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Abstract
Modern aircraft development requires ever-faster evaluations of physical quantities con-
sidering large parameter spaces. Conventional computational methods are prohibitive
due to the required computational effort. Data-driven surrogate models allow very fast
evaluation times, by shifting computational effort to a prior training phase. Deep-learning
models have proven capable of capturing high-complexity data.

Unsteady aerodynamic effects, e.g. caused by discrete gusts, must be considered during
aircraft design. Conventional methods such as the linear frequency domain solver allow
computing solutions in the frequency domain. This work investigates the applicability
of graph neural networks as surrogate models for such problems. Graph neural networks
can use the spatial information given by a computational mesh to enhance the prediction
accuracy as prior work on steady aerodynamic problems has shown.

Two types of graph neural networks, namely a graph convolutional network with a Re-
sidual Gated Graph ConvNets convolution, and the graph network simulator model are
compared using only global flow features M , α, and ω∗ with models using pressure as an
additional local flow feature. The complex-valued increment to the pressure coefficient at
the airfoil surface is used as the target quantity. An interpolation model and a node-wise
predicting fully-connected neural network are used as comparisons.

In this work, all models are compared using the NACA 64A010 airfoil as a two-dimensional
test case. Therefore, a sampling strategy is described to generate a dataset. Subsequently,
the models are optimized towards the available data.

Evaluating the models using four different metrics indicates that the two graph neural
network approaches using local and global flow features deliver the best predictions. Espe-
cially, comparing the deep-learning results to the interpolation model shows advantages in
the capability of capturing non-linear flow characteristics in the transonic flight regime.
However, with the available dataset and chosen hyperparameters, none of the models
delivers satisfactory predictions, especially at low reduced frequency transonic samples.

Further investigations test the models’ behaviours on differently sized datasets, as well as
datasets containing subsets of reduced frequencies respectively subsets of Mach numbers
and angle of attack. Regarding the computational effort, all data-driven approaches show
the potential to evaluate samples approximately four orders of magnitude faster than the
linear frequency domain approach. Overall the graph network simulator model using local
flow features shows the greatest potential. Finally, ideas regarding further improvements
and continuing investigations are given.
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Chapter 1

Introduction
Future aircraft design by means of multidisciplinary design optimization requires com-
puting results in various disciplines across large parameter spaces and multiple times to
result in disruptive layouts. To be able to compute large parameter spaces numerous
times, fast computation models are needed when computational resources are limited.
Unsteady aerodynamic effects such as gust responses must be regarded according to the
certification specification [1].

Linear potential methods, such as the doublet lattice method (DLM) [2], can be computed
fast. However, they are not able to capture non-linearities that are present in the tran-
sonic regime. Computational fluid dynamics (CFD) is the current industry standard for
computing aerodynamic simulations. This method delivers accurate results for unsteady
aerodynamic effects, but these computations are very time-consuming [3]. The linear
frequency domain (LFD) approach investigated in [4] and [5] assumes small perturba-
tions and has proven to reduce computational effort by one to two orders of magnitude
when compared to computations using the unsteady Reynolds-averaged Navier-Stokes
(URANS) equations. However, the use of this method in an optimization cycle, while
examining a large number of points in the flight envelope is still prohibitive regarding the
computational cost. Consequently, fast and efficient surrogate models are needed.

Recent advancements in computing power make the processing of large amounts of data
feasible. As fluid dynamics is typically a field of research that produces large amounts
of data, the usage of data-driven methods running on high-performance computers is
suitable [6]. Data-driven methods allow to shift the computational effort from the point
of evaluation to a preliminary training phase. Thus, being suited for multi-query scenarios.
In the field of deep-learning numerous new concepts have been developed recently. One
of which are graph neural networks (GNNs) that use data in the form of graphs and can
therefore make use of spatial information in the data structure [7, 8].

The text above gives a motivation for this paper. Subsequently, related work is reviewed
in section 1.1 before a research objective is defined in section 1.2. Finally, the structure
of this work is explained in section 1.3.

1.1 Related Work
Various approaches to building data-driven models for unsteady aerodynamic problems
can be found in literature. Proper orthogonal decomposition (POD) allows to reduce the
dimensionality of a physical flow by finding the principal components. Along with an
interpolation approach, this allows the prediction of aerodynamic quantities. In [9] it is
shown how POD can be used to update an aerodynamic model which predicts general
aerodynamic forces. Another study applies POD to build a reduced order model (ROM)
of a time-linearized solver leading to highly accurate predictions of aerodynamic and

1



1.2 Research Objective 2

aeroelastic behaviour in transonic flows [10]. More recent approaches combine POD with
sophisticated interpolation methods such as the Grassmann manifold interpolation in [11],
which as of now is only applicable in the region close to a sample point.

A more complex method to model unsteady aerodynamic characteristics is the dynamic
mode decomposition which is used in [12] to compute frequency domain generalized aero-
dynamic forces by obtaining the most dominant fluid dynamic modes caused by small
amplitude excitations.

Deep Learning (DL) methods such as neural networks have been applied to unsteady
aerodynamics in multiple papers. The time-dependent prediction of unsteady boundary
layers with recursive neural networks is shown in [13]. Multi-layer functionals are proven to
be a suitable representation of an unsteady aerodynamic response in [14]. In [15] recurrent
neural networks are used for non-linear aeroelastic reduced order modelling. Multi-layer
perceptrons are used in [16] in combination with Neuro-Fuzzy models to predict general
aerodynamic forces in the time and frequency domain with high accuracy and a reduction
in computational effort. Overall, neural network approaches show great capabilities to
cover aerodynamic non-linearities.

A recent advancement in the field of deep learning are graph neural networks, which is
the parent name of different concepts that are based on message-passing neural networks
(MPNNs) that use graph-structured data to send messages to neighbouring nodes. Those
have been proven superior on test cases in the field of chemistry [17]. A specific form of
MPNNs are graph convolutional networks (GCNs) that extend convolutional networks to
graphs [18]. As a subform of GCNs residual gated graph convolutional networks use a
specific convolutional architecture that has proven to deliver accurate results on different
benchmark tests [19]. The graph network simulator model architecture was first intro-
duced in the field of subsurface flows and combines the concepts of fully-connected neural
networks with graph convolutional networks in an encoder-processor-decoder structure to
do time step predictions [20]. The graph network simulator has also successfully been
proven to be able to predict steady-state flows including non-linear local effects around
an airfoil [21].

1.2 Research Objective
The main objective of this work is to investigate the applicability of GNNs for the predic-
tion of aerodynamic quantities in the frequency domain. More specifically, in this work,
GNNs are applied as surrogates of the LFD solver which calculates frequency domain
responses due to gust excitations. By comparing different GNN models to other data-
driven approaches an evaluation regarding accuracy and computational effort can be done.
Furthermore, to fulfill the objective the different approaches are investigated regarding
specific strengths and weaknesses.

1.3 Structure
After this chapter gave a motivation and surveyed existing research studies, in chapter 2
the theoretical background of the physical problem and the resulting task is explained.
Next, in chapter 3 different data-driven methods including two types of graph neural
networks are explained. The different methods are evaluated using the test case that is
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explained in chapter 4. Based on the methods explained in chapter 3 specific models
are described and their optimization is represented in chapter 5. The models are then
analyzed in different investigations in chapter 6. Finally, conclusions are drawn and an
outlook are given in chapter 7.



Chapter 2

Problem Definition
The linear frequency domain (LFD) method can be used to obtain a complex-valued
solution to an excitation. In this work the goal is to build data-driven models that act as
surrogates of the LFD solver. In section 2.1 the LFD solver is explained. Subsequently,
section 2.2 explains the resulting task of this paper.

2.1 Linear Frequency Domain Method
The LFD has the ability to calculate the dynamic response behaviour from a harmonic
disturbance, for example, the dynamic lift behaviour of an airfoil undergoing a harmonic
pitch oscillation. This work only takes gust excitations into account. The certification
specification [1] defines a discrete 1-cos gust shape, it can be seen in figure 2.1. The
parameters in the figure are the free-stream velocity U∞, the vertical gust amplitude
vg,z, the gust length Lg, and the initial distance between gust and airfoil x0. Fourier-
transforming a gust excitation into frequency domain allows a time-independent solution
using a linear solver.

Figure 2.1: Sketch of 1-cos gust with airfoil and parameters [5]

Considering the semi-discrete form of the URANS equations the response to a gust excit-
ation can be defined by

ẇ = R (w,vg) (2.1)

with the vector of conservative variables w, the temporal change of the vector of conser-
vative variables ẇ, the gust disturbance vector vg, and the vector of non-linear residual
functions R.

A first-order Taylor expansion around an equilibrium point can be done by assuming small
perturbations, and by defining the differences ∆w = w −w0 and ∆vg = vg − vg0 where

4



2.2 Resulting Task 5

w0 and vg0 are the conservative values and the gust disturbance at the equilibrium:

d∆w

dt
= R (w0,vg,0) +

∂R

∂w
∆w +

∂R

∂vg

∆vg (2.2)

with (∂R/∂w) the Jacobian matrix with respect to the conservative variables and (∂R/∂vg)
the change with respect to gust excitation. The term R (w0,vg0) is the non-linear steady
flow residual, which is assumes R (w0,vg0) = 0 for a fully converged steady-state flow
simulation.

Assuming ∆w and ∆vg to be harmonically changing in time allows to transfer equation
2.2 into the frequency domain:(

∂R

∂w
− iω∗I

)
ŵ = − ∂R

∂vg

v̂g (2.3)

where v̂g is the description of the gust disturbance. By solving the linear system of equa-
tions, the complex-valued solution vector ŵ is obtained. ŵ are complex-valued Fourier
coefficients that explain the frequency domain response of the conservative values. ω∗ is
the reduced frequency normalized using the reference chord length cref and the freestream
velocity U∞:

ω∗ =
ωcref
U∞

with (2.4)

ω = 2πk (2.5)

where k is the frequency of the oscillation.

The (∂R/∂w) and the grid-node velocity Jacobian (∂R/∂vg) matrices are derived through
an analytical linearization or differentiation of the discrete URANS equations. The gust
shape vector v̂g needs to be defined in order to solve equation 2.3 for ŵ with known
(∂R/∂w), (∂R/∂vg) and ω∗. An analytical description is given by

v̂g (x, ω
∗) = vgze

iφ(x,ω∗) (2.6)

with the vector of phase shifts φ that according to linear potential theory [2] is given by

φ(x, ω∗) = (x− x0)
ω∗

cref
(2.7)

where x the spatial location vector is introduced as a new variable.

The equations above describe a way to solve for ŵ given a steady flow solution, and
a reduced frequency. ŵ can be evaluated for multiple reduced frequencies to obtain a
solution in the time domain [4, 5]. The LFD solver is implemented in the DLR-TAU code
which is used in this work [22].

2.2 Resulting Task

According to [4] the LFD solver described in the section above allows for a reduction in
CPU time of one to two orders of magnitude for unsteady aerodynamic predictions when
compared to solving the URANS equations. However, using a data-driven surrogate with
further reduced computational effort can be useful for multi-query scenarios.
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A task must be defined regarding which part of the physical equations is to be replaced by a
surrogate model. Considering the linear system in equation 2.3 gives multiple possibilities.
The computational most effortful task is the creation of the Jacobian matrix (∂R/∂w).
Consequently, an option could be to replace this computation with a surrogate model.
However, in this paper a holistic approach is chosen: the task is to build a surrogate model
that is able to predict the the complex-valued increment of the pressure coefficient ∆cp
at the airfoil’s surface given a steady flow solution w around an airfoil, and a reduced
frequency ω∗. The usage of further input variables such as the Mach number or the
angle of attack is allowed. ∆cp is chosen as target, since this distributed quantity over
the surface delivers important information regarding gust-loads. In addition, it can be
computed from the complex-valued Fourier coefficient ŵ. Also, the value can be obtained
as a direct output of the LFD solver in the DLR-TAU code [22]. Figure 2.2 visualizes the
task.

Figure 2.2: Schematic visualization of the task for a surrogate model

To allow a consistent description of the methods in the next chapter, the following form-
alization for the function f represented by the surrogate model is given by:

f : (w(κ),κ, ω∗,g) 7→ ∆cp (2.8)

where w is the vector of conservative variables of the flow solution at the airfoil surface,
which are also called local flow features (e.g. pressure). κ is the vector of independent flow
parameters, in the following they are also called global flow features (e.g. Mach number).
ω∗ is the reduced frequency. g is a vector containing geometric information. ∆cp is the
vector of complex-valued pressure increments at the airfoil surface.



Chapter 3

Data-Driven Methods
The previous chapter stated the task for the surrogate methods. In this chapter, a de-
scription is provided for the six data-driven methods explored in this study with a focus
on the graph neural network approaches. Physics-based modelling describes a system
with equations that explain the underlying physical phenomena. In contrast, data-driven
methods make use of existing data that describes a physical phenomenon. Data-driven
methods aim to find structures in the data to generalize from to make predictions.

3.1 Machine Learning

Machine learning (ML) is an artificial intelligence (AI) approach. Whereas rule-based
systems generate an output based on a hand-designed program that evaluates an input,
classical machine learning uses hand-designed features that generate an output. Statistical
methods such as regression models are a form of classical ML. Deep learning (DL) belongs
to the field of ML. DL is more powerful by using several mapping layers. Thus, abstract
representations of the input are generated with to goal of generating mappings of these
more abstract features that are the output. The most commonly known form of DL is the
multi-layer perceptron (MLP) that is explained in subsection 3.3.2, while more recent DL
approaches based on graph neural networks are described in subsections 3.3.4 and 3.3.5
[23, 24].

For this study regression models are of interest. Depending on the models’ capability
to handle complex values, the regression models in this work can be seen as a universal
approximator of the form f : Rn → Rm or f : Rn → Cm (with f from eq. 2.8, n inputs
and m outputs) [23, 25].

3.2 Geometric and Graph Data
Most of the methods explained in section 3.3 use geometrical information. The graph
neural network approaches use the data stored in an attributed graph that is created
based on the CFD mesh. Hence, this section explains the available geometric information
and how it can be transformed into an attributed graph.

Attributed Graphs
V is a set of n nodes vi. Two nodes vi and vj can be connected by a directed edge ej,i.
Through binary entries in the adjacency matrix A ∈ Nn,n m edges are defined. This
defines a graph G = (V,A).

By adding d1 features in a node feature vector xi ∈ Rd1 to each node, and by adding
d2 features in an edge feature vector ej,i ∈ Rd2 to each edge an attributed graph is con-
structed. With all node feature vectors and all edge feature vectors collected in matrices

7
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X ∈ Rn,d1 and E ∈ Rn,d2 an attributed graph can be written as: G = (V,A,X,E) [26].
Figure 3.1 gives an exemplary visualization.

Figure 3.1: Exemplary attributed graph with node vi that is connected to two neigh-
bours. Each node has three features, each edge has two features.

Graph Creation on Basis of a CFD Mesh
A CFD mesh consists of finite volumes. For the application of the different modelling ap-
proaches the spatial information needs to be in graph representation. The transformation
is done using the function Graph from the DLR SMARTy-Toolbox [27].

The connectivity of the mesh can be translated to a graph G = (V,A) with n nodes.
More geometrical information is added as node and edge features resulting in an attributed
graph. The coordinates of node i are (ci1, ci2) and the surface normals at dual element i are
(vi1, v

i
2). They are added as node feature vectors xi to the node feature matrix X ∈ Rn,4.

The displacements or distance vectors between node j and i in polar coordinates (rj,i, θj,i)
and the face normals between dual elements j and i in polar coordinates (ãj,i, θ̃j,i) are
added as edge feature vectors ei,j to the edge feature matrix E ∈ Rm,4. Note that
subsequently the graph can be extended by adding w(κ), κ and ω∗ as node features
depending on the methodology as explained later in subsection 3.3.4 and 3.3.5.

3.3 Methods
Multiple DL approaches are compared against each other as well as against an interpola-
tion model as a baseline comparison.

3.3.1 Interpolation

For the purpose of baseline comparison, one of the interpolation capabilities implemented
in the SMARTy-Toolbox is used. Given global flow features κ and the reduced fre-
quency ω∗ the interpolation model has to predict the entire vector ∆cp at once. The
goal of an interpolation model is to find a mapping between a set of input vectors
X = {(κ1, ω

∗
1)

⊤, ..., (κn, ω
∗
n)

⊤} and a set of scalar output values Y = {∆cp,1, ...,∆cp,n}.
The prediction of multiple target quantities as ∆cp is possible by defining a single inter-
polation model for each quantity. Assuming Gaussian noise δ in the data an interpolation
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model can be written as:

∆cp(κ, ω
∗) = g(κ, ω∗) + δ (3.1)

and g(κ, ω∗) = ϕ(κ, ω∗)⊤u (3.2)

with basis functions ϕ(κ, ω∗) = (ϕ1(κ, ω
∗), ..., ϕm(κ, ω

∗))⊤ and the weight vector which is
usually defined as u ∈ Rm. Since the goal is to predict complex values in this study it is
defined as u ∈ Cm. The nature of the interpolation can be altered by the choice of the
basis function [27].

Radial basis function (RBF) interpolation allows to find a high-order description of high
dimensional data [28]. Gaussian process regression is a non-parametric probabilistic
method for modelling and predicting the distribution of a dependent variable based on a
set of input data points, utilizing Gaussian processes to capture uncertainty and provide
regression analysis.

RBF Interpolation
Radial Basis Function (RBF) Interpolation is a technique that uses a combination of radial
basis functions centred at data points to approximate and interpolate high dimensional
data at non-data points, where the influence of each data point diminishes with distance
from the centre [28, 29].

RBFs can be described as:

ϕi(κ, ω
∗) = φ(||(κ, ω∗)⊤ − (κi, ω

∗
i )

⊤||), i = 1, ..., n (3.3)

where function φ can be chosen. Further theory can be found in [29]. Four different RBF
types are implemented in SMARTy, they can be found in table A.1 [27].

Gaussian Process Regression
Gaussian process regression (Kriging) is a probabilistic method for modelling and predict-
ing the distribution of a dependent variable based on a set of input data points, utilizing
Gaussian processes to capture uncertainty and provide a flexible framework for regression
analysis [27, 30].

The functional relationship between the scalar output ∆cp and the input vector (κ, ω∗)⊤ ∈
Rn can be defined as

∆cp(κ, ω
∗) = f(κ, ω∗)β + ϵ(κ, ω∗). (3.4)

It is defined by the regression model f : Rn → Rp with unknown parameters β ∈ Rp

and a Gaussian process ϵ(κ, ω∗), which is defined by an expected value, variance, and
covariance. Since this is not the focus of this work, more theory can be found in [27], [31],
[32], and [33]. Kriging models can be altered by using different correlation kernels. The
kernels in table A.2 are used in the following study.

3.3.2 Fully-Connected Neural Network

A fully-connected neural network (FCNN) is also called a multi-layer perceptron (MLP).
It is based on the simpler idea of a perceptron. The FCNN in this paper uses wi(κ), κ, ω∗

and (ci1, c
i
2), (vi1, vi2) as geometrical features at one node to predict ℜ(∆cp)i and ℑ(∆cp)i.
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The index i refers to values at a specific node. A perceptron multiplies an input vector
x ∈ Rn with weights u ∈ Rn, adds a bias b ∈ R and passes it through a (non-linear)
activation function η in order to produce an output y ∈ R [34]:

y = η(u⊤x+ b) (3.5)

In an MLP multiple neurons as in equation 3.5 are organized in l layers. Each unit in one
layer is connected to every unit in the subsequent layer. The output of the (i+1)-th layer
h(i+1) ∈ Rp with p neurons is computed on basis of the i-th layer h(i) ∈ Rq with q neurons.
All weights are organized in a weight matrix W(i) ∈ Rp,q and the biases organized in the
bias vector b(i) ∈ Rq:

h(i) = η(i)
(
W(i)h(i−1) + b(i)

)
(3.6)

By defining the input vector (wi(κ),κ, ω
∗, (ci1, c

i
2), (v

i
1, v

i
2))

⊤ ∈ Rn as the first layer and
the output (ℜ(∆cp)i,ℑ(∆cp)i)

⊤ ∈ Rm as the last layer, equation 3.6 can fully describe an
MLP [23].

While the number of inputs n and outputs m, and therefore the size of the first and
last layer are defined by the data, the number of hidden layers l and the number of
neurons per layer can be changed. Both are hyperparameters and can strongly influence
the performance of a neural network. The model uses the ReLU activation function
according to [35]. It is trained iteratively using backpropagation according to [36].

3.3.3 Message Passing Neural Network

As a basis for GNNs message passing neural networks (MPNNs) must be introduced.
MPNNs assume graph data and compute a new node feature vector ht+1

i ∈ Rd1,t+1 at
node vi on basis of the node feature vector of the previous step at node vi h

t
i ∈ Rd1,t , and

at all the neighbours vj ∈ N (vi) h
t
j ∈ Rd1,t , and the edge feature vectors ej,i for all edges

connected to vi.

With the input features as starting point h0
i the computation is done in the following

three steps [17]:

1. In the message passing step a message vector mt+1
j,i is passed from each neighbor

vj ∈ N (vi) to node vi using function Mt with learnable parameters. The information
of ht

i, ht
j, and ej,i is taken into account:

mt+1
j,i = Mt

(
ht
j,h

t
i, ej,i

)
(3.7)

2. The messages of all neighbours are then collected using a permutation invariant
function in the aggregation step:

mt+1
i =

⊕
vj∈N (vi)

mt+1
j,i (3.8)

3. Finally, an update of the node feature vector is generated using function Ut with
learnable parameters:

ht+1
i = Ut

(
ht
i,m

t+1
i

)
(3.9)
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The three steps result in the following equation:

ht+1
i = Ut

ht
i,

⊕
vj∈N (vi)

Mt

(
ht
j,h

t
i, ej,i

) (3.10)

3.3.4 Graph Convolutional Network

The models in this subsection and subsection 3.3.5 assume that data in the form of
attributed graphs is present (see sec. 3.2). The first approach is the graph convolutional
network (GCN) which is introduced in two versions. For the first in addition to the
geometric information (ci1, c

i
2) and (vi1, v

i
2) all available flow features w(κ), κ and ω∗ are

added to the node feature vector. This model uses local flow information and is therefore
called local model. The second only uses global flow features: κ and ω∗. It is referred to
as global model. Both models predict the real and imaginary part of the increment to the
pressure coefficient at each node which results in the two vectors ℜ(∆cp) and ℑ(∆cp).

Residual Gated Graph ConvNets
The structure of an MPNN can be altered by the choice of the functions Mt, Ut, and
the aggregation function. The Residual Gated Graph ConvNet proposed in [19] uses the
sigmoid logistic function σ, linear transformation with the weights W2, W3, and W4, as
well as the pointwise product ⊙ for the message passing. The aggregation step uses the
sum. In the update step, an activation function η and the weight matrix W1 is used. The
resulting function is the following:

ht+1
i = η

W1h
t
i +

∑
vj∈N (vi)

σ
(
W3h

t
i +W4h

t
j

)
⊙W2h

t
j

 (3.11)

As one can see in the above equation, this approach does not make use of the edge features.

The selected version of the model works according to equation 3.11 with ReLU as activ-
ation function. Throughout this work models based purely on graph convolutional layers
are called GCNs and are not to be confused with the simpler most common method that
uses a message passing based on first-order approximation of spectral graph convolutions
[18]. The number of hidden layers 1 ≤ t ≤ l and the number of neurons per hidden layer
alter the topology of the GCN. They can be used as hyperparameters.

3.3.5 Graph Network Simulator

The graph network simulator (GNS) combines concepts of the MLP and the GCN model
and was proposed in [37]. In contrast to the GCN model, the GNS model also considers
the graph edge features. The model is built as an encoder-processor-decoder structure.

Given an attributed graph G = (V,A,X,E) as in subsection 3.3.4 an encoder multi-layer
perceptron MLPE is used to produce an encoded representation h0

i ∈ Rdl of the node
features xi that are defined in X, with dl latent dimensions. As for the GCN method two
models with different inputs are compared: the first using local and global flow features
xi = (wi(κ),κ, ω

∗, (ci1, c
i
2), (v

i
1, v

i
2))

⊤ and the second only using global flow features xi =
(κ, ω∗, (ci1, c

i
2), (v

i
1, v

i
2))

⊤. Both use the same edge features ei,j = (rj,i, θj,i, ãj,i, θ̃j,i).

h0
i = MLPE (xi) (3.12)
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After application of the encoder to all nodes a new attributed graph G0 = (V,A,X0,E)
is obtained.

Subsequently, a GCN with l message passing layers is used to process the graph data. In
the 1 ≤ t ≤ l layers the message passing is done using an MLP of the following structure
for the function Mt from equation 3.7:

mt+1
j,i = MLPMt

(
ht
i ⊕

(
ht
j − ht

i

)
⊕ ej,i

)
(3.13)

The aggregation (eq. 3.8) is done by taking the mean of all messages:

mt+1
i =

1

|N (vi)|
∑

j∈N (vi)

mt+1
j,i (3.14)

where N (vi) is the set of neighbours of node vi. The update (eq. 3.9) is then computed
using another MLP:

ht+1
i = MLPUt

(
ht
i ⊕mt+1

i

)
(3.15)

The resulting attributed graph Gl = (V,A,Xl,E) is finally decoded using a decoder MLP.
This results in the following prediction:

(ℜ(∆cp)i,ℑ(∆cp)i)
⊤ = MLPD(hl

i) (3.16)

The topology of the encoder, processor, and decoder can be altered by several parameters.
Those can be used as hyperparameters.

Baseline ML Comparison GNN

Interpolation FCNN GCN GNS
Global Local Global Local

Fe
at

u
re

s

G
lo

ba
l

κ κ κ κ κ κ

Lo
ca

l

wi(κ) w(κ) w(κ)

G
eo

m
et

ri
c

(ci1, c
i
2),

(vi1, v
i
2)

(c1, c2),
(v1,v2)

(c1, c2),
(v1,v2)

(c1, c2),
(v1,v2),
(rj, θj),
(ãj, θ̃j)

(c1, c2),
(v1,v2),
(rj, θj),
(ãj, θ̃j)

T
ar

ge
ts

∆cp
ℜ(∆cp)i,
ℑ(∆cp)i

ℜ(∆cp),
ℑ(∆cp)

ℜ(∆cp),
ℑ(∆cp)

ℜ(∆cp),
ℑ(∆cp)

ℜ(∆cp),
ℑ(∆cp)

Table 3.1: Overview of the features and targets used for the different models using the
generic variables introduced in chapter 2. The differentiation between vectors
and values with the suffix i gives information on whether the approach works
for all nodes at once or node-wise.
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3.3.6 Model Summary

Table 3.1 summarizes the features and targets used by the different approaches using the
formal description introduced in chapter 2. After the description of a specific test case in
chapter 4 table 5.1 in chapter 5 states the actual variables used in this study.

3.3.7 Advantages and Disadvantages

Including the differentiation between global and local models subsections 3.3.1 to 3.3.5
define six different models. Table 3.2 gives the advantages and disadvantages of the models
that are known upfront. More insight is gained throughout this paper.

Model Advantages Disadvantages

Interpolation
- Easiest approach
- No steady solution required
- Able to predict complex values

- No usage of local flow
information
- No usage of geometrical
information

FCNN - Usage of local flow information
- FCNN widely used

- Model must be evaluated at
each node
-No usage of neighbourhood
information

GCN Global - No steady solution required
- Uses geometrical information - Graph input required

GCN Local - Usage of local flow information
- Uses geometrical information - Graph input required

GNS Global

- No steady solution required
- Uses most geometrical
information
- Encoder-Processor-Decoder
structure gives latent feature
representation

- Graph input required
- New, rarely
used approach

GNS Local

- Usage of local flow information
- Uses most geometrical
information
- Encoder-Processor-Decoder
structure gives latent feature
representation

- Graph input required
- New, rarely
used approach

Table 3.2: Advantages and disadvantages of the different models

3.3.8 Software Implementation

The methods explained in the subsections 3.3.1, 3.3.2, 3.3.4 and 3.3.5 are implemen-
ted in the DLR-SMARTy-Toolbox as the modules Interpolation, FullyConnectedNN,
GCNModel and GNSModel. These models work based on the python packages PyTorch
(torch) and PyTorchGeometric (pyg) [27, 38, 39].



Chapter 4

Test Case
In this chapter, the test case which is used in this study is explained. Therefore, the goal
is to create a dataset containing aerodynamic data in the frequency domain for different
conditions on which the methods explained in section 3.3 can be compared.

4.1 NACA 64A010 Airfoil
As a two-dimensional test case, the NACA 64A010 airfoil is selected. It is a symmetric
airfoil according to the NACA 6A-Series [40]. A two-dimensional test case is used to limit
the complexity of the first investigation of the methods. Subsequently, more complex test
cases as a three-dimensional wing or a full aircraft are conceivable. The specific airfoil is
selected since it has previously been used to investigate unsteady aerodynamics in [4] and
[41].

Figure 4.1: Sampling of M and α as input variables for steady-state simulations

4.2 Design of Experiments

The design of experiments (DoE) is done in two steps, first, a set of steady simulations is
computed. In the second step, they are used as input for the LFD simulations. The Halton
sequence is a quasi-random number sequence that allows the creation of a reproducible set
of M and α combinations with a random appearance [42]. Furthermore, it is implemented
in the DLR SMARTy-Toolbox [27]. For the sampling of the steady flow solution, the Mach
number and the angle of attack are used as independent flow variables κ = (M,α)⊤ since

14
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they significantly influence the aerodynamic behaviour of an airfoil. 200 combinations of
the Mach number in the range [0.2, 0.8] and the angle of attack in the range [−3◦, 10◦]
are created. The ranges are selected this way to cover a wide range of possible flight
conditions in the subsonic regime. The distribution can be seen in figure 4.1.

Next to the output of a steady-state solution, the LFD-solver expects other input vari-
ables. The type of excitation defines how the system is excited. For this study, only
excitation due to gusts are considered. As explained in section 2.1 the reduced frequency
ω∗ influences the gust shape and is used as the third input variable. For each steady-state
flow solution, respectively for each combination of M and α, a set of 20 equidistantly dis-
tributed reduced frequencies in the range [0, 4] completes the three-dimensional sample
space. The selected range covers a wide range of unsteady behaviour. Consequently, 4000
samples with different combinations of M , α and ω∗ can be produced.

Using the same set of reduced frequencies for each combination of Mach number and angle
of attack can be explained by examining a possible use case: given a steady-state flow
solution and a set of reduced frequencies, unsteady flow solutions have to be predicted.

4.3 Mesh Description and Graph Creation
For the CFD simulations in this study the mesh consists of a structured mesh close to
the airfoil (see figure 4.2b) and an unstructured mesh for the rest of the computational
domain (see figure 4.2a). The flow solution is computed in a radius of 100 chord lengths
around the airfoil.

(a) Entire domain with unstructured mesh (b) Structured mesh close to the airfoil

Figure 4.2: Mesh used in the study

The present mesh is used to create an attributed graph in accordance with section 3.2.
The result is a graph Gall = (Vall,Aall) with nall = 10727 nodes and mall = 54314 edges.
However, since the goal is to predict the surface pressure increments only the surface
graph is used. The result is a graph Gsurface = (Vsurface,Asurface) with nsurface = 200 nodes
and msurface = 400 edges. Subsequently, when referring to the graph used in this study,
the index surface is neglected. Adding the node and edge features results in an attributed
graph G = (V,A,X,E) with V ∈ R200, A ∈ R200,200, X ∈ R200,4 and E ∈ R400,4.
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4.4 Flow Simulations
Based on the DoE described in section 4.2 first 200 steady simulations and subsequently
4000 LFD simulations are executed using the DLR TAU code [22].

4.4.1 Steady Simulations

As described the steady flow simulations use the Mach number and the angle of attack
as independent inputs. Selected parameters are explained here. The Reynolds number is
fixed to Re = 12.5 · 106. As explained in the appendix A.2.1 this leads to simulations at
different altitudes. The Spalart-Allmaras one-equation turbulence model is used [43]. The
iterative solving is done for a maximum of 10000 time steps or until the density residual
Rrho has reach a value of 1 · 10−10 or smaller [22]. The solver outputs values on the airfoil
surface (surface solution) and for the volume (volume solution). It is further looked at in
section 4.5.

4.4.2 Linear Frequency Domain Simulations

The LFD solver uses the steady solutions and the reduced frequency as variable inputs.
The reduced frequency is used to define an excitation of the type gust. The gust direction
is vertical. The simulation iteratively runs for a maximum of 10000 iterations. Further-
more, the total linear residual from the Generalized Minimal Residual algorithm (GMRes)
solver Res-GMRES is monitored [22]. The simulation is stopped once it reaches a value of
1 · 10−11 or lower. Beyond that, the LFD solver uses, where applicable, similar settings as
the steady solver.

Figure 4.3: Converged and not converged
samples in the M -α-plane

Figure 4.4: cl vs α for different Mach
numbers

4.4.3 Convergence

Not all simulations reached the convergence criteria defined in subsections 4.4.1 and 4.4.2
after the maximum number of iterations. Simulations that are not converged should be
excluded from the dataset since they do not represent a physically correct solution. Of
the 4000 sample points generated in the DoE 771 did not reach the convergence criteria
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in either the steady simulation, the LFD simulation, or both. The distribution of the
resulting 3229 samples in the M -α-plane can be seen in figure 4.3. As an overall tendency
simulations with high values for M and α did not converge more often. However, in the
top right corner, a small region with converged simulation at high M and high α can be
found. These samples are investigated by examining the coefficient of lift cl over the angle
of attack α for three Mach numbers in the affected area.

Figure 4.4 shows the lift coefficient for different combinations of Mach and angle of attack.
Only converged simulations are shown. It can be seen that simulations converge with
increasing alpha until a cl,max is reached. In the following stall region, the simulations do
not converge. At higher Mach numbers converged samples can be found again. They are
separated from the rest of the dataset and since they refer to a usually unwanted flight
condition (post-stall) they are excluded from the dataset.

The resulting dataset contains 3144 samples and can be seen in figure 4.5. It has to be
mentioned that this is a two-dimensional figure representing a three-dimensional space.
Consequently, the figure gives no information about how many LFD simulations converged
at each M -α combination.

Figure 4.5: Final set of samples in the M -α-plane

4.5 Features
Possible features that can be used for the construction of a surrogate model are the outputs
from the steady simulations as well as M , α, and ω∗. The goal of this section is to find
the smallest number of targets that deliver the highest amount of information.

The steady simulation delivers the following values: density ρ, velocities u, v, w, pressure
p, and two values from the turbulence model ũSA, νt. As explained in subsection 2.2 only
the values on the surface of the airfoil are used. For viscous fluids the no-slip condition on
a solid boundary is true [44]. Only values on the airfoils boundary are taken into account
some of the possible features are zero: u, v, w, ũSA, and νt. Since they do not deliver any
information they are eliminated.
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The remaining possible features are plotted against each other in figure A.1. As one can
expect, the distribution of M , α, and ω∗ are distributed according to the DoE since they
are the independent variables. Pressure p and density ρ have an almost linear relationship
(fig. A.1; bottom row, fourth plot from the left). Consequently, only one feature is used
since the informational content is similar for both. To choose the feature with more
information the variance of both is computed and divided by the mean:

σ2
p

µp

= 0.01634 and

σ2
ρ

µρ

= 0.01603

The value is higher for pressure. Thus, four possible features are determined. M , α, and
ω∗ are called global features from now on since they apply for all locations on the airfoils.
p is called a local feature because a specific value for each location on the airfoil is used.

4.6 Targets
As the unsteady pressure coefficient increments ∆cp are complex values in the frequency
domain approach, the features must be handled accordingly. The Interpolation model
that is used as a baseline can predict complex numbers. However, the DL are not able
to directly predict complex values with their current implementation in the SMARTy-
Toolbox. Complex-valued neural networks are a current research subject and could be a
future approach [45, 46]. For this study, the complex numbers are separated into their
real and imaginary part. Subsequently, at each location on the airfoil, two targets have
to be predicted.

4.7 Resulting Dataset

The data is collected in a dataset with 3144 samples (according to 4.4.3). Each sample
has three global features M , α, ω∗, and one local feature p. Each sample has two targets
ℜ(∆cp), and ℑ(∆cp). The local feature and the targets each have 200 individual values
for each airfoil location for each sample. Furthermore, each sample is supplemented by
the geometrical information that is stored in the graph (see sec. 4.3). To investigate the
influence of local and global features subsets of the entire dataset can be used. A detailed
description of the used data for each model is given in section 5.1.

4.8 Train-Validation-Test-Split
The resulting dataset is split into three partitions:

1. The data that is used to train the models is called training data.

2. For iterative training processes the model is evaluated during the training process
using the validation data.

3. Test data is used to finally evaluate the model on unseen data.

Different splitting strategies are possible. A possible use case for the resulting surrogate
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models is to predict the target quantities for multiple reduced frequencies given a steady
solution. Consequently, the splitting is only done between the steady samples: all samples
(at different ω∗) for a combination of M and α are either in the training, validation, or test
dataset. 60% of the data is used as training data, 20% of the data is used as validation
data, and 20% of the data is used as test data. The split is chosen since the available
dataset can be considered as large. This allows to assign a big portion of the data for
validation and testing. Due to the elimination of not converged samples the number of
samples for a combination of M and α can vary. This results in the following split:

• Number training samples: 1875

• Number validation samples: 634

• Number test samples: 635

The split visualized in the steady plane can be seen in 4.6. From the visualization,
it becomes clear, that the training, validation, and test samples are distributed evenly
across the M -α-plane.

Figure 4.6: Train-Validation-Test-Split in the M -α-plane



Chapter 5

Model Selection
In this section models based on the methods explained in section 3.3 are constructed and
optimized for the test case (chapter 4).

5.1 Description of Models
After in chapter 4 features are selected, M and α are used as independent and global flow
features κ. The vector containing the pressure at the surface p(M,α) is used as local flow
feature w(κ). The resulting features and targets are presented in table 5.1.
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Global Local Global Local
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(ãj, θ̃j)
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(v1,v2),
(rj, θj),
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∆cp
ℜ(∆cp)i,
ℑ(∆cp)i
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ℑ(∆cp)

ℜ(∆cp),
ℑ(∆cp)

ℜ(∆cp),
ℑ(∆cp)

Table 5.1: Overview of the features and targets used for the different models. The
differentiation between vectors and values with the suffix i gives information
on whether the approach works for all nodes at once or node-wise.

It is known that ∆cp does only consist of real values when ω∗ = 0. This knowledge is
used and implemented into the prediction function of all models. This function is only
called for prediction, but not during training.
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5.2 Hyperparameter Optimization

Hyperparameter optimization (HPO) is used to find a set of hyperparameters that leads
to the highest possible prediction accuracy.

5.2.1 Method

The python framework optuna is used for optimization [47]. It uses the tree-structured
parzen estimator approach to perform sequential model-based global optimization of a fit-
ness function [48]. The framework allows to define lists or ranges for multiple independent
variables (see subsec. 5.2.2).

In this study, the goal is to find the set of hyperparameters that minimizes the mean
absolute error (MAE) as defined in section 6.1. Therefore, each model is trained for
a number of trials. Subsequently, the MAE is evaluated using the validation dataset,
because the test dataset is only used in the final evaluation of the models. Finally, the
model with the lowest MAE is selected. Each modelling approach is optimized using
50 trials. The DL approaches are trained for 2000 epochs using the training dataset.
During training the MAE is monitored on the validation dataset. After 50 epochs without
improvement, the training is stopped. This reduces the computational cost of the already
computationally expensive HPO.

5.2.2 Optimization Variables

This subsection gives an overview of which hyperparameters are used in the optimization.
Therefore, some of the capabilities of the optimization framework must be introduced:

• suggest_categorical: variable is chosen from a list. The entries are not bound to
a specific data type.

• suggest_int: integer from a range is chosen. Additionally, the range can be defined
in a logarithmic domain.

• suggest_float: float from a range is chosen. Additionally, the range can be defined
in a logarithmic domain.

Note that all models have a very large number of hyperparameters. Using all of them as
variables is not feasible in the frame of this paper. In the following important parameters
that define the topology and learning characteristics of each model are selected and shortly
explained. Further parameters are not explained in this text.

Interpolation
For the Interpolation models multiple approaches (see tab. A.1 and A.2) are defined
through the variable kernel. The augmentation parameter defines whether the Inter-
polation model uses a trend function. The regularization parameter can turn the in-
terpolation approach into a regression approach. scale defines whether the features and
targets are scaled (see appendix A.3.1). Further details about the defined possibilities for
the hyperparameters can be found in table A.3 in the appendix.
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FCNN
The FCNNs topology is defined by the numHiddenLayers. Each layer contains numNeurons-
PerLayer neurons. For the training process, an initial learningRate defines how fast the
models’ weights are adapted. Throughout the training process, the learningRate is ad-
apted in two steps by multiplying it with the factor gamma. This multiplication is done
at training epoch milestoneFactor and at milestoneFactor·2. Further details regard-
ing the defined possibilities for the hyperparameters can be found in table A.4 in the
appendix.

GCN
The same hyperparameters as for the FCNN can be defined for the GCN Global and GCN
Local models. Further details about the defined possibilities for the hyperparameters can
be found in tables A.5 and A.6 in the appendix.

GNS
The GNS models are built in an encoder-processor-decoder structure. numHiddenLayers-
Encoder defines the number of hidden layers in the encoder. numLayersProcessor is the
number of layers in the processor. numNeurons defines the number of neurons in each
layer in the encoder, the processor and the decoder. The parameters defining the training
process (learningRate, gamma, milestoneFactor) are the same as for the other DL
models. Further details about the defined possibilities for the hyperparameters can be
found in tables A.7 and A.8 in the appendix.

5.2.3 Results

Figures A.2 to A.7 can be found in the appendix. The optimization history shows the
evolution of the objective value over the number of trials. It can be seen that the number
of 50 trials is enough for all models to converge. The hyperparameter importance is calcu-
lated according to [49]. It can be seen that for all models the hyperparameters that define
the training process, e.g. learningRate, are more important than the parameters that
define the topology of the models. The resulting values for the different hyperparameters
of all models can be found in tables A.3 to A.8. Using these hyperparameters the models
are evaluated in the next chapter.



Chapter 6

Results
In this chapter, the optimized models are evaluated (sec. 6.2) on different metrics that are
introduced in section 6.1. Furthermore, three investigations are conducted: in section 6.3
the influence of the size of the dataset is evaluated, in section 6.4 the models are evaluated
on unseen reduced frequencies, and in section 6.5 investigates if training the models on
high Mach number cases improves the prediction capabilities in that regime.

6.1 Metrics
Different metrics are used to evaluate the accuracy of the ∆cp-predictions of the different
modelling approaches described in section 3.3. All metrics compare the true values ∆cp,true
to the predicted values ∆cp,pred. Four different metrics are used. For each sample (∆cp-
distribution around an airfoil) the different metrics compute one value representing the
error of n ∆cp-values. When dealing with complex values and not stated differently the
metrics are computed for the real and imaginary parts separately, the outcome is then
averaged.

Mean Absolute Error
The mean absolute error (MAE) is the mean of the L1-norm for all n values of one sample:

MAE(∆cp,true,∆cp,pred) =
1

n

n−1∑
i=0

|∆cp,true,i −∆cp,pred,i| (6.1)

Mean Squared Error
The mean squared error (MSE) is similar to the MAE, but uses the L2-norm instead:

MSE(∆cp,true,∆cp,pred) =
1

n

n−1∑
i=0

(∆cp,true,i −∆cp,pred,i)
2 (6.2)

Since MSE uses the square of differences it is more sensitive to outliers than MAE.

Coefficient of Determination
The coefficient of determination (also called R2-score) gives the proportion of variance of
the original dataset that is explained by the prediction. Perfect predictions lead to the
maximum value of 1, whereas a model that predicts the mean regardless of the inputs
leads to a score of 0:

R2(∆cp,true,∆cp,pred) = 1−
∑n

i=1(∆cp,true,i −∆cp,pred,i)
2∑n

i=1(∆cp,true,i −∆cp,true)2
(6.3)

where ∆cp,true =
1
n

∑n
i=1∆cp,true,i.

For this and the two above metrics the python package scikit-learn is used [50].
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Relative Error
The MAE is dependent on the range of the considered values. Thus, samples with higher
values are more likely to lead to higher errors. By using a relative error as in [51] this can
be mitigated. The outcome of equation 6.1 is divided by the range of the true values of
the sample:

Relative Error =
MAE(∆cp,true,∆cp,pred)

max
1≤i≤n

∆cp,true,i − min
1≤i≤n

∆cp,true,i
(6.4)

6.2 Optimized Models
The models are trained for 2000 epochs each. Due to convergence issues, the GNS Local
model is trained for 4000 epochs (more explanation in section 6.3). Afterwards, the model
state from the training epoch with the lowest validation error is used1. The hyperpara-
meters are set according to the results of the HPO section 5.2.

MAE MSE R2 relative Error
Interpolation 9.875 · 10−4 3.510 · 10−5 0.773 0.0160

FCNN 5.877 · 10−4 2.336 · 10−5 0.849 0.0089
GCN Global 5.683 · 10−4 1.224 · 10−5 0.921 0.0097
GCN Local 5.473 · 10−4 1.692 · 10−5 0.890 0.0083
GNS Global 5.785 · 10−4 1.337 · 10−5 0.913 0.0097
GNS Local 6.157 · 10−4 9.285 · 10−6 0.940 0.0115

Table 6.1: Models after HPO evaluated on different metrics. The best score for each
metric is highlighted.

6.2.1 Evaluation Using the Metrics

Table 6.1 gives the accuracy of the six models evaluated on the four metrics introduced in
section 6.1. Since the evaluation is done using all samples in the test dataset the resulting
values are averaged over the number of samples. The GCN Local model and the GNS
Local model both perform best on two metrics each. Interpolation scores worst on all
metrics. None of the scores deviates from the others by more than an order of magnitude.

Subsequently, only the Interpolation model and the GNS Local model are further invest-
igated to maintain clarity. These two models are compared in the text, analogue figures
for the other models can be found in the appendix A.4. In figure 6.1 the two models are
compared regarding the samples with the maximum MAE at each steady sample location.
A similar trend can be seen for both models: higher errors can be found at higher Mach
numbers. This trend is more pronounced for the Interpolation model (see subfig. 6.1a).
Similar trends can be seen for all models and across all metrics.

A decaying accuracy at higher Mach numbers might be explained by the fact that the
number of samples (in all partitions of the dataset) is smaller for higher Mach numbers
as explained in subsection 4.4.3. Thus, all the models could be biased towards lower

1The SMARTy callback EarlyStoppingByImprovement with patience equal to number of training
epochs is used.
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Mach numbers. Another explanation might be given by the fact that more non-linear
aerodynamic effects occur at higher M . As a result of the hyperparameter optimization
(HPO) a linear kernel was selected for the Interpolation model. Consequently, it is not
capable of covering non-linearities.

(a) Interpolation (b) GNS Local

Figure 6.1: Maximum MAE of the Interpolation and the GNS Local model evaluated
on the test data shown in the M -α plane.

Figure 6.2 presents the MAE on the test data for the GNS Local model on the α-ω∗ plane
at specified Mach number ranges. This confirms the trend that the model performs better
on samples at lower Mach numbers.

(a) 0.3 ≤ M ≤ 0.5 (b) 0.6 ≤ M ≤ 0.8

Figure 6.2: MAE for the GNS Local model using all test samples in a specified range of
Mach numbers shown in the α-ω∗ plane.

6.2.2 Low Mach Number Behaviour

A random sample at a low Mach number (M = 0.44) is analyzed. Regarding M and
α, the sample is located in the middle of the sample space, as visible in subfigure 6.3e.
Therefore, the model can learn from a lot of surrounding data. Linear aerodynamic
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behaviour can be expected for this sample. Figures 6.3 show the real and imaginary
part of the increment to the pressure coefficient for the Interpolation and the GNS Local
models for four selected reduced frequencies (the remaining models can be found in the
figure A.10). The considered reduced frequencies are selected in a way that the borders
of the sample space (ω∗ = 0.0, ω∗ = 4.0) and two frequencies in the middle of the sample
space are investigated. These same frequencies are examined throughout this chapter.

(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure 6.3: Distribution of complex pressure increment of Interpolation and GNS Local
model compared to LFD at M = 0.44, α = 2.88.

As the figures show, both modelling approaches give near perfect predictions at this M -α
location for all ω∗. Similar behaviour can be seen for all models. The Interpolation model
is the simplest approach. Consequently, if a surrogate model is only needed to predict the
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aerodynamic behaviour at low Mach numbers and a sufficient amount of training data is
available, the Interpolation model might be a suitable choice.

6.2.3 High Mach Number Behaviour

In contrast to the samples at lower Mach numbers, more complex flow behaviour with
non-linear characteristics can be expected at higher Mach numbers. As figure 6.1 has
already shown lower prediction accuracy is expected in this area. Consequently, in this
subsection samples at high Mach numbers are looked at.

(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure 6.4: Distribution of complex pressure increment of Interpolation and GNS Local
model compared to LFD at M = 0.72, α = 5.29.
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Sample at M = 0.72 and α = 5.29
The sample in figure 6.4 (and fig. A.11) shows the predictions at M = 0.72 and α = 5.29.
This sample lies at the edge of the M -α sampling space, as visible in subfigure 6.4e. Thus,
the data seen during training in this area is limited. As the plots in the figure show the
Interpolation model is not able to give good predictions. In particular, the Interpolation
model does not capture the peaks. However, from a practical standpoint, these peaks
are the most interesting points since they correspond to the shock location on the airfoil
and describe how the shock is affected by the gust excitation. The GNS Local model
gives good, but improvable predictions at all frequencies except ω∗ = 0.0. This reduced
frequency defines a boundary of the sampling space. However, this is also the case for
ω∗ = 4.0 which does not lead to a bad prediction. Since the simulations at high M -α
simulations frequently did not converge, the available training and validation data close
to the sample is looked at in figure 6.5. The plots in the figure confirm the assumption
that data around the sample is sparse. Especially simulations at low reduced frequencies
failed more often.

(a) Definition of region that is looked at in
figure 6.5b

(b) Samples from the region defined in fig-
ure 6.5a represented in the α-ω∗ plane

Figure 6.5: Sampling in a defined area around M = 0.72 and α = 5.29

Training Sample at M = 0.70 and α = 4.86
To gain more insights into the behavior in this region a training sample at M = 0.70
and α = 4.86 is investigated. Figure 6.6 looks at the same frequencies as previously.
As the plots indicate the Interpolation model almost perfectly predicts the target values.
Considering the inaccurate predictions of the Interpolation model on the previously in-
vestigated test sample one can hypothesize that the model is overfitted to the training
data and therefore not able to generalize [23]. The predictions of the GNS Local model
on the training sample do have small deviations from the LFD solution, but can also be
considered reasonably accurate for all reduced frequencies.
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(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure 6.6: Distribution of complex pressure increment of Interpolation and GNS Local
model compared to LFD at M = 0.70, α = 4.86 (Training dataset).

Sample at M = 0.77 and α = 3.37
After observing that the GNS Local model can predict training data and higher reduced
frequency test data at a high Mach number by examining the previous two samples, it is
of interest to investigate whether the model is capable of predicting the peak for a low
frequency sample as well. Figure 6.7 (and fig. A.13) refers to a sample at M = 0.77 and
α = 3.37. The surrounding samples are presented in the appendix in figure A.8. In this
case, more training and validation data at lower reduced frequencies is available. Since
this sample is at a lower Mach number than the previous one, this is consistent with the
observation that non-convergence is a more relevant issue for LFD simulations at high M
and high α. The GNS model is giving good predictions with some deviations to the LFD
solutions at ω∗ = 1.47, ω∗ = 2.74 and ω∗ = 4.00. For ω∗ = 0.0 the model predicts the
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location of the peak, but deviates regarding the magnitude of the peak. This supports
the hypothesis that more training data at low frequencies improves the prediction quality
at ω∗ = 0.0. However, this sample also lies on the border of the M -α sampling space
leading to an overall small amount of available training data in this region.

(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure 6.7: Distribution of complex pressure increment of Interpolation and GNS Local
model compared to LFD at M = 0.77, α = 3.37.

For non-sinusoidal excitations, e.g. with a 1-cos gust, the excitation signal can be trans-
formed into frequency domain using a discrete Fourier transform that results in a series of
frequency components. Typically, most of the original signal can be explained by a small
number of low frequencies. Thus, especially the prediction of low frequencies should be
accurate. The results so far suggest that the use of the models in this test case might
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be of limited benefit. Nevertheless, with enough training data available potential to also
capture complex flow characteristics as the peaks can be seen.

Sample at M = 0.73 and α = 2.08
The previous high Mach number samples all have a peak corresponding to a shock in the
steady solution. Figure 6.8 (and fig. A.12) shows a different behaviour. The LFD solution
exhibits oscillations for all frequencies. The Interpolation model gives poor predictions
for all frequencies. This again shows that it is not capable of capturing the underlying
aerodynamic effects in this region.

(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure 6.8: Distribution of complex pressure increment of Interpolation and GNS Local
model compared to LFD at M = 0.73, α = 2.08.
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The prediction accuracy of the GNS Local model decreases for lower reduced frequencies.
In particular, for ω∗ = 0, the GNS model is not able to predict the oscillations. Figure
A.9 in the appendix shows the surrounding samples. In the considered area only two
validation samples at ω∗ = 0 are missing. The training samples are complete. However,
this amount of data is not enough for the model to capture the underlying effects at low
reduced frequencies. Similar results as for the GNS Local approach can be seen for the
other DL models in the appendix. None of the other models performs visibly better than
the GNS Local approach.

6.3 Size of the Dataset
In a practical setting, especially when investigating three-dimensional test cases, less data
might be available due to limited computational resources. Thus, the influence of the
dataset size on the results is of great interest. In this section, the influence of the amount
of data seen in training is looked at.

Method
All model models are evaluated on the same test dataset as previously. For training and
validation purposes differently sized subsets of the dataset are created. The reduction is
defined by a percentage s. Then, a reduction in the number of samples is done in the
steady sampling plane. Consequently, the resulting datasets look at fewer combinations
of M and α, but still at 20 reduced frequencies at each steady sample. The original
steady sampling containing N steady training samples is created by a Halton sequence.
The reduced training data is created by selecting the first s ·N samples from the original
training data. The same is done for the validation data. No changes are applied to the
test data. Table 6.2 shows the resulting subsets. In figure A.14 the datasets are visualized.
It must be noted that especially the 5% reduction results in a very sparse training dataset
and does only contain one validation sample (see subfig. A.14a).

Share of
original
dataset

Training
samples

Validation
samples

Test
samples

Sum of
samples

100 % 1875 634 635 3144
80 % 1482 498 635 2615
60 % 1103 378 635 2116
40 % 738 239 635 1612
20 % 359 119 635 1113
10 % 164 60 635 859
5 % 80 20 635 735

Table 6.2: Number of samples used in the training, validation, and test datasets that
are used to investigate the size of the dataset

Each model is trained 10 times on each of the resulting datasets with random initialization.
The hyperparameters are chosen according to the results of HPO. The models are trained
for 2000 epochs each. Afterwards, the model adaptation with the lowest validation error
during the training is used.
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Results
The GNS Local model did not converge for all trials when trained over 2000 epochs (see
fig. A.16). This might be a case of underfitting: the model is not able to capture the
underlying pattern. Consequently, the training was repeated with 4000 epochs, those
results are looked at.

Contrary to the observation that the prediction variance is decreased if the models are
trained on larger datasets, the GNS Local model shows increased variance when trained
on 80% or 100% of the dataset (see figs. A.16 and A.17). In comparison to the error of
the 60% case, the 80% and 100% cases not only show an increase in variance but also
in the mean value of the MAE. Investigating the validation error during training over
the number of training epochs one can see that not all GNS Local models did converge
during 2000 training epochs. Repeating the training for 4000 epochs leads to a decreased
variance and improvement in accuracy. Still, some variance can be seen (see fig. A.15),
nevertheless the model is used for further evaluation since this satisfies the purposes of
this investigation.

Figure 6.9 shows the averaged MAE of 10 models over the size of the dataset. For small
datasets, the error grows considerably. The largest decay in accuracy can be found for the
GCN models. This might be caused by the large number of weights in this model (see table
6.3) that are not properly updated during training. As figure A.15 shows, the accuracy of
the DL models has an increased variance for smaller datasets. The Interpolation model
is deterministic and therefore has no variance. It must be noted that the HPO was done
using the full dataset. It is reasonable that the accuracy of the models improves if they
were optimized towards the smaller datasets. However, since HPO is very costly it is not
done in this work. Depending on the needed accuracy and the available resources the
results of this section can give a hint of which models are more suitable.

Figure 6.9: MAE over the size of training data for averaged over 10 trials for each model
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6.4 Unseen Reduced Frequencies
The previous studies used the same set of reduced frequencies during training and testing.
The goal of this section is to evaluate how the models perform on unseen frequencies, as
the goal is to build a surrogate for the LFD solver which can solve for any frequency.

6.4.1 Creation of Reduced Dataset

Based on the dataset that is described in chapter 4 new training, validation and testing
data are created as subsets. New training and validation data is created by selecting
the same steady samples as in previous studies, but only using every second reduced
frequency starting at the first one. Three test datasets are created: testing 1 consists of
seen global flow parameters and unseen reduced frequencies. Dataset testing 2 consists of
unseen global flow parameters and seen reduced frequencies. Testing 3 consists of unseen
global flow parameters and unseen reduced frequencies. Figure 6.10 gives a schematic
representation of the datasets.
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Figure 6.10: Schematic representation of the datasets used in the unseen frequencies
investigations

6.4.2 Results

The models are trained on the new reduced training dataset with the hyperparameters
as determined during the HPO. Subsequently, the models are evaluated on the different
test datasets. Examining the resulting prediction MAE in figure 6.11 (and the MSE and
relative Error in the appendix A.18 and A.19) the same trend can be seen for all six
models: evaluating the models at a seen M and α yields the smallest prediction error.
Evaluating the models at unseen Mach and angle of attack leads to slightly higher errors
at unseen reduced frequencies than at seen reduced frequencies. The difference in MAE
between the latter two cases is smaller compared to the difference in MAE between the
former two cases. Thus, it is more important that the model has seen a steady sample
during training than a reduced frequency. This knowledge in combination with the finding
from section 6.2 that lower frequency samples in the training data seem to be important
can be used to define a new sampling strategy focusing on a high number of steady samples
in combination with a refinement regarding lower reduced frequencies.
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Figure 6.12 shows the prediction MAE of the Interpolation and GNS Local model on the
three reduced test datasets. It compares the performance of the models trained on the
full dataset to the models trained on the reduced datasets.

Figure 6.11: MAE for prediction of models in the unseen frequency investigation

The Interpolation model (see subfig. 6.12a) trained on the full dataset gives almost perfect
predictions on the first test case, since these points are support points of the model. On
unseen M , α and seen ω∗ the model trained on reduced data performs slightly better,
perhaps the additional sampling points in the model trained on the full dataset introduce
noise into the model. On unseen M , α and ω∗ the model trained on the full dataset
performs better as it has seen these frequencies during training.

(a) Interpolation (b) GNS Local

Figure 6.12: Comparison of Interpolation and GNS Local model trained on the entire
dataset and trained on the reduced dataset. Note that labels on the ab-
scissa are only valid for the models trained on the reduced dataset since
the model trained on the full dataset has seen all ω∗ during training.
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The GNS Local model trained on the full data performs worse than the counterpart
trained on the reduced data on all three test datasets. This could indicate that too many
data points in training introduce noise into the model which leads to a deterioration in
prediction accuracy. This can be supported by the results of the data size investigation,
where the variance in the results of the GNS Local model increased for large datasets.

6.5 High Mach Number Models
The Interpolation model has proven suitable at low Mach numbers only. Thus, the ques-
tion arises as to whether the models can be improved when trained in a specific region of
the sample space. Especially interesting are regions with non-linear aerodynamic effects.
These effects can be found at high Mach numbers.

6.5.1 Creation of Reduced Dataset

A subset from the original dataset is created in a way that only samples with M ≥ 0.6 are
regarded since this range produces higher errors when the models are trained on the entire
dataset (see fig. A.20). Using the hyperparameter settings as previously each data-driven
approach is trained on the data of the reduced sampling. Subsequently, the models are
evaluated on the test samples from the reduced sampling. Furthermore, the models that
have been trained on the entire dataset are evaluated on the same test samples.

6.5.2 Results

Figure 6.13 shows the prediction errors on the reduced test set. The results show an
ambiguous tendency: the FCNN and GNS Local models give better predictions when
trained on M ≥ 0.6 data only, while the other models perform better when trained on
the entire dataset. Similar tendencies can be seen using the other metrics (see figs. A.21
and A.22).

Figure 6.13: Models trained on full dataset and models trained on samples M ≥ 0.6
evaluated against each other using the MAE.

The GNS Local model shows the strongest improvement when trained on the M ≥ 0.6
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data. The prediction accuracy of the GCN Global model has the most deterioration in this
case. During the training on the entire dataset, the models have seen more samples than
during training on M ≥ 0.6 data, this must be noted when examining the results. The
improvements and deterioration of the different models are visible, but not significant.
Consequently, one can conclude that training the models just on high Mach number
samples did not lead to significant improvements in the performance of the models and
capturing non-linear behaviour.

6.6 Computational Effort
After analyzing the models’ abilities to give accurate predictions, the computational effort
must be evaluated since the motivation for a data-driven surrogate modelling is to enable
faster predictions. The computational effort is evaluated regarding the training time, the
size of the models, and the evaluation time.

Training
Time

Number of
Parameters

Evaluation
Time

t [s] Relative Absolute Relative t [s] Relative
LFD 489.35±

4.890
1

Interpolation 4.33 ±
0.195

1 375 200 1 0.135 ±
0.0034

2.76 · 10−4

FCNN 13216.4 ±
2077.9

3054.4 1 844 226 4.92 0.124 ±
0.3160

2.53 · 10−4

GCN Global 6947.4 ±
483.7

1605.6 8 421 384 22.45 0.057 ±
0.0400

1.16 · 10−4

GCN Local 7979.6 ±
755.1

1844.1 10 524 680 28.05 0.062 ±
0.0003

1.27 · 10−4

GNS Global 5749.3 ±
23.6

1328.7 629 298 1.68 0.454 ±
0.0233

9.28 · 10−4

GNS Local 3712.3 ±
79.3

857.9 2 176 050 5.80 0.033 ±
0.0018

6.74 · 10−5

Table 6.3: Comparison of computational effort. The relative training time is normalized
using the Interpolation training time. The relative numbers of parameters
are normalized using the number of parameters of the Interpolation model.
The evaluation time is normalized using the LFD evaluation time.

6.6.1 Training Time

In contrast to the LFD solver, the data-driven approaches must be trained before usage.
All time comparisons are done using DLRs high-performance computing cluster CARA.
Graphic processing units (GPUs) are an established choice for the handling of data-driven
models. CARA is equipped with NVIDIA A100 GPUs. It must be noted, that results
might be affected by the current load on the computing cluster.

To account for randomness each model is trained 10 times for 2000 epochs. GNS Local
is trained for 4000 epochs. Note that some models might not need all epochs of training
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and converge faster. Table 6.3 shows the mean absolute training time and the standard
deviation. By dividing the mean training times with the Interpolation model’s mean
training time the relative training times can be computed.

The Interpolation model is trained roughly three orders of magnitude faster than the DL
approaches. The FCNN model takes the most training time and has the highest standard
deviation as well. GNS Local is the fastest DL approach and even faster than the GNS
Global approach despite though GNS Local uses more weights than GNS Global. Different
implementations for the two models are used and can provide an explanation for this.

6.6.2 Number of Parameters

The considered data-driven models have several parameters (weights) that are adjusted
during training and must be stored. Therefore, their number can be seen as a repres-
entation of the required storage for a model. The absolute numbers and the numbers
normalized by the number of parameters of the Interpolation model can be seen in table
6.3.

The Interpolation model uses the least number of weights, but it must be noted that the
weights are complex numbers and therefore need more storage than real numbers. Both
of the GCN models use by far the largest amount of parameters. Another trend that can
be seen is that the GNS Local and GCN Local models both have more parameters than
their counterparts that use only global flow features.

Figure 6.14: Samples selected for comparison of computational effort

6.6.3 Evaluation Time

Regarding the evaluation time, a comparison of the data-driven approaches to LFD can
be done. Comparing both on the same device would be desirable. However, LFD compu-
tations are usually performed using CPUs, while GPUs are used for data-driven models.
Thus, the comparison is done using the CARAs CPU capability (AMD EPYC 7061) for
LFD and GPU capability for the remaining models.
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Four samples are randomly drawn from the M -α plane. The four samples in figure 6.14
lead to converged simulations at all 20 reduced frequencies. Table 6.3 lists the mean
time and the standard deviation that each approach needs to compute the results for 20
frequencies at the four given M -α combinations. The mean and the standard deviation
are calculated by doing each computation 10 times. The relative values are computed by
dividing the mean times by the mean time of the LFD solver.

All six data-driven models lead to time improvements by four to five orders of magnitude.
The results might be dependent on the current load on the used devices. In this case,
the GNS Local approach gives the fastest predictions. The fast results of the GNS Local
models can again be explained by the different implementations when compared to the
GNS Global model. Furthermore, the high standard deviation of the FCNN model is
noticeable.

The most time costly step in the LFD computation is the computation of the Jacobian
matrix ∂R/∂w (see eq. 2.3). To save computational time this should only be done once
per steady case. Due to the implementation of the LFD solver, it was computed for each
reduced frequency. Consequently, the LFD simulation can be sped up. However, one can
still expect the data-driven approaches to be orders of magnitude faster since building the
Jacobian matrix only once per steady case would only lead to a maximal reduction to a
20-th of the stated times.



Chapter 7

Conclusions and Outlook

7.1 Conclusions
As stated in the introduction the research goal is to investigate the applicability of different
types of graph neural networks (GNNs) for the prediction of aerodynamic quantities in
the frequency domain by comparing it to other data-driven methods and the LFD solver.
The specific problem in this paper is to predict the complex-valued increment to the
pressure coefficient at an airfoil surface given a Mach number, an angle of attack and a
gust excitation which is characterized by a reduced frequency.

A test case using the two-dimensional NACA 64A010 airfoil is designed in a way to
resemble a realistic use case of the proposed surrogate model by creating a DoE consisting
of a quasi-random sampling of the Mach number and angle of attack combined with
multiple reduced frequencies at each steady sample. During this paper, a limitation
towards the surface solution and a single airfoil is done. Furthermore, in the course of
feature selection pressure is selected as the only significant local flow feature. As the results
show the sampling strategy is a good first reference point. However, due to unconverged
simulations at high M and α, and low ω∗, the resulting dataset has sparse regions which
probably influence the prediction capabilities.

Based on four different data-driven methodologies six surrogate models that can substitute
the LFD solver are developed in this paper: Interpolation, Fully-Connected Neural Net-
work (FCNN), Graph Convolutional Network (GCN) Global, GCN Local, Graph Network
Simulator (GNS) Global, and GNS Local. The models are adapted to predict complex-
valued targets by considering a different number of features, e.g. differentiating between
global and local flow features.

The models’ hyperparameters are optimized throughout this work towards a minimal
prediction error on the stated test case. Notable results from the hyperparameter op-
timization (HPO) are that hyperparameters influencing the model training are more im-
portant than hyperparameters defining the model topology in this case. Furthermore,
HPO leads to differently-sized models. The GCN models use roughly 5 to 28 times more
parameters than the other models. Also, models using local flow parameters consist of
more hyperparameters than their counterparts with global flow features only.

To evaluate the results, the prediction accuracy of the different models is evaluated on
four metrics with a focus on the mean absolute error (MAE). The GNNs using local
flow features score best on two metrics each. Analyzing the prediction errors regarding
their distribution depending on the global flow features shows a clear trend: all models
give almost perfect predictions for samples at lower Mach numbers. Depending on the
model higher errors with differing magnitudes are seen at higher Mach numbers since
non-linear flow characteristics can be found in this region. Investigating specific samples
gives further insights: the selected linear interpolation approach is not suited for the

40
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non-linear flow characteristics. The deep learning models show more potential in this
region as they give good predictions for several ∆cp-distributions, predominantly at higher
reduced frequencies. However, especially at lower reduced frequencies, they do not lead to
satisfactory results, even though for some samples the shock location is predicted correctly.

Determining the influence of the size of the training data on the prediction results shows a
strongly deteriorating accuracy for all models especially the GCN approach which might
be due to the high number of parameters that these models need to adapt during training.
The GNS Local approach leads to constantly best MAE-scores, but needs a higher number
of training epochs.

Investigating the prediction capability on unseen frequencies again leads to the best results
for the GNS Local model. Furthermore, this investigation shows that with the given test
case all models give better predictions when they interpolate on unseen frequencies than
when they have to interpolate regarding unseen steady samples.

Another investigation shows that there is no general benefit regarding the prediction
results for high Mach number test cases when a model is trained on high Mach number
samples only.

Regarding the computational effort, all data-driven approaches lead to evaluation time
savings of approximately four orders of magnitude. The differences between evaluation
times of the data-driven approaches are negligible. The DL approaches need about three
orders of magnitude more training time than the Interpolation model. The FCNN ap-
proach needs the longest training time whereas the GNS Local approach is the fastest.

Based on the described results some takeaway points can be formulated:

• If a surrogate model is only needed for low Mach numbers the Interpolation
model is a suitable choice, since it is the simplest approach with the shortest training
time. Furthermore, it is capable of directly predicting complex values and does this
equally fast as the other approaches.

• For surrogate model problems that also to incorporate high Mach number samples
all deep learning approaches show varying degrees of potential. The GNS Local
model proves to be the most promising approach in this work based on scores on
the metrics, the comparably low deterioration of accuracy when trained on small
datasets, and the capability to capture non-linear behaviour.

• Using local flow features leads to slightly lower errors than using global flow
features only.

• All data-driven approaches enable significant time savings regarding the eval-
uation.

Regarding the research objective, progress has been made by applying the GNN meth-
ods to a first frequency domain case. GNNs, especially the GNS model are a promising
approach for predicting aerodynamic quantities in the frequency domain. Potential lim-
itations of the models have been identified. Nevertheless, the results are not satisfactory
yet, hence further investigation is needed. In the following section ideas for further work
are given.
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7.2 Outlook
Based on the results of this work, various ways to move forward can be defined. First,
choices for other target quantities are explained. Afterwards, possibilities to improve the
prediction accuracy and ideas for new test cases are stated. Finally, further methods that
could be used to tackle frequency-domain aerodynamic problems are introduced.

Usage of Other Target Quantities
So far only complex-valued ∆cp-distributions at the airfoil’s surface are predicted. This
value gives a first insight into the capabilities of the different approaches. To build a
surrogate for the LFD solver it is necessary to examine how far the current results can be
transferred to the entire vector of conservative variables. Furthermore, the computation
of global forces, e.g. the coefficient of lift or the coefficient of drag, could be implemen-
ted as post-processing. The resulting values could be evaluated as well. Even though
the values at the airfoil surface define the forces acting on the airfoil, it might also be
interesting to investigate whether using the volume solution as a target quantity delivers
additional information to the surrogate models and therefore can improve the outcome.
Currently, only predictions based on harmonic excitations using one reduced frequency
are evaluated. Real-world use cases apply a spectrum of frequencies, e.g. to obtain the
results of the excitation due to 1-cos gusts. Consequently, applying a frequency spectrum
to the surrogate prediction results and evaluating the outcome can be a benefit.

Improvement of Prediction Accuracy
There are a variety of options to improve the prediction accuracy of the models. The
gradient-loss method proposed in [52] outperforms other approaches by stronger penalising
the loss in flow regions with larger gradients. Regarding the application of a spectrum
of frequencies to the solution as described in the paragraph above, more sophisticated,
tailored loss functions might lead to an improvement. One option could be to define a
loss function that gives greater importance to lower reduced frequencies. For all models a
selection regarding the hyperparameters that were used for HPO is made, more choices can
lead to improvements. Regarding the DL models especially different types of activation
functions, e.g. sigmoid or tanh, could be used. Next to altering the models, changes in the
DoE might also be beneficial: as described in the results more M -α samples in the high
Mach region and more samples at lower reduced frequencies are promising approaches.

New Test Cases
Examining one specific test case as done in this paper gives a first insight into the capab-
ilities of the investigated methods. Considering other airfoils than the NACA 64A010, as
well as the use of other meshes, e.g. fine versus coarse or fully structured versus unstruc-
tured mesh, gives deeper insights into the strengths and weaknesses of the models. The
next step towards industrial usage is the application of 3D test cases, such as an isolated
wing up to a full aircraft. Test cases using different types of excitation can deliver insights
into the capability to generalize to other problems.

Further Methods
This paper took a selection of methods into account. GCN and GNS are two specific
types of GNNs. Investigating modifications such as other message-passing structures
might improve the models. Finally, complex-valued neural networks are a current subject
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of research, with the first Python implementations as developed in [45] and [46]. Further
development and testing of such networks and their conjunction with GNNs could be of
great interest for frequency domain problems.
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Chapter A

Appendix

A.1 Data-Driven Methods

Name Definition
Linear φ(r) = r
Square φ(r) = r2

Cubic φ(r) = r3

Thin Plate Spline (TPS) φ(r) = r2ln(r)

Table A.1: RBF types implemented in SMARTy

Kernel
Gaussian

GaussianExponential
CubicSpline

Table A.2: Gaussian process regression kernels implemented in SMARTy
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A.2 Test Case

A.2.1 Reynolds Number

Using the density ρ, velocity u, Reynolds length L, and dynamic viscosity µ, the Reynolds
Re number is defined as

Re =
ρuL

µ
. (A.1)

In the context of CFD the Reynolds length is determined by the grid size of the mesh. As
the same mesh is used for all samples L is constant. The dynamic viscosity is a property
of the air and is constant for a fixed temperature. It is fixed in this case. Since the velocity
is dependent on the Mach number, it is variable for different samples. The density is the
only parameter that is left in the equation and consequently must be variable too. In the
context of air travel this means the simulations are conducted at different altitudes as the
density is a function of the altitude [53].

A.2.2 Features

Figure A.1: Pairwise plotted distribution of each all possible features that are non-zero
at the airfoil surface
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A.3 Model Selection

A.3.1 Scaling

The performance of many ML approaches can be affected by the range of the values
in a dataset. Scaling of the data can lead to improvements in a model’s performance.
Assuming a Gaussian distribution of the data standardization is done by transforming
the data to have zero as the mean and a standard deviation of one. A second approach to
scaling is MinMax -scaling which linearly transforms the data to a new range. Assuming
the values xi with i = 1, .., n to be stored in vector x ∈ Rn MinMax-scaling is done as
follows:

xi,scaled =
xi −minx

maxx −minx
(A.2)

Scaling can be done for both, features and targets. Equation A.2 is implemented in
SMARTy and is used throughout this work [27, 54].

A.3.2 Hyperparameters

Hyperparameter Type Range Optimal
Value

kernel categorical [TPS, Cubic, Square, Linear,
Kriging, CubicSpline, Gaussian,
GaussianExponential]

Linear

augmentation integer [-1, 2] 0
regularization categorical [0, 0.0001, 0.001, 0.01, 0.1, 1] 0
scale categorical [True, False] True

Table A.3: Hyperparameters of the Interpolation model

Hyperparameter Type Range Optimal
Value

numHiddenLayers integer [5, 12] 8
numNeuronsPerLayer integer [64, 128, 256, 512] 512
learningRate float from log-

domain
[1e-5, 1e-2] 0.001083

gamma float [0.1, 1] 0.640675
milestoneFactor integer from log-

domain
[10, 1000] 11

Table A.4: Hyperparameters of the FCNN model
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Hyperparameter Type Range Optimal
Value

numHiddenLayers integer [5, 12] 9
numNeuronsPerLayer integer [64, 128, 256, 512] 512
learningRate float from log-

domain
[1e-5, 1e-2] 0.000226

gamma float [0.1, 1] 0.116663
milestoneFactor integer from log-

domain
[10, 1000] 140

Table A.5: Hyperparameters of the GCN Global model

Hyperparameter Type Range Optimal
Value

numHiddenLayers integer [5, 12] 11
numNeuronsPerLayer integer [64, 128, 256, 512] 512
learningRate float from log-

domain
[1e-5, 1e-2] 0.000443

gamma float [0.1, 1] 0.363582
milestoneFactor integer from log-

domain
[10, 1000] 132

Table A.6: Hyperparameters of the GCN Local model

Hyperparameter Type Range Optimal
Value

numHiddenLayersEncoder integer [5, 12] 8
numNeurons categorical [64, 128, 256, 512] 256
numLayersProcessor integer [1, 4] 1
learningRate float from log-

domain
[1e-5, 1e-2] 0.000654

gamma float [0.1, 1] 0.495361
milestoneFactor integer from log-

domain
[10, 1000] 57

Table A.7: Hyperparameters of the GNS Global model
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Hyperparameter Type Range Optimal
Value

numHiddenLayersEncoder integer [5, 12] 7
numNeurons categorical [64, 128, 256, 512] 512
numLayersProcessor integer [1, 4] 1
learningRate float from log-

domain
[1e-5, 1e-2] 0.000914

gamma float [0.1, 1] 0.468220
milestoneFactor integer from log-

domain
[10, 1000] 82

Table A.8: Hyperparameters of the GNS Local model

A.3.3 HPO Results

(a) Optimization history (b) Parameter importances

Figure A.2: HPO results of the Interpolation model

(a) Optimization history (b) Parameter importances

Figure A.3: HPO results of the FCNN model
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(a) Optimization history (b) Parameter importances

Figure A.4: HPO results of the GCN Global model

(a) Optimization history (b) Parameter importances

Figure A.5: HPO results of the GCN Local model

(a) Optimization history (b) Parameter importances

Figure A.6: HPO results of the GNS Global model
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(a) Optimization history (b) Parameter importances

Figure A.7: HPO results of the GNS Local model
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A.4 Results

A.4.1 Models after HPO

(a) Definition of region that is looked at in
figure A.8b

(b) Samples from the region defined in fig-
ure A.8a represented in the α-ω∗ plane

Figure A.8: Sampling in a defined area around M = 0.72 and α = 5.29

(a) Definition of region that is looked at in
figure A.9b

(b) Samples from the region defined in fig-
ure A.9a represented in the α-ω∗ plane

Figure A.9: Sampling in a defined area around M = 0.72 and α = 5.29
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A.4.2 Complementary Figures for all Models

(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure A.10: Distribution of complex pressure increment of FCNN, GCN Global, GCN
Local and GNS Global model compared to LFD at M = 0.44, α = 2.88.
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(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure A.11: Distribution of complex pressure increment of FCNN, GCN Global, GCN
Local and GNS Global model compared to LFD at M = 0.72, α = 5.29.
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(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure A.12: Distribution of complex pressure increment of FCNN, GCN Global, GCN
Local and GNS Global model compared to LFD at M = 0.73, α = 2.08.
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(a) ω∗ = 0.0 (b) ω∗ = 1.47

(c) ω∗ = 2.74 (d) ω∗ = 4.00

(e) Location of sample in M -α plane

Figure A.13: Distribution of complex pressure increment of FCNN, GCN Global, GCN
Local and GNS Global model compared to LFD at M = 0.77, α = 3.37.



A.4 Results 64

A.4.3 Size of Dataset

(a) 5% (b) 10%

(c) 20% (d) 40%

(e) 60% (f) 80%

Figure A.14: Training, validation, and test data of reduced datasets in the M -α plane
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Figure A.15: Distribution of MAE over the size of training data for 10 trials for each
model.
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Figure A.16: MAE over the size of training data for averaged over 10 trials for each
model (First Try)

Figure A.17: MAE over the size of training data for the GNS Local model.
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A.4.4 Unseen Frequencies

Figure A.18: MSE for prediction of models in the unseen frequency investigation

Figure A.19: Relative Error for prediction of models in the unseen frequency investig-
ation
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A.4.5 High Mach Number Models

Figure A.20: M -α sample space for the investigation of high Mach number models.

Figure A.21: Models trained on full dataset and models trained on samples M ≥ 0.6
evaluated against each other using the MSE.
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Figure A.22: Models trained on full dataset and models trained on samples M ≥ 0.6
evaluated against each other using the relative Error.
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