DGLR STAB-SYMPOSIUM 2024

Adjoint-Based Aerodynamic Shape Optimization with Free Laminar-Turbulent transition

Daniela Gisele François, Andreas Krumbein, and Cornelia Grabe

DLR Braunschweig and Göttingen

Daniela G. François, C²A²S²E, Braunschweig, 14.11.2024

Goal:

Expending the DLR TAU code capabilities for gradient-based shape optimization with free laminar-turbulent transition.

Motivation:

 Optimization processes based on fully turbulent solvers may lead to very inefficient NLF configurations. Transition location may play a role on the overall flow configuration, e.g. shock location and intensity, or flow separation.

Strategy:

 Integration of the DLR γ model coupled to the negative Spalart-Allmaras turbulence model into the adjoint solver of the DLR TAU code.

The DLR γ-SA-neg model

• To keep $\chi = \tilde{\nu} / \nu \approx 0.6$ in the laminar region:

$$P_{\widetilde{\nu},lam} = b_{\chi} c_{b1} \widetilde{S} \widetilde{\nu}; \qquad b_{\chi} = c_1 \chi^4 \exp(-c_2 \chi^4)$$

Daniela G. François, C²A²S²E, Braunschweig, 14.11.2024

¹ François D. G., Krumbein A. :"On the Coupling of a γ – based Transition Transport model to the Negative Spalart-Allmaras Turbulence Model", 3AF Conference, Toulouse, 2022

The DLR γ-SA-neg model **Overview**¹

 $\mathbf{x}_{\mathrm{tr}}/\mathbf{c}$

0.4

0.2

0

10

15

Re [· 10⁶]

20

DSA-9A airfoil:

Daniela G. François, C²A²S²E, Braunschweig, 14.11.2024

TELFONA Pathfinder Wing:

Optimization framework

 $I(W, X, A) = \varphi^{\text{current}}(W, X, A) - \varphi^{\text{target}}$

Source: TAU user guide

Optimization strategy

Python-based optimization framework

- Aerodynamic state: DLR TAU code with the DLR γ-SA-negative turbulence model.
- Cost function sensitivity: Gradients computed by the discrete adjoint solver of the DLR TAU code, whereas the design variables are define by the airfoil parametrization.
- Optimization: SNOPT (Sparse nonlinear optimizer).
- Mesh adaptation: TAU volume deformation module.

Aerodynamic shape parametrization

Shape parametrization technique: weighted sum of Hicks-Henne "Bump" functions.

with 9 x_{max} -locations on the upper surface and 9 x_{max} -locations on the lower surface. \rightarrow The weights w_i are the design variables of the optimization process.

Optimization framework

Minimize
$$I = -\frac{L}{D}$$

while
$$\begin{cases} C_L = C_L^{\text{Target}} \\ C_{My} \ge C_{My,0} \\ Vol_{\text{airfoil}} \ge Vol_{\text{airfoil},0} - \Delta Vol_{\text{airfoil,max}} \end{cases}$$

• C_L^{Target} is obtained by adjusting α (target-lift mode) \rightarrow Any change of the design variables, A, will result in a change of α to keep C_L^{Target} .

$$\alpha = \alpha(A)$$

- Baseline airfoil: RAE2822.
- M=0.73, Re_∞=23·10⁶, Tu_∞=0.1%

Single points:

- Pt. 1: $C_L^{\text{Target}} = 0.72$
- Pt. 2: $C_L^{\text{Target}} = 0.98$
- Pt. 3: $C_L^{\text{Target}} = 0.331$

Multi-points:

 $I = \sum_{i=1}^{3} w_i I_i$

with
$$w_1 = 0.6$$
, $w_2 = 0.3$, and $w_3 = 0.1$.

Daniela G. François, C²A²S²E, Braunschweig, 14.11.2024

Single point optimization for the design point 1 (C_{L,target} = 0.72)

Comparison between single-point and multi-point optimization.

Comparison of volume reduction constraints.

• Comparison of different optimization approach:

	Transitional		Frozen turbulence		Fully turbulent	
	$\Delta C_D[\%]$	$\Delta Vol[\%]$	$\Delta C_D[\%]$	$\Delta Vol[\%]$	$\Delta C_D[\%]$	$\Delta Vol[\%]$
⁻ t. 1	-27.34	-25.68	-20.10	-9.65	-24.30	-17.85
Pt. 2	-44.72	-25.68	-23.12	-9.65	-38.49	-17.85
Pt. 3	0.1	-25.68	5.04	-9.65	1.54	-17.85

Effect contributions to the drag reduction:

	Transitional		Frozen turbulence		Fully turbulent	
	ΔC_D^P [%]	ΔC_D^{v} [%]	ΔC_D^P [%]	ΔC_D^{v} [%]	ΔC_D^P [%]	ΔC_D^{v} [%]
Pt. 1	-51.12	-2.07	-42.07	3.23	-50.48	3.53
Pt. 2	-51.69	5.33	-27.25	6.52	-45.19	9.6
Pt. 3	-23.46	9.66	-5.16	9.18	-15.52	8.47

- At the design pt. 1 of the baseline airfoil, the viscous drag is 48% of the total drag. But, the viscous drag it is not minimize during the optimization
- Low sensitivity of the drag to viscous effects for shape design variables.

Conclusions

- Extension of the DLR TAU capabilities for gradient-based shape optimization with free laminar-turbulent transition.
- Verification through aerodynamic shape optimizations on the transonic RAE2822 airfoil, considering single-point and multi-point design conditions.
- Impact assessment of shape constraints and simplified optimization approaches.
- Low sensitivity of the viscous drag to shape design variables. → need for a stronger representation of the laminar extent in the optimized figure of merit to obtain the benefits of laminarization.

Daniela G. François, C²A²S²E, Göttingen/Braunschweig, 05.03.2024