-
ever, especially the considerations for the ML model lack generalisability to-
wards new flow features.

6.2 Outlook
The investigations in this thesis answer many questions, especially, a first step towards the
application of the steady FIML approach within unsteady dual time-stepping simulations
is made. However, many more questions arise and give motivation for further work. Some
ideas are stated below, separated into four categories.

Test Case Design

The design of the test cases within this thesis is well-reasoned by the idea of applying a
model with knowledge about dβ/dα of the steady simulations to unsteady simulations
and delivers accurate results for the given steady data. However, the transfer of the
model to the second test case shows that the limited design of experiments comes with
the cost of decreased generalisability. Thus, the question arises of whether including
not only differing angles of attack but also multiple free-stream conditions, varying data
sources, and multiple airfoil geometries benefits the process of feature selection and the
generalisability of the resulting model. Not only the effect on steady simulations but also
the subsequent unsteady analysis is of interest.

Furthermore, the evaluation of the correction of unsteady simulations within this thesis is
limited by the underlying assumptions of unsteady RANS simulations, as both, reference
and baseline data, are numerical. Thus, an investigation of an experimental test case
including unsteady reference data would be interesting.

Field Inversion

Regarding the correction of the reference quantity, the FIML approach fulfils the expect-
ations with small inadequacies, e.g. at the trailing edge. One possible improvement could
be to spend even more effort on the selection of the regularisation parameter with more
values in the test range.

Correcting cf using cp as reference quantity does not yield good results. Thus, evalu-
ating the influence of additional reference quantities might be beneficial. However, the
availability of reference quantities must be regarded.

The accuracy of the correction of unsteady simulations seems to depend not only on the
values of the quantities of interest but also on their derivatives with respect to the angle
of attack. Improving the accuracy of the FIs even more could be of benefit. One possible
idea is to apply a correction factor not only to the production term but also to other
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parts, e.g. the diffusive transport. However, this would also change the complexity of the
inverse mathematical problem.

Machine Learning

The area selection approach in this thesis leads to a big improvement regarding the pre-
diction accuracy of the FCNN. A robust and simple design is present. An investiga-
tion regarding a more refined area selection, e.g. using a sensor function to determine
correction-worthy areas, could deliver an accuracy improvement.

The feature selection approach delivers good results for the first test case. However,
the lack of generalisability towards different flow conditions, such as separation bubbles,
indicates room for improvement. This could be achieved by evaluating more variables as
possible features, and by incorporating additional test cases into the correlation analysis
of the feature selection approach.

FCNNs are powerful tools, however, advancements within the field of ML such as graph
neural networks, that use spatial information, are worth investigating. Another way to
improve a selected ML methodology could be to run an HPO to a further extent than
within this thesis.

Unsteady Simulations

Convergence issues can be seen for the ML-based correction approaches on unsteady
simulations. This thesis investigates a variety of, but not all, settings of the unsteady
numerical method. A wider study with more settings would be of interest.

Furthermore, the test design in this thesis is targeted to be applied to an unsteady pitching
motion. Other types of motions, e.g. heave, or combinations of motion types, are yet to
be investigated. Not only an effect regarding the unsteady simulations but also on the
required steady simulations are of interest.

Solving the unsteady RANS equations in a dual-time stepping scheme is computationally
very expensive. The linear frequency domain (LFD) method is computationally much
more efficient by solving a linearised version of the governing equations. Thus, an invest-
igation regarding the applicability of FIML towards LFD is of interest [71].

Finally, a study of a fully unsteady FIML Direct approach exists [20]. A reproduction and
extension of the results could be a way forward towards improved unsteady simulations.
However, this requires an unsteady adjoint method to evaluate gradients with respect to
time-dependent values. This is currently not implemented within TAU. In contrast to the
approach presented in this thesis a fully unsteady FIML approach should theoretically
not be limited to a range of amplitudes or reduced frequencies by taking unsteady effects
into account.



Bibliography
[1] T. Mauery et al., „A 20-year vision for flight and engine certification by analysis“,

in AIAA SCITECH 2022 Forum. doi: 10.2514/6.2022-1553.

[2] European Union Aviation Safety Agency (EASA), „Certification Specifications and
Acceptable Means of Compliance for Large Aeroplanes (CS–25), Amendment 27“,
2021.

[3] J. SMAGORINSKY, „General circulation experiments with the primitive equations:
I. the basic experiment“, Monthly Weather Review, vol. 91, no. 3, pp. 99–164, 1963.
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

[4] J. Anderson, Computational Fluid Dynamics: The Basics with Applications (McGraw-
Hill International Editions: Mechanical Engineering). McGraw-Hill, 1995, isbn: 9780
071132107.

[5] J. P. Slotnick et al., „Cfd vision 2030 study: A path to revolutionary computational
aerosciences“, NASA Technical Report, no. NASA/CR-2014-218178, 2014.

[6] S. L. Brunton, B. R. Noack and P. Koumoutsakos, „Machine Learning for Fluid
Mechanics“, Annual Review of Fluid Mechanics, vol. 52, no. 1, pp. 477–508, 2020.
doi: 10.1146/annurev-fluid-010719-060214.

[7] E. J. Parish and K. Duraisamy, „A paradigm for data-driven predictive model-
ing using field inversion and machine learning“, Journal of Computational Physics,
vol. 305, pp. 758–774, 2016, issn: 0021-9991. doi: https://doi.org/10.1016/j.j
cp.2015.11.012.

[8] K. Duraisamy, G. Iaccarino and H. Xiao, „Turbulence modeling in the age of data“,
Annual review of fluid mechanics, vol. 51, pp. 357–377, 2019, issn: 1545-4479. doi:
https://doi.org/10.1146/annurev-fluid-010518-040547.

[9] J. Ling and J. Templeton, „Evaluation of machine learning algorithms for prediction
of regions of high Reynolds averaged Navier Stokes uncertainty“, Physics of Fluids,
vol. 27, no. 8, p. 085 103, Aug. 2015, issn: 1070-6631. doi: 10.1063/1.4927765.

[10] J.-X. Wang, J.-L. Wu and H. Xiao, „Physics-informed machine learning approach for
reconstructing reynolds stress modeling discrepancies based on dns data“, Phys. Rev.
Fluids, vol. 2, p. 034 603, 3 Mar. 2017. doi: 10.1103/PhysRevFluids.2.034603.

[11] J.-L. Wu, H. Xiao and E. Paterson, „Physics-informed machine learning approach
for augmenting turbulence models: A comprehensive framework“, Phys. Rev. Fluids,
vol. 3, p. 074 602, 7 Jul. 2018. doi: 10.1103/PhysRevFluids.3.074602.

[12] J. Ling, A. Kurzawski and J. Templeton, „Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance“, Journal of Fluid Mechanics,
vol. 807, pp. 155–166, 2016. doi: 10.1017/jfm.2016.615.

75

https://doi.org/10.2514/6.2022-1553
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1063/1.4927765
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.3.074602
https://doi.org/10.1017/jfm.2016.615


Bibliography 76

[13] M. Gamahara and Y. Hattori, „Searching for turbulence models by artificial neural
network“, Phys. Rev. Fluids, vol. 2, p. 054 604, 5 May 2017. doi: 10.1103/PhysRe
vFluids.2.054604.

[14] A. Beck, D. Flad and C.-D. Munz, „Deep neural networks for data-driven LES
closure models“, Journal of Computational Physics, vol. 398, p. 108 910, 2019, issn:
0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.108910.

[15] F. Jäckel, „Sensitivity analysis of discrepancy terms introduced in turbulence models
using field inversion“, in 22nd STAB/DGLR Symposium on New Results in Numer-
ical and Experimental Fluid Mechanics XIII, A. Dillmann, G. Heller, E. Krämer
and C. Wagner, Eds., ser. Notes on Numerical Fluid Mechanics and Multidisciplin-
ary Design, vol. 151, Springer Nature, Jul. 2021, pp. 625–634. [Online]. Available:
https://elib.dlr.de/136236/.

[16] C. Grabe, F. Jäckel, P. Khurana and R. Dwight, „Data-driven augmentation of
a rans turbulence model for transonic flow prediction“, International Journal of
Numerical Methods for Heat and Fluid Flow, vol. 33, no. 4, emerald insight, Ed.,
pp. 1544–1561, Apr. 2023. [Online]. Available: https://elib.dlr.de/194686/.

[17] J. R. Holland, J. D. Baeder and K. Duraisamy, „Field inversion and machine learn-
ing with embedded neural networks: Physics-consistent neural network training“, in
AIAA Aviation 2019 Forum. doi: 10.2514/6.2019-3200.

[18] F. Jäckel, „A closed-form correction for the spalart-allmaras turbulence model for
separated flows“, in AIAA SciTech 2022 Forum, AIAA, Ed., AIAA 2022-0462 Ses-
sion: RANS/LES/Hybrid Turbulence Modeling of Separated Flow I, ARC, Jan.
2022, pp. 1–20. [Online]. Available: https://elib.dlr.de/148403/.

[19] K. J. Fidkowski, „Gradient-based shape optimization for unsteady turbulent simula-
tions using field inversion and machine learning“, Aerospace Science and Technology,
vol. 129, p. 107 843, 2022, issn: 1270-9638. doi: https://doi.org/10.1016/j.as
t.2022.107843.

[20] L. Fang and P. He, „Field inversion machine learning augmented turbulence mod-
eling for time-accurate unsteady flow“, Physics of Fluids, vol. 36, no. 5, p. 055 117,
May 2024, issn: 1070-6631. doi: 10.1063/5.0207704.

[21] U. Command and H. Hurt, Aerodynamics for Naval Aviators. CreateSpace Inde-
pendent Publishing Platform, 2015, pp. 201–242, isbn: 9781508489481. [Online].
Available: https://books.google.de/books?id=YCIkrgEACAAJ.

[22] N. D. Sandham, „Shock wave-boundary layer interactions“, in Turbulent Shear Lay-
ers in Supersonic Flow. New York, NY: Springer New York, 2006, pp. 319–363,
isbn: 978-0-387-26305-2. doi: 10.1007/0-387-26305-5_10.

[23] „Full-potential, euler, and navier-stokes schemes“, in Applied Computational Aero-
dynamics, pp. 39–88. doi: 10.2514/5.9781600865985.0039.0088.

[24] Ü. Gülçat, „Introduction“, in Fundamentals of Modern Unsteady Aerodynamics.
Cham: Springer International Publishing, 2021, pp. 1–23, isbn: 978-3-030-60777-
7. doi: 10.1007/978-3-030-60777-7_1.

https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/10.1103/PhysRevFluids.2.054604
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108910
https://elib.dlr.de/136236/
https://elib.dlr.de/194686/
https://doi.org/10.2514/6.2019-3200
https://elib.dlr.de/148403/
https://doi.org/https://doi.org/10.1016/j.ast.2022.107843
https://doi.org/https://doi.org/10.1016/j.ast.2022.107843
https://doi.org/10.1063/5.0207704
https://books.google.de/books?id=YCIkrgEACAAJ
https://doi.org/10.1007/0-387-26305-5_10
https://doi.org/10.2514/5.9781600865985.0039.0088
https://doi.org/10.1007/978-3-030-60777-7_1


Bibliography 77

[25] D. Nixon, A. I. of Aeronautics and Astronautics, Unsteady Transonic Aerodynamics
(Progress in astronautics and aeronautics). American Institute of Aeronautics and
Astronautics, 1989, isbn: 9780930403522. [Online]. Available: https://books.goo
gle.de/books?id=2kkxtgEACAAJ.

[26] E. Albano and W. P. Rodden, „A doublet-lattice method for calculating lift dis-
tributions on oscillating surfaces in subsonic flows.“, AIAA Journal, vol. 7, no. 2,
pp. 279–285, 1969. doi: 10.2514/3.5086.

[27] A. Jameson, „Application of dual time stepping to fully implicit runge kutta schemes
for unsteady flow calculations“, in 22nd AIAA Computational Fluid Dynamics Con-
ference. doi: 10.2514/6.2015-2753.

[28] D. Schwamborn, A. Gardner, H. von Geyr, A. Krumbein, H. Lüdeke and A. Stürmer,
„Development of the tau-code for aerospace applications“, in 50th NAL International
Conference on Aerospace Science and Technology, 2008. [Online]. Available: https
://elib.dlr.de/55519/.

[29] Y. Yang and K. Pahlke, „Implementation of a dual-time stepping method for the
numerical solution of n-s equations for rigid airfoils in arbitrary unsteady motion“,
Tech. Rep., 1995, LIDO-Berichtsjahr=1996, [Online]. Available: https://elib.dl
r.de/36429/.

[30] D. Wilcox, Turbulence Modeling for CFD (Turbulence Modeling for CFD Bd. 1).
DCW Industries, 2006, isbn: 9781928729082. [Online]. Available: https://books
.google.de/books?id=tFNNPgAACAAJ.

[31] P. Spalart and S. Allmaras, „A one-equation turbulence model for aerodynamic
flows“, in 30th Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.1992-439.

[32] S. Allmaras, F. Johnson and P. Spalart, „Modifications and clarifications for the
implementation of the spalart-allmaras turbulence model“, Jan. 2012, pp. 1–11.

[33] S. Braun, „Implementation of a ln(ω)-based SSG/LRR reynolds stress model into
the DLR-TAU code“, Deutsches Zentrum für Luft- und Raumfahrt e.V., Tech. Rep.,
Mar. 2019. [Online]. Available: https://elib.dlr.de/193446/.

[34] J. C. Rotta, „Statistische Theorie nichthomogener Turbulenz“, Zeitschrift für Physik,
vol. 131, pp. 51–77, 1951. doi: https://doi.org/10.1007/BF01330059.

[35] C. C. Shir, „A Preliminary Numerical Study of Atmospheric Turbulent Flows in the
Idealized Planetary Boundary Layer.“, Journal of the Atmospheric Sciences, vol. 30,
no. 7, pp. 1327–1339, Oct. 1973. doi: 10.1175/1520-0469(1973)030<1327:APNSO
A>2.0.CO;2.

[36] F. R. Menter, „Two-equation eddy-viscosity turbulence models for engineering ap-
plications“, AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994. doi: 10.2514/3.12
149.

[37] A. N. Tikhonov et al., „On the stability of inverse problems“, in Dokl. akad. nauk
sssr, vol. 39, 1943, pp. 195–198.

https://books.google.de/books?id=2kkxtgEACAAJ
https://books.google.de/books?id=2kkxtgEACAAJ
https://doi.org/10.2514/3.5086
https://doi.org/10.2514/6.2015-2753
https://elib.dlr.de/55519/
https://elib.dlr.de/55519/
https://elib.dlr.de/36429/
https://elib.dlr.de/36429/
https://books.google.de/books?id=tFNNPgAACAAJ
https://books.google.de/books?id=tFNNPgAACAAJ
https://doi.org/10.2514/6.1992-439
https://elib.dlr.de/193446/
https://doi.org/https://doi.org/10.1007/BF01330059
https://doi.org/10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1973)030<1327:APNSOA>2.0.CO;2
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/3.12149


Bibliography 78

[38] A. Tikhonov and V. Arsenin, Solutions of Ill-posed Problems (Halsted Press book).
Winston, 1977, isbn: 9780470991244. [Online]. Available: https://books.google
.de/books?id=ECrvAAAAMAAJ.

[39] M. B. Giles and N. A. Pierce, „An introduction to the adjoint approach to design“,
Flow, Turbulence and Combustion, vol. 65, pp. 393–415, 2000. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8351546.

[40] J. Nocedal and S. Wright, Numerical Optimization (Springer Series in Operations
Research and Financial Engineering). Springer New York, 2006, isbn: 9780387400655.
[Online]. Available: https://books.google.de/books?id=VbHYoSyelFcC.

[41] L. Armijo, „Minimization of functions having Lipschitz continuous first partial de-
rivatives.“, Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1–3, 1966.

[42] G. E. Moore, „Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff.“, IEEE Solid-State Cir-
cuits Society Newsletter, vol. 11, no. 3, pp. 33–35, 2006. doi: 10.1109/N-SSC.200
6.4785860.

[43] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016, http
://www.deeplearningbook.org.

[44] Y. LeCun, Y. Bengio and G. Hinton, „Deep learning“, nature, vol. 521, no. 7553,
p. 436, 2015.

[45] C. Spearman, „The proof and measurement of association between two things“,
American Journal of Psychology, vol. 15, pp. 88–103, 1904.

[46] D. W. Aha and R. L. Bankert, „A comparative evaluation of sequential feature
selection algorithms“, in Learning from Data: Artificial Intelligence and Statistics
V, D. Fisher and H.-J. Lenz, Eds. New York, NY: Springer New York, 1996, pp. 199–
206, isbn: 978-1-4612-2404-4. doi: 10.1007/978-1-4612-2404-4_19.

[47] P. Bekemeyer et al., „Data-driven aerodynamic modeling using the DLR SMARTy
toolbox“, in AIAA AVIATION 2022 Forum, AIAA 2022-3899. doi: 10.2514/6.20
22-3899.

[48] P. Virtanen et al., „SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python“, Nature Methods, vol. 17, pp. 261–272, 2020. doi: 10.1038/s41592-019-
0686-2.

[49] G. J. Székely, M. L. Rizzo and N. K. Bakirov, „Measuring and testing dependence
by correlation of distances“, The Annals of Statistics, vol. 35, no. 6, pp. 2769–2794,
2007. doi: 10.1214/009053607000000505.

[50] M. D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge
Monographs on Applied and Computational Mathematics). Cambridge University
Press, 2003.

[51] M. Minsky and S. Papert, Perceptrons. Cambridge, MA: MIT Press, 1969.

https://books.google.de/books?id=ECrvAAAAMAAJ
https://books.google.de/books?id=ECrvAAAAMAAJ
https://api.semanticscholar.org/CorpusID:8351546
https://books.google.de/books?id=VbHYoSyelFcC
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-1-4612-2404-4_19
https://doi.org/10.2514/6.2022-3899
https://doi.org/10.2514/6.2022-3899
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1214/009053607000000505


Bibliography 79

[52] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas and H. S.
Seung, „Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit“, Nature, vol. 405, no. 6789, pp. 947–951, Jun. 2000. doi: 10.1038/3
5016072.

[53] D. E. Rumelhart, G. E. Hinton and R. J. Williams, „Learning representations by
back-propagating errors“, nature, vol. 323, no. 6088, pp. 533–536, 1986.

[54] A. Paszke et al., „Pytorch: An imperative style, high-performance deep learning
library“, CoRR, vol. abs/1912.01703, 2019. [Online]. Available: http://arxiv.org
/abs/1912.01703.

[55] K. Hornik, M. Stinchcombe and H. White, „Multilayer feedforward networks are
universal approximators“, Neural Networks, vol. 2, no. 5, pp. 359–366, 1989, issn:
0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8.

[56] North Atlantic Treaty Organization. Advisory Group for Aerospace Research and
Development, Addendum to AGARD Advisory Report No. 138: Experimental Data
Base for Computers Program Assessment : Report of the Fluid Dynamics Panel
Working Group 04 (AGARD advisory report). AGARD, 1984, isbn: 9789283514756.
[Online]. Available: https://books.google.de/books?id=uURixwEACAAJ.

[57] P. Cook, M. Firmin, M. McDonald and R. A. Establishment, Aerofoil RAE 2822:
Pressure Distributions, and Boundary Layer and Wake Measurements (Technical
memorandum / Royal Aircraft Establishment). RAE, 1977. [Online]. Available: ht
tps://books.google.de/books?id=rX8CSQAACAAJ.

[58] NASA, Nparc alliance validation archive. [Online]. Available: https://www.grc.n
asa.gov/WWW/wind/valid/raetaf/raetaf.html.

[59] S. Langer, „An initial investigation of solving rans equations in combination with
two-equation turbulence models“, Institut für Aerodynamik und Strömungstechnik,
Tech. Rep., Sep. 2019. [Online]. Available: https://elib.dlr.de/129170/.

[60] M. Raffel, C. Willert, F. Scarano, C. J. Kähler, S. T. Wereley and J. Kompenhans,
Particle Image Velocimetry - A Practical Guide (3rd Edition). Springer Verlag, Apr.
2018, vol. 1, pp. 1–669. [Online]. Available: https://elib.dlr.de/119724/.

[61] C. Klein, R. Engler, W. Sachs and U. Henne, „Application of pressure sensitive paint
(psp) for determination of the pressure field and calculation of forces and moments
of models in a wind tunnel“, Experiments in Fluids, vol. Volume 39, pp. 475–483,
Aug. 2005. doi: 10.1007/s00348-005-1010-8.

[62] P. Hansen, „The l-curve and its use in the numerical treatment of inverse problefms“,
English, in InviteComputational Inverse Problems in Electrocardiology, InviteCom-
putational Inverse Problems in Electrocardiology ; Conference date: 01-01-2000,
WIT Press, 2000.

[63] A. Ferrero, A. Iollo, F. Larocca, M. de Castro Monteiro Loffredo and E. Menegatti,
„Field inversion and machine learning strategies for improving rans modelling in
turbomachinery“, 14th European Conference on Turbomachinery Fluid Dynamics

https://doi.org/10.1038/35016072
https://doi.org/10.1038/35016072
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://books.google.de/books?id=uURixwEACAAJ
https://books.google.de/books?id=rX8CSQAACAAJ
https://books.google.de/books?id=rX8CSQAACAAJ
https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html
https://www.grc.nasa.gov/WWW/wind/valid/raetaf/raetaf.html
https://elib.dlr.de/129170/
https://elib.dlr.de/119724/
https://doi.org/10.1007/s00348-005-1010-8


Bibliography 80

and Thermodynamics, 2021. [Online]. Available: https://api.semanticscholar
.org/CorpusID:240262370.

[64] F. Pedregosa et al., „Scikit-learn: Machine learning in Python“, Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[65] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1412.6980.

[66] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, „Optuna: A next-generation
hyperparameter optimization framework“, in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

[67] J. Cooley and J. Tukey, „An algorithm for the machine calculation of complex
fourier series“, Mathematics of Computation, vol. 19, no. 90, pp. 297–301, 1965.

[68] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical
Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. USA: Cambridge
University Press, 2007, isbn: 0521880688.

[69] J. Nitzsche, J. Otte, C. Kaiser and H. Hennings, „The effect of shock control bumps
on the transonic flutter and buffeting characteristics of a typical wing section“, in
19th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2022,
Jun. 2022.

[70] P. Khurana, „Application and extension of a data-driven turbulence modeling method
using machine learning“, M.S. thesis, Delft University of Technology, Nov. 2021. [On-
line]. Available: https://elib.dlr.de/145184/.

[71] R. Thormann and M. Widhalm, „Linear frequency domain prediction of dynamic
response data for viscous transonic flows“, AIAA Journal, vol. 51, no. 11, P. P.
Friedmann, Ed., pp. 2540–2557, Sep. 2013. [Online]. Available: https://elib.dlr
.de/84359/.

https://api.semanticscholar.org/CorpusID:240262370
https://api.semanticscholar.org/CorpusID:240262370
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://elib.dlr.de/145184/
https://elib.dlr.de/84359/
https://elib.dlr.de/84359/


List of Figures
2.1 Schematic overview of the most common RANS turbulence modeling ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Workflow of FIML Classic as in [18]. . . . . . . . . . . . . . . . . . . . . . 13
3.2 Application of turbulence model correction model within RANS solver for

steady and unsteady simulations. . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 RAE 2822 airfoil geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Mesh used in this study. Left: full domain. Right: zoom on the airfoil. . . 21
4.3 cl (left) and cd (right) over α for M = 0.75 Re = 6.0 · 106 using the SA

turbulence model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 cl (left) and cd (right) over α for M = 0.75, Re = 6.0 · 106 using the RSM

turbulence model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106

comparing SA and RSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 cp-distribution on airfoil surface for M = 0.75, Re = 6.0 · 106 comparing

SA and RSM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Influence of the number of reference points used for field inversion on a

numerical test case (baseline: SA; reference: RSM) with flow conditions
M = 0.75, α = 5.5◦, Re = 6 · 106, and regularisation λ = 10−12. 512
reference points correspond to 100%. . . . . . . . . . . . . . . . . . . . . . 26

4.8 cp-distributions on airfoil surface comparing FIs with different numbers of
reference points at α = 5.5◦. The legend of Subfigure 4.8c applies to all
three cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.9 cf -distributions on airfoil surface comparing SA (baseline) and RSM (ref-
erence) and FI result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.10 Synthetic test cases with baseline and reference solution from different
angles of attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.11 SA-production P for SA at α = 5.5◦. . . . . . . . . . . . . . . . . . . . . . 29
4.12 cp-distributions on airfoil surface comparing FI with reference points at

rear only to baseline and reference solutions. . . . . . . . . . . . . . . . . . 29
4.13 Selection criteria of regularisation at α = 2.5◦. . . . . . . . . . . . . . . . . 30
4.14 Selection criteria of regularisation at α = 4.0◦. . . . . . . . . . . . . . . . . 31
4.15 Inversion results at α = 1.5◦ and α = 4.5◦. The β-fields use the same

colour range. For the close-ups, the colours are amplified. . . . . . . . . . . 32
4.16 cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106

comparing SA, RSM, and FI. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.17 Number of occurrences of β in the available data (left). Same figure with

the logarithmic y-axis (right). . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.18 Visual representation and the result of area selection. . . . . . . . . . . . . 34
4.19 Number of occurrences of β after reducing the values 0.99 < β < 1.01

(left). Same figure with the logarithmic y-axis (right). . . . . . . . . . . . . 35
4.20 Distribution of η1 before (left) and after (right) applying a logarithm. . . . 36
4.21 Spearman’s rank correlation coefficient between all features and the target. 38
4.22 Predicted versus true target values from training and test data for FCNN

no. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.23 Predicted versus true target values from training and test data for FCNN

no. 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.24 cl (left), cd (middle), and cmy (right) over α for M = 0.75 Re = 6.0 · 106

comparing SA, RSM, FI, and SA augmented using the trained ML model. 45

81



List of Figures 82

4.25 Comparison of cp-distributions of SA, RSM, FI, and SA augmented using
the trained ML model at α = 5.5◦ . . . . . . . . . . . . . . . . . . . . . . . 45

4.26 Synthetic test cases with baseline and reference solution from different
angles of attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.27 Comparison of η11 over β for all samples vs. α = 5.5◦ samples. . . . . . . . 46
4.28 Excitation θ and resulting force coefficients cl, cmy vs. number of excitation

periods for α = 3.0◦, θ̂ = 0.001◦, and k = 0.3 for the reference simulation. . 48
4.29 Sliding FFT of cl/α vs. number of excitation periods for α = 3.0◦, θ̂ =

0.001◦, and k = 0.3 for the reference simulation. . . . . . . . . . . . . . . . 49
4.30 Unsteady baseline and reference results in the frequency domain for α = 3.0◦. 50
4.31 Unsteady portion of the lift coefficient normalised with pitch amplitude

(cl − cl)/θ̂ over pitch angle normalised with pitch angle θ/θ̂ for SA and
RSM at α = 3.0◦, k = 0.3, and two different amplitudes. . . . . . . . . . . 50

4.32 Unsteady results at α = 1.5◦ for cl. All plots use the same colour scheme.
Figure A.6 in the Appendix A presents the corresponding results for cmy. . 53

4.33 Unsteady results at α = 3.0◦ for cl. All plots use the same colour scheme.
Figure A.7 in the Appendix A presents the corresponding results for cmy. . 54

4.34 Influence of unsteady order scheme and the number of iterations to evaluate
the Cauchy convergence for simulations without excitation applying an
ML-based steady β-field. Note that the axes use different scales. . . . . . . 55

4.35 Influence of physical time step size (in comparison to ∆tphysical for k = 0.3
in 4.8) and the number of iterations to evaluate the Cauchy convergence
for simulations without excitation applying the trained ML model. Note
that the axes use different scales. . . . . . . . . . . . . . . . . . . . . . . . 56

4.36 Unsteady results at α = 4.5◦ for cl. All plots use the same colour scheme.
Figure A.8 in the Appendix A presents the corresponding results for cmy. . 57

4.37 cl (left), and dcl/dα (right) over α for M = 0.75 Re = 6.0 · 106 comparing
SA, RSM, FI, and SA augmented using the trained ML model. Figure A.9
in the Appendix A presents the corresponding results for cmy. . . . . . . . 58

5.1 cp-distributions of averaged experimental data as well as standard devi-
ation, minima, maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Nearest neighbours of experimental data in CFD mesh. . . . . . . . . . . . 62
5.3 cz,inertial respectively cl vs. α comparing SA simulations and experimental

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Comparison of cp-distributions of experimental data and SA simulation. . . 64
5.5 cz,inertial vs. α comparing SA simulations, experimental data, and FI result. 65
5.6 M = 0.73, α = 1.41◦, and Re = 6.45 · 106. . . . . . . . . . . . . . . . . . . 65
5.7 cz,inertial vs. α comparing SA simulations, experimental data, FI result, and

augmented SA simulation using the ML model trained on the numerical
test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Experimental FCNN case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.9 Experimental FCNN case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.10 Comparison of cp-distributions of experimental data, SA simulation, FI,

and ML model case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.11 Hysteresis plot due to pitch excitation for experimental test case at α =

4.16, k = 0.3, and α̂ = 0.001◦. . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 Pearson correlation coefficient for between all features and the target. . . . 85
A.2 Distance correlation coefficient between all features and the target. . . . . 86
A.3 Comparison of η7 over β for all samples vs. α = 5.5◦ samples. . . . . . . . 86
A.4 cp field solutions at α = 1.5◦. Note that each plot uses a different color

scale, as the ranges vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.5 cp field solutions at α = 4.5◦. Note that each plot uses a different color

scale, as the ranges vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.6 Unsteady results at α = 1.5◦ for cmy. All plots use the same colour scheme. 90
A.7 Unsteady results at α = 3.0◦ for cmy. All plots use the same colour scheme. 91



List of Figures 83

A.8 Unsteady results at α = 4.5◦ for cmy. All plots use the same colour scheme. 92
A.9 cmy (left), and dcmy/dα (right) over α for M = 0.75Re = 6.0·106 comparing

SA, RSM, FI, and SA augmented using the trained ML model. . . . . . . . 92
A.10 Survey of available experimental data points. . . . . . . . . . . . . . . . . . 93
A.11 Schematic reasoning for calculation of cz,inertial . . . . . . . . . . . . . . . . 93
A.12 Selection criteria of regularization at M = 0.73, α = 1.41◦, and Re = 6.45·106. 94
A.13 Selection criteria of regularization at M = 0.72, α = 4.70◦, and Re = 6.36·106. 95
A.14 Comparison of cp-distributions of experimental data, SA simulation, and FI. 96
A.15 Comparison of cp-distributions of experimental data, SA simulation, FI,

and ML model from the numerical test case. . . . . . . . . . . . . . . . . . 97
A.16 Comparison of cp-distributions of experimental data, SA simulation, FI,

and ML model case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.17 β-fields at M = 0.72, α = 3.29◦, and Re = 6.42 · 106. . . . . . . . . . . . . 99



List of Tables
4.1 Numbers of investigated reference points . . . . . . . . . . . . . . . . . . . 25
4.2 Selected values for λ. The letters in the last row denote selection by L-curve

criterion (L) or selection by comparing cp-distributions (S). . . . . . . . . . 31
4.3 Features to be investigated. Row Galilean invariance shows whether

this requirement is satisfied. The row log shows if a logarithm should be
applied. Removed samples show the number of samples removed due to
the application of the logarithm. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Resulting scores for presented RBF model. . . . . . . . . . . . . . . . . . . 40
4.5 Influence of feature selection and dataset on generic FCNN. small : training

data are αtrain, small. large: training data are αtrain, large. no reduction:
dataset is not altered. area: area selection is applied. x%: only x% of the
samples with 0.99 < β < 1.01 are included. sep. val.: train and validation
data are not split randomly (70%/30%), but α = {0.5◦, 2.0◦, 4.0◦} are used
for validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Comparison of training and test metrics of HPO result and previous best
FCNN model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Combinations of reduced frequency and pitching amplitude considered for
the unsteady simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Time steps per pitching period and physical time step size ∆tphysical at each
reduced frequency k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Advantages and disadvantages of the different models . . . . . . . . . . . . 52

A.1 Tested and resulting hyperparameters. . . . . . . . . . . . . . . . . . . . . 87
A.2 Averaged free-stream conditions including minima, maxima and standard

deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

84



Chapter A

Appendix

Figure A.1: Pearson correlation coefficient for between all features and the target.

Given static pressure p, isentropic expansion factor κ, and Mach number M , cp can be
calculated as follows:

cp =

(
1+0.5(κ−1)M2

1+0.5(κ−1)p2

)( κ
κ−1) − 1

0.5κM2
(A.1)
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Figure A.2: Distance correlation coefficient between all features and the target.

Figure A.3: Comparison of η7 over β for all samples vs. α = 5.5◦ samples.
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Hyperparameter Sampling space Range HPO result
Number of

neurons in the
first hidden layer

Integer from set [32, 64, 128,
256, 512, 1024]

1024

Maximum
number of hidden

layers

Integer from
range [2, 8] 4

Shrinkage factor Float from range [0.2, 1.8] 1.427

Dropout rate Float from
logarithmic range 0.01, 0.4 0.130

Learning rate Float from range [1 · 10−5, 1 · 10−2] 5.02 · 10−4

Gamma Float from
logarithmic range [0.1, 1] 0.432

Milestone factor Integer from
range [10, 1000] 112

Batch size Integer from set [256, 512, 1024,
2048, 4096, 8192]

256

Table A.1: Tested and resulting hyperparameters.

α [deg] M [-] Re [-]

Mean Std
·103 Min Max Mean Std

·104 Min Max Mean
·10−6

Std
·10−3

Min
·10−6

Max
·10−6

−1.13 1.29 −1.13 −1.12 0.74 3.97 0.73 0.74 6.47 9.52 6.46 6.49
−0.83 1.64 −0.83 −0.83 0.74 5.69 0.73 0.74 6.47 3.46 6.46 6.48
−0.53 2.14 −0.53 −0.53 0.74 6.31 0.73 0.74 6.45 7.78 6.43 6.46
0.07 2.47 0.06 0.07 0.74 9.87 0.73 0.74 6.49 15.15 6.46 6.51
0.71 4.04 0.71 0.72 0.74 13.43 0.73 0.74 6.44 23.23 6.41 6.49
1.41 3.08 1.41 1.42 0.73 7.34 0.73 0.74 6.45 18.41 6.42 6.47
2.20 2.10 2.19 2.20 0.73 7.72 0.73 0.73 6.40 25.05 6.37 6.44
2.62 1.26 2.62 2.62 0.73 3.87 0.72 0.73 6.40 14.78 6.38 6.42
3.10 6.64 3.09 3.11 0.72 14.59 0.72 0.73 6.37 20.25 6.35 6.40
3.29 1.59 3.29 3.30 0.72 4.33 0.72 0.72 6.42 5.30 6.41 6.43
3.50 3.11 3.49 3.50 0.72 4.63 0.72 0.72 6.44 14.43 6.41 6.47
3.71 3.45 3.71 3.72 0.72 5.82 0.72 0.72 6.41 6.78 6.40 6.42
4.16 4.78 4.15 4.17 0.72 5.41 0.72 0.72 6.40 8.40 6.38 6.41
4.70 2.05 4.70 4.70 0.72 4.63 0.72 0.72 6.36 10.00 6.34 6.38
5.20 2.40 5.20 5.21 0.72 5.47 0.72 0.72 6.33 6.94 6.32 6.34
5.74 4.60 5.73 5.74 0.72 8.05 0.72 0.72 6.32 19.07 6.30 6.35

Table A.2: Averaged free-stream conditions including minima, maxima and standard
deviation
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(a) SA. (b) RSM.

(c) Field Inversion. (d) Augmented.

(e) Comparison of SA and RSM. (f) Comparison of Augmented and RSM.

Figure A.4: cp field solutions at α = 1.5◦. Note that each plot uses a different color
scale, as the ranges vary.
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(a) SA. (b) RSM.

(c) Field Inversion. (d) Augmented.

(e) Comparison of SA and RSM. (f) Comparison of Augmented and RSM.

Figure A.5: cp field solutions at α = 4.5◦. Note that each plot uses a different color
scale, as the ranges vary.
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(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure A.6: Unsteady results at α = 1.5◦ for cmy. All plots use the same colour scheme.
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(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure A.7: Unsteady results at α = 3.0◦ for cmy. All plots use the same colour scheme.
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(a) Bode plot with θ̂ = 0.001◦ fixed. (b) Magnitude and phase vs. amplitude with
k = 0.3 fixed.

(c) Hysteresis plot at k = 0.3, θ̂ = 0.001◦. (d) Hysteresis plot at k = 0.3, θ̂ = 1◦.

Figure A.8: Unsteady results at α = 4.5◦ for cmy. All plots use the same colour scheme.

Figure A.9: cmy (left), and dcmy/dα (right) over α for M = 0.75 Re = 6.0·106 comparing
SA, RSM, FI, and SA augmented using the trained ML model.
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(a) M vs. α. (b) M vs. Re.

(c) Re vs. α.

Figure A.10: Survey of available experimental data points.

Figure A.11: Schematic reasoning for calculation of cz,inertial

based on cl and cd.
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(a) L-curve.

(b) Pressure distributions of SA, RSM, and
FI for multiple λ’s.

Figure A.12: Selection criteria of regularization at M = 0.73, α = 1.41◦, and Re =
6.45 · 106.
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(a) L-curve.

(b) Pressure distributions of SA, RSM, and
FI for multiple λ’s.

Figure A.13: Selection criteria of regularization at M = 0.72, α = 4.70◦, and Re =
6.36 · 106.
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(a) M = 0.74, α = 0.07◦, and Re = 6.49 · 106. (b) M = 0.72, α = 3.29◦, and Re = 6.42 ·106.

(c) M = 0.72, α = 4.70◦, and Re = 6.36 · 106. (d) M = 0.72, α = 5.20◦, and Re = 6.33 ·106.

Figure A.14: Comparison of cp-distributions of experimental data, SA simulation, and
FI.
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(a) M = 0.74, α = 0.07◦, and Re = 6.49 · 106. (b) M = 0.72, α = 3.29◦, and Re = 6.42 ·106.

(c) M = 0.72, α = 4.70◦, and Re = 6.36 · 106. (d) M = 0.72, α = 5.20◦, and Re = 6.33 ·106.

Figure A.15: Comparison of cp-distributions of experimental data, SA simulation, FI,
and ML model from the numerical test case.
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(a) M = 0.74, α = 0.07◦, and Re = 6.49 · 106. (b) M = 0.72, α = 3.29◦, and Re = 6.42 ·106.

(c) M = 0.72, α = 4.70◦, and Re = 6.36 · 106. (d) M = 0.72, α = 5.20◦, and Re = 6.33 ·106.

Figure A.16: Comparison of cp-distributions of experimental data, SA simulation, FI,
and ML model case 1.
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(a) FI result. (b) Augmented with case 2.

(c) Difference between augmented with case 2
and FI.

Figure A.17: β-fields at M = 0.72, α = 3.29◦, and Re = 6.42 · 106.
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