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way Physics Informed Neural Networks ? 4#7
DLR

» E.g. safe control of airplanes needs
surrogate modeling.

= By data-driven NN approaches some
natural laws are not or only poorly
considered.
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way Physics Informed Neural Networks ? 4#7
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How to make Al safer and more robust?

» By teaching it the physics.

Parameter

Figure: Velocity field around a
various angles of attack.
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Finite Element Method based Neural Networks A#y
DLR

= Combination of classical finite element method and NN

= Combine strengths and compensate weaknesses of individual approaches:

FEM
’l No real-time capacity |b Fast prediction after training

’l No cost amortization over multiple runs |b Parameterizable

|‘ Sound mathematical foundation " Black box model

|‘ Numerical theory of errors ’l Rudimentary convergence theory

[|b Implemented fully differentiable ]
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FEM-based Neural Networks
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Preconditioned FEM-based Neural Networks
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Problem: Incompressible flow around an airfoil A#y
DLR

_ 2D Navier Stokes

PDE —nAu+u-Vu+Vp =0
V-u=0
O{EEH Il 1ilo ) Nonlinear saddle point problem

e BC:

* Dirichlet at inflow
« Neumann at outflow

/ / / / / * no-slip at airfoll

Figure: Domain around NACA 0012
airfoil with an angle of attack «.
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FEM-based NNs — Navier Stokes

Uy

1.0

0.8

» Taylor-Hood elements
to construct Galerkin
system - avoid
iInstabilities

0.6

Prediction

0.4

0.2

0.0

1.0

0.8

0.6

Reference

* Training with a = 1,
n = 1 and 40000
epochs of LBFGS

0.4

0.2

0.0

0.08

0.06

0.04

Absolute Error

0.02

11 Rel. L-error: 0.0073 0.0440

Franziska Griese, German Aerospace Center




FEM-based NNs — Navier Stokes ‘#7
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Preconditioned FEM-based NNs — Navier Stokes A#y
DLR
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Preconditioned FEM-based NNs — Navier Stokes ‘#7
DLR
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FEM-based NNs — Parameterizability & Generalizability #
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Parameterizability

o Rel. L? and L* errors of the variable u,
= Training data ay4in € [1,45]

equidistantly distributed
102 _ —
Generalizability o ~&- L® training
o, —®— L* training
- T2 -
. _ o —8— L~‘ interpolation
= Interpolation data a;j, € = e I* interpolation
{5, 165, 30, 40} N 10—4 = —— L_zextrapolation
i —8— L*® ext lati
= Extrapolation data aey € P
{47.5,50,55} :
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Preconditioned FEM-based NNs - Solving the Inverse ‘#7
Problem with Uncertainty Quantification DLR

* |nverse problem:
Measurements p at airfoil -> predict angle of attack

- <} E—

Input: trained FEM-based NN, Output: Distribution for angle of
noisy measurements attack

PYRO
»

Hamiltonian
Monte Carlo
method
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Conclusion and Outlook ‘#7
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» Preconditioned FEM-based NNs shows the
ability to parameterize and generalize well
for Navier Stokes flow with low Reynolds
number

= Used fully differentiability of FEM-based
NNSs to solve inverse problem with UQ

Next steps for FEM-based NNs

= Try other preconditioners

H . Figure: Stokes velocity field around an airfoil with various
|
Use Stabl I IZBIIOn methOdS angles of attack calculated from a FEM-based NN.
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