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Abstract. In the present work, we extend the Discontinuous Galerkin
Spectral Element Method (DGSEM) to high-enthalpy reacting gas flows
with internal degrees of freedom. An entropy- and kinetic energy-preserving
flux function is proposed which allows for use of arbitrary expressions
for the internal energies of the constituent gas species. The developed
method is applied to simulation of several model problems and compared
to the DLR TAU solver.
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1 Introduction

Accurate simulations of high-temperature reacting multi-species flows are a cru-
cial component of the research and development cycle in multiple industrial and
scientific applications, such as combustion and spacecraft design [13]. As avail-
able computing power increases, so does the range of physical phenomena that
can be modelled. At the same time, development of new numerical methods lever-
aging modern computing architectures is a crucial part of CFD development [29,
26]. Discontinuous Galerkin (DG) methods possess many properties attractive
for next-generation CDF solvers [25, 29]: 1) higher-order solution representation
2) low numerical dissipation 3) less stringent requirements on grid-shock align-
ment 4) improved computational efficiency. At the same time, their higher-order
nature and insufficient numerical dissipation may lead to numerical stability
issues [5].

Therefore, recent focus has been on the development of DG schemes with
provable stability and structure-preserving properties, such as entropy conserva-
tion and/or entropy-stability [27, 2, 3, 5], and provably entropy-stable and positivity-
preserving limiting approaches [11, 23].

However, extending these methods to multi-species high-temperature react-
ing flows with real gas effects is challenging due to the intricate expressions
for the internal energy and specific heats, making entropy-conservative fluxes
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harder to derive and compute. Examples of application can be found in [7, 12, 4],
where internal energies were modelled using NASA polynomials [16], and in [9,
21], where the simple infinite harmonic oscillator model was used to model the
vibrational spectra of the molecular species.

In our recent work [19], we proposed a new approach to the derivation of
consistent entropy-conservative flux functions which does not enforce any re-
strictions on the internal energy functions, and whose computational cost is
independent of the complexity of the expressions for the internal energies. The
approach is based on linear interpolation of the specific heats and internal ener-
gies using pre-computed tabulated values [10] and exact integration for the en-
tropy. It has been shown to be kinetic energy-preserving and entropy-conserving
and has been successfully applied to high-enthalpyy single-species flows. In the
present work we extend the approach to the multi-species case and apply it to the
simulation of a weak blast wave, the spatially homogeneous chemical relaxation
of a gas mixture, and a reacting two-species Mach 10 flow around a cylinder.
We demonstrate excellent agreement with reference solutions and showcase the
application of the developed approach for simulating reacting flows with strong
shocks.

2 Governing equations

We consider a two-dimensional flow of an inviscid mixture of Nc gases.
The compressible Euler equations governing such a flow are given by

∂

∂t
u+

∂

∂x
fx +

∂

∂y
fy = Rchem. (1)

Here t denotes the time, x and y are the spatial coordinates, u is the vector of
conservative variables, and fx, fy are the inviscid fluxes.

The vector of conservative variables u ∈ R4 is given by

u = (ρ1, . . . , ρNc
, ρvx, ρvy, E)

T
, (2)

where ρc is the density of species c, vx and vy are the flow velocities in the x
and y directions, and E = ρe = ρεint + ρv2/2 is the total flow energy. Here, e is
the specific energy, and εint is the specific internal energy computed as

εint =
∑
c

Ycε
int
c , (3)

where Yc = ρc/ρ and εintc are given by

εintc =
3

2
kT + εfc, εintc =

3

2
kT + εrotc (T ) + εvibrc (T ) + εfc (4)

for atoms and molecules, respectively.
Here εfc is the energy of formation of species c, εrotc (T ) and εvibrc (T ) are the

rotational and vibrational energies of species c, correspondingly. In the present
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work, we assume that εrotc (T ) = kT . The species’ constant-volume specific heats
are defined as cv,c(T ) = ∂εintc /∂T .

The inviscid fluxes are given by

fx =
(
ρ1vx, . . . , ρNcvx, ρv

2
x + p, ρvxvy, (E + p)vx

)T
, (5)

fy =
(
ρ1vy, . . . , ρNc

vy, ρvxvy, ρv
2
y + p, (E + p)vy

)T
. (6)

Here p is the pressure. We use the ideal gas law to relate pressure, density,
and temperature: p = nkT , where n is the number density, k is the Boltzmann
constant, and T is the flow temperature.

The vector of chemical production terms is given as

Rchem =
(
Rchem

1 , . . . , Rchem
Nc

, 0, 0, 0
)T

. (7)

Finally, we define the physical entropy s as

s =
∑
c

Yc

∫ T

0

cv,c(τ)

τ
dτ −

∑
c

Yc
k

mc
ln ρc =

∑
c

Ycηc(T )−
∑
c

Yc
k

mc
ln ρc. (8)

Here mc is the molecular mass of chemical species c. We will hereafter refer to

the
∫ T

0
cv,c(τ)

τ dτ as the “integral part” of the entropy of species c and denote it
by η(T )c to simplify the notation. We also define the mathematical entropy as
the volume density s = −ρs. Based on this definition of entropy, we now derive
an entropy-conservative flux for Eqns. (1).

3 Entropy-conservative flux

Following the procedure of [19], we obtain the following expressions for the
entropy-conservative density, momentum, and energy fluxes in the x direction
(fluxes in the y direction are obtained by analogy and are not presented here):

F num,x
ρc

= {{ρc}}log {{vx}} , c = 1, . . . , Nc, (9)

F num,x
ρvx = {{vx}}

∑
c F

num,x
ρc

+
∑

c
k
mc

{{ρc}}
{{1/T}} , (10)

F num,x
ρvy = {{vy}}

∑
c F

num,x
ρc

, (11)

F num,x
E =

∑
c F

num,x
ρ,c

(
{{T}}2geo

(
cv,c(T

∗)
T∗ −

{{
1
T

}}
cv,c (T

∗∗)
)

+
{{
εintc

}}
− {{v2

x}}+{{v2
y}}

2

)
+ {{vx}}F num,x

ρvx + {{vy}}F num,x
ρvy

.(12)

Here the braces denotes various averaging operators between two states a− and
a+ between which the flux is computed:

{{a}} =
1

2
(a− + a+) , {{a}}geo =

√
a−a+, {{a}}log =

a+ − a−
log a+ − log a−

. (13)
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The quantities
cv,c(T

∗)
T∗ , cv,c (T

∗∗) are defined as:

cv,c (T
∗)

T ∗ =
Jηc(T )K

JT K
, cv,c (T

∗∗) =

q
εintc

y

JT K
. (14)

Here JaK = a+ − a− is the jump in the value of a flow variable a between two
points. In general, no closed-form expression is available for ηc(T ), and only for
specific cases of internal energy spectra models (NASA polynomials, infinite har-
monic oscillator) is it possible derive analytical expressions for ηc(T ) required for
the calculation of the entropy-conservative flux (12). However, if we pre-compute
values of cv,c(T ) and εintc (T ) over a sufficiently large range of temperatures with
a small discretization step ∆T and use piece-wise linear reconstructions of these
functions (a common practice in CFD solvers to reduce computational effort),
it is possible to use this piece-wise linear representation of εintc (T ) in order to
obtain a closed-form expression for ηc(T ):

ηc(T ) =

N−1∑
i=0

ηc,i+

(
cv,c,N − (cv,c(T )− cv,c,N )TN

∆T

)
ln

(
T

TN

)
+(cv,c(T )− cv,c,N ) .

(15)
Here cv,c,i denotes a tabulated value of cv,c(T ) computed at a tabulated temper-
ature of Ti, cv,c(T ) is a linearly interpolated value of cv,c at some temperature T .
N is defined as ⌊T − Tmin/∆T ⌋, where Tmin is the minimum temperature used
for the tabulation. The values ηc,i are the integrals of cv,c(T )/T computed over
the ∆T -sized intervals using a linear interpolation of cv,c(T ) over the interval:

ηc,i =

(
cv,c,i −

(cv,c,i+1 − cv,c,i)Ti

∆T

)
ln

(
Ti+1

Ti

)
+ (cv,c,i+1 − cv,c,i) . (16)

The values of
∑N

i=0 ηc,i can also be tabulated for N = 0, . . . Nmax, reducing the
computation of ηc(T ) to obtaining a value from a look-up table and evaluating
one logarithm. The presented entropy-conservative numerical flux is therefore
computationally efficient, with the cost of its evaluation independent of the com-
plexity of the expressions for the internal energies and specific heats, as those
are required only for precomputation of the tabulated values.

4 Numerical results

The developed fluxes were implemented in Trixi.jl [24, 22], an extendable frame-
work for solving systems of hyperbolic equations using the DGSEM method.
The strong stability preserving Runge-Kutta methods [6] SSPRK43 was used
for time integration. The Trixi.jl implementation of the presented fluxes, along
with the input files for the simulations, has been made publicly available [18].
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4.1 Weak blast wave

To verify the entropy conservation property of the developed flux, we consider
the weak blast wave case adapated from [11]. The initial conditions are given by

ρ
vx
vy
p

 =


0.341388

0.0
0.0

101325.0

 if
√

x2 + y2 > 0.5;


ρ
vx
vy
p

 =


0.399117

102.5 cos(ϕ)
102.5 sin(ϕ)
126149.6

 else. (17)

The gas was taken to be an O2/O mixture, with the molar fractions of both
molecules and atoms equal to 50%. The cut-off harmonic oscillator model [17,
19] was used to model the vibrational spectrum of the oxygen molecules, and
no chemical reactions were considered. A domain of size [−2, 2]× [−2, 2] m was
used, discretized by a uniform 64 × 64 grid. No numerical dissipation or flux
limiting was applied, so as to test the entropy conservation property of the flux.

Fig. 1. Pressure profile at t = 1.96 ms for polynomials of degree 2, 4, and 6.

Figure 1 shows the pressure at t = 1.96 · 10−3 s for three different orders of
polynomials used: 2, 4, and 6. Due to the radial symmetry of the case and the
coarse grid, significant artifacts can be seen for the polynomial degree of 2; use of
higher-order polynomials alleviates this issue. Despite the numerical oscillations
visible across the shock-wave front, appearing due to the absence of dissipation,
the simulations run stable even without any limiting.

Figure 2 shows the absolute entropy production rate plotted as a function
of time over the course of the simulation. We see that for all polynomial or-
ders considered, the entropy production is on the order of machine precision,
thus confirming the entropy conservation property of the developed flux. As a
comparison, the entropy production rates for simulations conducted using the
dissipative local Lax-Friedrichs (LLF) flux and the non-dissipative central flux
are also plotted. For the case of the LLF flux, the entropy production rate can
be seen to be 10–12 orders of magnitude higher than the negligibly small entropy
production rate computed using the derived entropy-conservative fluxes. For the
central flux, the simulations blow up, as an explicit time-stepping scheme is used.
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Fig. 2. Entropy production rate as a function of time for different polynomial orders
using the derived entropy-conservative flux (“EC”), the dissipative local Lax-Friedrichs
flux (“LLF”), and the central flux (“Central”).

4.2 Spatially homogeneous chemical relaxation

Next, we verify the implementation of chemical reactions. We consider the spa-
tially homogeneous chemical relaxation of an O2/O mixture, with the vibrational
spectrum of O2 modelled using the cut-off harmonic oscillator model. We con-
sider only dissociation reactions, thus the chemical production terms are

Rchem
O2

= −mO2
nO2

nO2
kdissO2,O2

−mO2
nO2

nOk
diss
O2,O(T ), Rchem

O = −Rchem
O2

. (18)

The dissociation rates are computed using the Arrhenius law:

kdissc,d = Ac,dT
nc,d exp

(
−ED,c

kT

)
, (19)

where ED,c is the dissociation energy of the molecule of chemical species c,
and Ac,d and nc,d are the Arrhenius coefficients. In the present work, we use
the following values of the Arrhenius coefficients [20]: AO2,O2

= 3.321 · 10−9

m3/s, AO2,O = 3.321 · 10−9 m3/s, nO2,O2
= nO2,O = −1.6. Two different initial

conditions were considered: 1) T = 8000 K, xO2=0.9, n = 1023 m−3, 2) T =
12000 K, xO2=0.5, n = 1023 m−3.

Figure 3 shows the evolution of the molar fraction of O2 molecules and the gas
temperature over time. The dots show to the solutions obtained via the Trixi.jl
implementation, with orange dots corresponding to initial condition (1) and blue
dots corresponding to initial condition (2). The dotted and dashed lines show the
solution obtained by solving a system of master equations [17], corresponding
to initial conditions (1) and (2), respectively. We see excellent agreement be-
tween the implementation of chemical source terms in Trixi.jl and the reference
solution, thus verifying our implementation of non-equilibrium chemistry.
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Fig. 3. Temporal evolution of the molar fraction of O2 (left) and temperature (right);
lines show the reference solution of the system of master equations, whereas dots are
the values computed via the Trixi.jl implementation.

4.3 Mach 10 flow over a cylinder

Finally, we consider a hypersonic flow of a reacting oxygen mixture around a
cylinder. The same chemistry model was used as for the case of the spatially
homogeneous chemical relaxation. For this test case, the cut-off anharmonic
oscillator model was used to model the vibrational energy spectrum of the oxygen
molecules. The free-stream conditions were taken as follows: vx,∞ = 4000 m/s,
p∞ = 450.2 Pa, T∞ = 400 K, xO2,∞ = 0.999733.

The simulation was started on a 30×30 grid with no refinement. The IDP
subcell limiter [23] was used; the SSPRK33 method was used for time integration.
Adaptive mesh refinement with up to 4 levels of refinement was used to improve
the grid resolution near the shock using the capabilities of the p4est library [1];
the shock indicator from [11] was used to mark cells for refinement. In total,
approximately 3500 elements were used for the domain discretization. 3-rd and
4-th order polynomials were used for the simulations, leading to approximately
57000 and 86000 degrees of freedom per conservative variable field, respectively.

The DLR TAU solver [15, 8] was used as a benchmark solver for this case
with a similar initial grid and parameters governing the gas properties. The
second order AUSM+ flux [14] with Green-Gauss gradient reconstruction was
used, along with local time-stepping and a first-order implicit Backward Euler
solver and a flux carbuncle fix [28]. Six cycles of adaptive mesh refinement,
with an increase in number of points of 30% per cycle were performed in order
to increase resolution at the shock until grid convergence. The resulting mesh
consists of 8710 points.

Figure 4 shows the fields of the pressure p and the mass fraction of molecular
oxygen YO2

computed using the DG approach presented in the present paper and
using the DLR TAU solver as a reference solution. Excellent qualitative agree-
ment between the solvers can be seen throughout the whole domain. For a more
detailed comparison, we plot the pressure and the component mass fractions
along the stagnation line, as shown on Figure 5. Simulation results obtained us-
ing 3-rd and 4-th order polynomials in the DG method are shown, and excellent
agreement can be seen between the DG results and those obtained with the DLR
TAU solver, with only some very minor differences near the shock.
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Fig. 4. Pressure (left) and mass fraction of molecular oxygen (right) fields computed
with a 3-rd order DG method with the entropy-conservative flux (top) and with the
DLR TAU solver (bottom).
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Fig. 5. Pressure (left) and mass fraction of molecular oxygen (right) along the stag-
nation line computed with the DG method with the entropy-conservative flux (solid
lines) and with the DLR TAU solver (dash-dot line).

5 Conclusions

In the present work, we have developed a numerical algorithm for the computa-
tion of entropy-conservative fluxes for gases with internal degrees of freedom for
use with the DGSEM method. We verified the developed approach by consider-
ing a non-reacting test case of a weak blast wave and the spatially homogeneous
chemical relaxation of an oxygen mixture. Finally, we applied the developed
framework to simulation of a Mach 10 flow around a cylinder, and compare the
results with those obtained with the DLR TAU code. Excellent agreement is
observed between the results, thus verifying the developed approach and show-



Entropy-stable fluxes 9

ing the possibility of using high-order entropy-stable methods for high-enthalpy
flows with strong shocks and non-conforming meshes obtained via AMR.
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