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Why Physics Informed Neural Networks?

▪ E.g. safe control of airplanes needs 

surrogate modeling.

…but people (rightfully) have 

reservations against AI.

▪ By data-driven NN approaches some 

natural laws are not or only poorly 

considered.
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Conservation of 

Energy Mass Momentum
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Why Physics Informed Neural Networks?

How to make AI safer and more robust?

▪ By teaching it the physics.
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Parameter

Loss function 

incorporating PDE Figure: Velocity field around an airfoil with 
various angles of attack.
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Finite Element Method based Neural Networks

▪ Combination of classical finite element method and NN

▪ Combine strengths and compensate weaknesses of individual approaches:
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FEM NN

No real-time capacity Fast prediction after training

No cost amortization over multiple runs Parameterizable

Sound mathematical foundation Black box model

Numerical theory of errors Rudimentary convergence theory

Franziska Griese, German Aerospace Center



FEM-based Neural Networks
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FEM-based Neural Networks
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Parameter(s) 

𝛼 𝓛 = 𝐾𝑢ℎ − 𝐹
2

PDE + BC

Construct 𝐾 and 𝐹 of 

Galerkin system:

Prediction for
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Reduced order of 

differential operators

No multi-objective 

optimization

Implemented fully 

differentiable
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2D Stokes flow around an airfoil

▪ PDE: 

∇ ⋅ 𝑢 = 0,
∇𝑝 − Δ𝑢 = 0

▪ with velocity 𝑢 and pressure 𝑝

▪ BC: Dirichlet at inflow, Neumann 

at outflow, no-slip at airfoil
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Figure: Domain around NACA 0012 

airfoil with an angle of attack 𝛼.

▪ Saddle point problem

▪ Even for FEM no straight-forward 

problem

𝛼
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FEM-based NNs – Stokes

▪ Taylor-Hood elements to 

construct Galerkin system 

→ avoid instabilities

▪ Training with 𝛼 = 1 and 

2000 epochs of LBFGS

▪ CPU training time ~20 min
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FEM-based NNs – Stokes Preconditioned

▪ Improve condition of indefinite stiffness 

matrix 𝐾

▪ Preconditioning with:

▪ Schur complement 

▪ Cholesky decomposition ෩𝐾 = 𝐿 ⋅ 𝐿𝑇

▪ Training with 𝛼 = 1 and 2 epochs of LBFGS:
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𝑆 = −𝐾𝑢𝑝𝐾𝑢𝑢
−1𝐾𝑝𝑢

𝐾 =

𝒖𝒙 𝒖𝒚 𝒑

Rel. 𝐿∞ 1.8833e-07 1.8658e-07 3.0804e-06

Rel. 𝐿2 9.6091e-08 1.6061e-07 2.0170e-07

-

෩𝐾 =
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→Error improvement of e-05,

CPU training time < 1s



FEM-based NNs – Stokes Parameterizability & 
Generalizability

▪ Training data 𝛼train ∈ 1, 45

uniformly distributed 
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Parameterizability

▪ Interpolation data 𝛼in ∈

{5, 16.5, 30, 40}

▪ Extrapolation data 𝛼ex ∈
{47.5, 50, 55}

Generalizability

Rel. 𝐿2 and 𝐿∞ errors of the variable 𝑢𝑥
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Problems

2D Stokes 2D Navier Stokes

PDE ∇𝑝 − Δ𝑢 = 0
∇ ⋅ 𝑢 = 0

−𝜂Δ𝑢 + 𝑢 ⋅ ∇u + ∇𝑝 = 0
∇ ⋅ 𝑢 = 0

Classification Linear saddle point problem Nonlinear saddle point problem

Preconditioner Schur, Cholesky Schur, Cholesky

Results

11
Franziska Griese, German Aerospace Center

Rel. 𝐿2 and 𝐿∞ errors of the variable 𝑢𝑥



FEM-based NNs – Navier Stokes
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FEM-based NNs – Navier Stokes

▪ Training with 𝛼 = 1, 

𝜂 = 1 and 2000 

epochs of LBFGS

▪ CPU training time 

~11.5 h
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Rel. 𝐿2-error:       0.0085 0.0514 0.1670



FEM-based NNs – Navier Stokes

▪ Training with 𝛼 = 1, 

𝜂 = 0.1 and 2000 

epochs of LBFGS

▪ CPU training time 

~4.3 h

▪ No satisfactory results
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Rel. 𝐿2-error:       0.7664 6.3577 9.3255



FEM-based NNs – Navier Stokes Preconditioned
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𝐾𝑢𝑢

−𝑆

෨𝑃 =

𝑆 = −𝐾𝑢𝑝𝐾𝑢𝑢
−1𝐾𝑝𝑢
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▪ Training with 𝛼 = 1, 𝜂 = 1 and 3 epochs of 

LBFGS:

▪ Error improvement of e-03 

▪ CPU training time < 1 min

𝒖𝒙 𝒖𝒚 𝒑

Rel. 𝐿∞ 3.6355e-06 1.4172e-05 1.0005e-05

Rel. 𝐿2 1.2310e-06 1.2399e-05 7.3803e-06



FEM-based NNs – Navier Stokes Preconditioned

▪ Training with 𝛼 = 1, 

𝜂 = 0.1 and 12 epochs 

of LBFGS

▪ CPU training time ~11 

min

▪ Error improvement of 

e-04 
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Rel. 𝐿2-error:    1.4819𝑒 − 05 0.0002 0.0001



FEM-based NNs – Navier Stokes Preconditioned

▪ Training with 𝛼 = 1, 

𝜂 = 0.01 and 100 

epochs of LBFGS

▪ CPU training time ~1h

▪ No satisfactory results
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Rel. 𝐿2-error:    0.6821 0.6573 1.8404



FEM-based NNs – Navier Stokes Parameterizability & 
Generalizability

▪ Training data 𝛼train ∈ 1, 45

uniformly distributed, 𝜂 = 1
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Parameterizability

▪ Interpolation data 𝛼in ∈

{5, 16.5, 30, 40}

▪ Extrapolation data 𝛼ex ∈
{47.5, 50, 55}

Generalizability

Rel. 𝐿2 and 𝐿∞ errors of the variable 𝑢𝑥
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FEM-based NNs - Solving the Inverse Problem with 
Uncertainty Quantification

▪ Inverse problem:

Measurements p at airfoil → predict angle of attack
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Input: trained FEM-based NN,

noisy measurements
Output: Distribution for angle of

attack

Hamiltonian 

Monte Carlo 

method

Franziska Griese, German Aerospace Center



Conclusion and Outlook

▪ Preconditioned FEM-based NNs shows the 

ability to parameterize and generalize well 

for Stokes and Navier Stokes flow with low 

Reynolds number

▪ Used fully differentiability of FEM-based 

NNs to solve inverse problem with UQ
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Results

▪ Try other preconditioners

▪ Use stabilisation methods

Next steps for FEM-based NNs

Figure: Stokes velocity field around an airfoil with various 
angles of attack calculated from a FEM-based NN.
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