PHYSICS-INFORMED FEM-BASED NEURAL NETWORKS FOR SOLVING THE NAVIER STOKES EQUATIONS

Franziska Griese, Philipp Knechtges, Alexander Rüttgers German Aerospace Center (DLR) WAW ML 2024

2

Why Physics Informed Neural Networks?

- E.g. safe control of airplanes needs surrogate modeling.
- By data-driven NN approaches some natural laws are not or only poorly considered.

Why Physics Informed Neural Networks?

How to make AI safer and more robust?

By teaching it the physics.

various angles of attack.

3

Finite Element Method based Neural Networks

- Combination of classical finite element method and NN
- Combine strengths and compensate weaknesses of individual approaches:

FEM	NN
No real-time capacity	Fast prediction after training
No cost amortization over multiple runs	erameterizable
Sound mathematical foundation	PIBlack box model
Numerical theory of errors	P Rudimentary convergence theory

Implemented fully differentiable

FEM-based Neural Networks

Problem: Incompressible flow around an airfoil

Figure: Domain around NACA 0012 airfoil with an angle of attack α .

	2D Navier Stokes	
PDE	$-\eta \Delta u + u \cdot \nabla u + \nabla p = 0$ $\nabla \cdot u = 0$	
Classification	Nonlinear saddle point problem	

• BC:

- Dirichlet at inflow
- Neumann at outflow
- no-slip at airfoil

FEM-based NNs – Navier Stokes

- Taylor-Hood elements to construct Galerkin system → avoid instabilities
- Training with $\alpha = 1$, $\eta = 1$ and 40000 epochs of LBFGS

Franziska Griese, German Aerospace Center

FEM-based NNs – Navier Stokes

• Training with $\alpha = 1$, $\eta = 0.1$ and 40000 epochs of LBFGS

No satisfactory results

Franziska Griese, German Aerospace Center

Preconditioned FEM-based NNs – Navier Stokes

• Training with
$$\alpha = 1$$
, $\eta = 1$:

	u_x	u _y	p
Rel. L^{∞}	2.9603e-06	1.0582e-05	7.2077e-06
Rel. L^2	9.8632e-07	9.4800e-06	5.2756e-06

\rightarrow Error improvement of e-04

Franziska Griese, German Aerospace Center

Preconditioned FEM-based NNs – Navier Stokes

• Training with $\alpha = 1$, $\eta = 0.1$

→ Satisfactory results

Franziska Griese, German Aerospace Center

15

Parameterizability

• Training data $\alpha_{train} \in [1, 45]$ equidistantly distributed

Generalizability

- Interpolation data $\alpha_{in} \in \{5, 16.5, 30, 40\}$
- Extrapolation data $\alpha_{ex} \in \{47.5, 50, 55\}$

Rel. L^2 and L^{∞} errors of the variable u_x

 $\# \alpha_{ ext{train}}$

Preconditioned FEM-based NNs - Solving the Inverse Problem with Uncertainty Quantification

Inverse problem:

Measurements p at airfoil \rightarrow predict angle of attack

Conclusion and Outlook

Results

- Preconditioned FEM-based NNs shows the ability to parameterize and generalize well for Navier Stokes flow with low Reynolds number
- Used fully differentiability of FEM-based NNs to solve inverse problem with UQ

Next steps for FEM-based NNs

- Try other preconditioners
- Use stabilization methods

Figure: Stokes velocity field around an airfoil with various angles of attack calculated from a FEM-based NN.