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way Physics Informed Neural Networks ? 4#7
DLR

» E.g. safe control of airplanes needs
surrogate modeling.

...but people (rightfully) have
reservations against Al.

= By data-driven NN approaches some
natural laws are not or only poorly
considered.
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way Physics Informed Neural Networks ? 4#7
DLR

How to make Al safer and more robust?

» By teaching it the physics.

Parameter

Figure: Velocity field around a
various angles of attack.
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Finite Element Method based Neural Networks ‘#7
DLR

= Combination of classical finite element method and NN

= Combine strengths and compensate weaknesses of individual approaches:

FEM

’l No real-time capacity |b Fast prediction after training
’l No cost amortization over multiple runs |b Parameterizable
|‘ Sound mathematical foundation " Black box model

|‘ Numerical theory of errors ,' Rudimentary convergence theory
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FEM-based Neural Networks
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FEM-based Neural Networks A#y
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2D Stokes flow around an airfoil 4#7
DLR

= PDE:
V-u= 0,
Vp — Au= 0

= with velocity u and pressure p

= BC: Dirichlet at inflow, Neumann
at outflow, no-slip at airfoll

= Saddle point problem / / / / /

= Even for FEM no straight-forward Figure: Domain around NACA 0012
problem airfoil with an angle of attack «.
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FEM-based NNs — Stokes ‘#7
DLR

= Taylor-Hood elements to _ 1.0 Y 10
construct Galerkin system £ | 0
> avoid instabilities 2 > " 1

0.0
0.0
= Training with « = 1 and . 0 ' . 10
2000 epochs of LBFGS ; . , 0
e | ~10
0.0
- . . 0.0
= CPU training time ~20 min e
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= 0.05 10
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or: - 0.0083 0.0349 0.1017

Franziska Griese, German Aerospace Center



FEM-based NNs — Stokes Preconditioned A#y
DLR

* Improve condition of indefinite stiffness
matrix K

!
I

= Preconditioning with: & —
= Schur complement N :_I e
= Cholesky decomposition K = L - LT N

— _ -1
= Training with « = 1 and 2 epochs of LBFGS: > = ~Hupfu K

I T T T

1.8833e-07 1.8658e-07 3.0804e-06 - Error improvement of e-05,
9.6091e-08 1.6061e-07 2.0170e-07 CPU training time < 1s
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FEM-based NNs — Stokes Parameterizability & A#y
Generalizability DLR

Parameterizability

Rel. L? and L errors of the variable u,

= Training data aygin € [1,45] 101
uniformly distributed 1o-2 —e— 12 training
—®— L* training
Generalizability § 1077 5 —e— L2 interpolation
s ] —® | —e— L[” interpolation
. 1074 - — "l .
= |nterpolation data aj, € ~ | & L’ extrapolation
! —® | —0— L~ extrapolation
{5,16.5,30,40} 107° 5 .//.4::
= Extrapolation data aey € T : s
{47-5, 50, 55} |atrain|
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Problems

) DLR
2D Stokes 2D Navier Stokes

PDE Vp — Au=0 —nAu+u-Vu+Vp= 0
V-u=20 V-u=20
OIS NiTe:11le]sM Linear saddle point problem Nonlinear saddle point problem
o la[e[lileal=T@ Schur, Cholesky Schur, Cholesky

Results

Rel. L? and L* errors of the variable u,
10714

10-2 4 - (2 training
—o— L” training
§ 1073 4 —e— L[? interpolation
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FEM-based NNs — Navier Stokes
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FEM-based NNs — Navier Stokes ‘#7
DLR

Ux

1.0 0.4

0.8 0.3

* Training with a = 1,
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Rel. L-error: 0.0085 0.0514 0.1670
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FEM-based NNs — Navier Stokes

= Training with a = 1,
n = 0.1 and 2000 e
epochs of LBFGS

= CPU training time
~4.3h

* No satisfactory results

Absolute Error

Rel. L%-error:
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FEM-based NNs — Navier Stokes Preconditioned A#y
DLR

* Training with « = 1, n = 1 and 3 epochs of
Ko K, LBFGS:

G

I T N
3.6355e-06 1.4172e-05 1.0005e-05
1.2310e-06 1.2399e-05 7.3803e-06

= Error improvement of e-03

= CPU training time < 1 min
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FEM-based NNs — Navier Stokes Preconditioned ‘#7
DLR

Uy uy p
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* Training with a = 1,
n = 0.1 and 12 epochs

Prediction

of LBFGS " N &

= CPU training time ~11 ¢ . ; 1
min . 0

= Error improvement of [ B [
e_04 g 2:5 0.00020

Rel. L*-error:  1.4819e — 05 0.0002 0.0001
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FEM-based NNs — Navier Stokes Preconditioned ‘#7
DLR

Ux Uy p

1.0 ‘ ‘ - 1.00

* Training with a = 1, o
n = 0.01 and 100 : [
epochs of LBFGS e

= CPU training time ~1h o
= No satisfactory results

Rel. [2-error:  0.6821 0.6573 1.8404
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FEM-based NNs — Navier Stokes Parameterizability & A#y
Generalizability DLR

Parameterizability

= Training data ayr5i € [1,45] 10714
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—o— L_zinterpolation

!-E— B 4
Generalizability 5§ 1071 —e— L interpolation

—o— L_zextrapolation
= |nterp0|at|0n data din € 10_4'? / —8— L[~ extrapolation
3 s '

Rel. L? and L errors of the variable u,

—o— L_ztraining
—@ | —&— L~ training

(5,16.5, 30, 40}

» Extrapolation data aex €
{47.5,50,55}

|atrain|

Franziska Griese, German Aerospace Center



FEM-based NNs - Solving the Inverse Problem with ‘#7
Uncertainty Quantification DLR

* I[nverse problem:
Measurements p at airfoil - predict angle of attack

E———

Input: trained FEM-based NN, Output: Distribution for angle of
noisy measurements 7[ attack
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Conclusion and Outlook ‘#7
DLR

= Preconditioned FEM-based NNs shows the
ability to parameterize and generalize well
for Stokes and Navier Stokes flow with low
Reynolds number

= Used fully differentiability of FEM-based
NNSs to solve inverse problem with UQ

Next steps for FEM-based NNs

= Try other preconditioners

H - . Figure: Stokes velocity field around an airfoil with various
|
Use Stablllsatlon methOdS angles of attack calculated from a FEM-based NN.

20

Franziska Griese, German Aerospace Center



