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Abstract—We propose an efficient offline pointing calibration
method for operational antenna systems which does not require
any downtime. Our approach minimizes the calibration effort
and exploits technical signal information which is typically used
for monitoring and control purposes in ground station operations.
Using a standard antenna interface and data from an operational
satellite contact, we come up with a robust strategy for training
data set generation. On top of this, we learn the parameters of
a suitable coordinate transform by means of linear regression.
In our experiments, we show the usefulness of the method in a
real-world setup.

Index Terms—satellite data reception, machine learning, linear
regression, coordinate transform, application, operations, homo-
geneous coordinates, homography

I. INTRODUCTION

An accurate calibration of antenna pointing is crucial for
robust and reliable communications between a ground sta-
tion and satellites. To maximize the received signal strength
from the satellite, people came up with various strategies
to optimize the orientation of ground station antennas. A
traditional method is the so-called step track [1] technique.
Extensions and numerous antenna pointing strategies have
been suggested (see e.g. [2]–[7] and the references therein).
These include applications to stationary [7] as well as mobile
systems [4]. Usually, the sun or other cosmic radio sources
serve as a reference in order to estimate the desired antenna
and environmental parameters. This involves the measurement
of offset angles, which, however, often entails an interruption
of operations and requires human intervention. Typical pa-
rameters include the hardware’s mechanical structure, weather
conditions, and the target position in the sky [8].

At the ground station Neustrelitz, the German Remote
Sensing Data Center operates multiple antenna systems for
payload data acquisition from remote-sensing satellites. Satel-
lite communication takes place in different frequency bands:
L-, S-, X- and Ka-band, i.e. within a frequency range from 1
GHz to 40 GHz (cf. [9]). One of the antennas [10] is part of the
Ionosphere Monitoring and Prediction Center (IMPC) [11] and
contributes to the Real Time Solar Wind (RTSW) observation
network [12]. Within this context we are engaged in the S-band
data reception of the ACE [13] and DSCOVR [14] satellites.
Both satellites are positioned at the Sun-Earth L1 Lagrange
point which means that – from a ground station perspective

– the trajectories roughly correspond to the position of the
sun. As a consequence, our antenna system is used for
data reception from sunrise to sunset. From a scientific and
practical viewpoint, it is desirable to prevent data loss and
antenna unavailabilities in order to be informed about solar
events and their potential impact on infrastructure in space
and on earth (see e.g. [11]).

A. Our Contributions

We come up with a versatile calibration strategy for semi-
automated pointing recalibration of antenna systems. The
primary focus of our approach is the applicability in parallel to
the operational satellite data reception, i.e. without signal loss.
Furthermore, it requires no special knowledge about the con-
struction and the implementation of the antenna system. Our
method treats the device as a black box, i.e. a plain antenna
with two degrees of freedom and a simple standard interface.
We suggest a reasonable coordinate transform for antenna
pointing correction and describe the parameter learning using
a linear regression approach. In our experiments, we show the
applicability to an antenna system in a real-world scenario and
prove the usefulness and optimality of our approach. To the
best of our knowledge, this is the most comprehensive method
considering antenna parameter learning, technical signal infor-
mation processing, and operational satellite data reception at
the same time.

B. Structure of the Paper

In Section II we discuss the basic properties of our black box
antenna system and the employed technical signal information.
Section III introduces the required coordinate transform and
linear regression model.

In Section IV, we develop a calibration strategy and prove
their usefulness in experiments.

We conclude with a summary and outlook in Section V.

II. TECHNICAL BACKGROUND

We aim for a software-based calibration procedure which
does not need any special knowledge about the implementation
of the antenna system. For this purpose, we consider an
antenna with two degrees of freedom (azimuth and elevation
axes) and a simple interface for tracking information. It



TABLE I
EXCERPT FROM A TYPICAL TRACKING TABLE

Time (UTC) Azimuth [◦] Elevation [◦]

07:18:21 114.67 0.00
07:29:45 116.97 1.53
07:41:09 119.28 3.03
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Fig. 1. Exemplary antenna pointing towards the DSCOVR satellite.

permits to upload a tracking table which describes the antenna
orientation over time. In our case, this corresponds to the
trajectory of the DSCOVR satellite from the antenna’s point
of view. Table I shows the content of a typical tracking table,
containing columns for time, azimuth, and elevation angle.
A standard antenna system aligns with the specified tracking
points and interpolates the pointing directions in between. Our
antenna supports the specification of up to 100 different track
points within one file. Fig. 1 visualizes an exemplary antenna
pointing for DSCOVR data reception over time.

During operations, the related ground station hardware and
software supplies technical signal information. Traditionally,
ground station processes use this data for monitoring and
control purposes. We store this knowledge and employ a small
subset of the data, namely the signal level information, as a
measure for the reception quality. Our signal levels are given
in dBm (decibel-milliwatts). Given a power P in mW, the
corresponding power level x in dBm is calculated as follows:

x = 10 · log10
P

1 mW
. (1)

In combination with the previously mentioned tracking table,
this allows us to draw conclusions about the influence of the
antenna pointing on the measured satellite signal strength. In
Fig. 2, we illustrate our signal quality assessment process:
We use a static tracking table which we upload to the antenna
system in advance of the satellite data reception. As mentioned
before, the antenna points to the specified directions during
operations and interpolates in between. Note, that using this
simple – file-based – standard interface it is not possible
to change the antenna orientation dynamically. This would

File-based Pointing
Information

(Tracking Table)

File Upload to
Antenna System

Physical
Antenna Motion

Quality Information
Monitoring System
(Antenna Pointing,

Signal Level)

Fig. 2. The basic evaluation process for antenna pointing quality.

require the upload of new pointing information to the system
and interrupts the operational satellite communication. In
parallel to the satellite data reception, we measure and store
the received signal level over time.

III. THEORY AND MODELING

The main task of our antenna pointing calibration method
is the estimation of a suitable coordinate transform

y := f(x) := Tx (2)

for optimal antenna orientation. The coordinate transform f
allows to estimate p-dimensional device specific pointing co-
ordinates y ∈ Rp from the desired pointing directions x ∈ Rp.
Within this paper, we implement f in terms of a matrix-vector
multiplication with a real-valued p× p transformation matrix
T. Furthermore, we make use of homogeneous coordinates
(see e.g. [15]) in order of being able to describe occurring
nonlinear projective geometry in terms of linear mappings.
As an example, we have p = 3 and x = s · (x∗

1, x
∗
2, 1)

T

with arbitrary scalar s ̸= 0 for two-dimensional pointing
information (x∗

1, x
∗
2)

T. For simplicity, we set s to 1. The same
transfers to y.

In order to train an appropriate coordinate transform f ,
we consider a multiple linear regression model with multiple
outputs (cf. [16]):

yk := fk(x) :=

p∑
j=1

tk,j xj , ∀k ∈ {1, . . . , p}, (3)

where we consider no bias term since our data is centered.
In order to learn the entries tk,j of T, we do least squares

approximation, i.e. we minimize the residual sum of squares

RSS(T) =

N∑
i=1

p∑
k=1

(yi,k − fk(xi))
2 (4)

using N pairs (xi,yi), i.e. i = {1, . . . , N}, as training data.
Subsequently, we restrict ourselves to the scenario p = 3,

making use of azimuth φ and elevation θ angles as x- and y-



TABLE II
TRAINING ERROR

MAE [◦] MSE [◦]

Azimuth φ (step track) 0.023918 0.000772
Elevation θ (step track) 0.021072 0.000662
Azimuth φ (improved calibration) 0.073698 0.010432
Elevation θ (improved calibration) 0.064724 0.011275

coordinates respectively. Accordingly, we write the coordinate
transform (2) asφ̃

θ̃
1


︸ ︷︷ ︸
:=y

=

t1,1 t1,2 t1,3
t2,1 t2,2 t2,3
t3,1 t3,2 t3,3


︸ ︷︷ ︸

:=T

φ
θ
1


︸ ︷︷ ︸
:=x

. (5)

Thinking in terms of a sphere surface – with arbitrary radius
larger than zero – we have φ ∈ [0, 2π) and θ ∈ [−π, π]. In
terms of cardinal directions, we have φ = 0 (north), φ = π

2
(east), φ = π (south), and φ = 3

2π (west). On the other hand,
the θ = 0 plane refers to the earth surface and θ = π refers to
a pointing straight into the sky. We support negative elevation
angles for correction purposes. Typically, antenna systems also
support small negative elevation values.

IV. EXPERIMENTS AND CALIBRATION STRATEGY

A. Step Track

1) Training: In our first experiment, we aim for the esti-
mation of a transformation matrix T by following a manual
step track [1] procedure: We use the electromagnetic radiation
of the sun in order to estimate locally optimal azimuth and
elevation angles. Meanwhile, the antenna operates in sun track
mode such that it aligns with the sun (e.g. using track infor-
mation based on [17]). In our setup, it takes approximately
4 minutes to estimate a locally optimal pointing direction
y for a given pointing x. Throughout one day, we estimate
N = 60 pairs (x,y) which serve as our training data set.
Accordingly, we use the latter to minimize (4) and learn a
matrix T. The corresponding training error is given in Table II.
The transformation matrix T reads

T ≈
(

0.994773 −0.017231 0.022903
0.007398 0.992050 −0.016989
0.000000 0.000000 1.000000

)
(6)

and resembles an affine transform. The key impact factor
is a counter-clockwise rotation by ∼ 0.43◦ in the azimuth-
elevation plane.

2) Testing: In order to evaluate the quality of the estimated
pointing correction, we use the learned coordinate transform
to create an adapted tracking table for operational DSCOVR
satellite data reception (see Fig. 4). As a consequence of the
previously mentioned limit of 100 track points, our experi-
ment’s tracking table consists of 6 minute intervals. Therein,
we either use the originally provided pointing directions, the
adapted (learned) pointing directions, or a convex combination
of both (transition intervals). A visualization of this selection
strategy can be found in the top plot of Fig. 3.
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Fig. 3. Pointing direction type and measured signal level. Top: Used
angle type over time for step track testing. Middle: Step track test setup.
Bottom: Reevaluation of the learned matrix T and detection of maxima
positions.

We illustrate an excerpt of the resulting signal levels in the
middle plot of Fig. 3. One can see that there is a gain in signal
level of up to 5 dBm (in the afternoon and for low elevation
angles). According to (1), this means more than a tripling
of the measured signal level. Apart from that, one observes
that antenna pointing angles in the transition intervals (white
regions) lead to slightly higher signal levels in comparison to
the learned directions (yellow regions). This indicates that our
coordinate transformation is not yet optimal.

Several months later, we repeat the test in order to reevaluate
our coordinate transform w.r.t. potentially changed antenna
parameters. Due to a longer lasting track and the restriction
to 100 points in one tracking table, we have to increase the
interval duration to 10 minutes. The bottom plot of Fig. 3
shows that our previous calibration does not lead to significant
improvements anymore. Now, better pointing directions clearly
lie in the transition intervals. Note that strong signal level
changes within the intervals of the original and learned angles
(e.g. around 11:20 UTC) can be traced back to obstacles in
the signal line of sight.
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Fig. 4. Process of using our software-based antenna pointing correction.

B. Improved Calibration Strategy

In order to cope with this situation and to prepare for
future recalibrations, we come up with a semi-automated
calibration strategy. Our procedure is based on the signal level
measurements which we gain during operations as well as on
the original and adapted pointing information (cf. Fig. 4)).
As before, the tracking table contains alternating intervals
with original and adapted antenna coordinates. We suggest the
subsequent routine for training data set generation:

1) Noise reduction: application of a low-pass filter (e.g.
Gaussian filter) to the signal level measurements

2) Estimation of the signal level maxima
a) Detection of preliminary signal level maxima (e.g.

based on negative second derivatives)
b) Merging of related preliminary maxima (e.g. using

mean shift clustering [18] w.r.t. time)
c) Optimization of the estimated cluster positions

using a first-order optimization method like the
heavy ball method [19]

d) Merging of related optimized maxima positions
(e.g. using mean shift clustering)

Next, the corresponding intended and actual pointing coordi-
nates at the times of the detected signal level maxima can be
used to learn the matrix T (i.e. the minimization of (4)).

C. Improved Calibration

1) Training: Now, we can directly apply the suggested
calibration strategy to the reevaluation test data (see bottom
plot in Fig. 3). We are able to detect N = 42 signal
level maxima (illustrated as crosses). Accordingly, we use the
related original and adapted pointing information to train the
new transformation matrix

T ≈
(

0.997936 −0.005520 0.007442
0.002914 0.995512 −0.005053
0.000000 0.000000 1.000000

)
. (7)

The corresponding training error is also listed in Tab. II. It is
slightly higher than for our manual step track calibration, for
reasons visible in Fig. 5. Therein, we depict the estimated as
well as the learned azimuth and elevation offsets throughout
the satellite data reception. One can observe two outliers with
significant impact on the error values: in the azimuth offset
at around 10:50 UTC and in the elevation offset at around
17:23 UTC. While the first outlier results from a signal level
change induced by the satellite, the second can be traced back
to low elevation values and obstacles close to the ground.
Overall, the learning has a denoising and stabilizing effect on
the offset estimation. This is desirable and limits the impact
of the outliers. Again, the matrix T implements an affine
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Fig. 5. Estimated and learned offsets using the improved calibration strategy.
Top: Azimuth angle offsets. Bottom: Elevation angle offsets.

transform in the azimuth-elevation plane, i.e.(
φ̃

θ̃

)
=

(
0.997936 −0.005520
0.002914 0.995512

)︸ ︷︷ ︸
=:A

( φ

θ

)
+
(

0.007442
−0.005053

)︸ ︷︷ ︸
=:t

, (8)

where t denotes a translation. The matrix A describes – in this
order – a scaling S1, a shearing S2, and a counter-clockwise
rotation R

S1 =
(
0.997940 0.000000
0.000000 0.995524

)
(9)

S2 =
(
1.000000 −0.002625
0.000000 1.000000

)
(10)

R =
(
0.999996 −0.002920
0.002920 0.999996

)
(11)

in the azimuth elevation plane, s.t. A := RS2S1. This
time, the key impact factor is a counter-clockwise rotation
by 0.167279◦.

2) Testing: Subsequently, we demonstrate that the learned
antenna pointing correction is optimal and works well in
practice. For doing so, we create another tracking table for
operational data reception of the DSCOVR satellite. It im-
plements the learned pointing directions as well as an offset
strategy which we apply on top. We show the idea of setting
azimuth and elevation angle offsets in Fig. 6. The center
denotes the previously learned antenna pointing direction. In
our test, we deviate from the latter in a cyclic manner. Our
cycle consists of 17 sequential track points. Starting with
index 0 every second point implements the learned pointing
direction (no offset). In all points with uneven index, the
pointing directions deviate by r = 0.75◦. This value is chosen
in accordance with the beamwidth of the antenna to prevent a
loss of signal. The offset direction – in terms of the azimuth-
elevation plane – changes by α = 45◦ between the track points
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Fig. 6. Offset strategy for the optimality test with track point indices in blue.
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Fig. 7. Measured signal level for one offset cycle in our optimality test.

which implement an offset. In this way, we finish a complete
offset cycle after 17 track points. As before, the antenna
implements a linear interpolation between all tracking points.
One can see the corresponding signal level measurements for
one such test cycle in Fig. 7. It is important to note, that the
highest signal level occurs very close to the learned antenna
pointing (i.e. for track points with no offset). In terms of the
local maximum signal level, the mean absolute error for the
learned pointing directions is 0.085124 dBm, the maximum
error is 0.360258 dBm. We estimate these errors using a
minimally smoothed signal level (employing a Gaussian filter
with σ = 5 for smoothing). From our point of view, these
errors are negligible, especially due to noise and environmental
effects like obstacles on the signal level measurements.

V. SUMMARY AND OUTLOOK

In our paper, we have shown an efficient method for antenna
pointing recalibration in an operational environment. The
proposed calibration strategy implements a robust selection
process for training data which is used to estimate a suitable
coordinate transform. Within our context, a setup involving a
linear transformation is appropriate. In principle, our approach
can easily be adapted to support different coordinate transfor-
mations. From a practical point of view, the usage of signal
level measurements – which are a byproduct of the operational
satellite data reception – is a welcome feature. It reduces
the need for additional hardware and work steps for antenna
pointing calibration. In our future work, we investigate the

application of our method to other antenna systems. Amongst
others, this requires the consideration of a higher number of
degrees of freedom. Furthermore, we want to evaluate the
necessity of more comprehensive coordinate transformations
w.r.t. different possible sources of antenna pointing errors.
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