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Systematic screening of 42 vancomycin-
resistant Enterococcus faecium strains
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Vancomycin-resistant Enterococcus faecium (VRE) presents significant challenges in healthcare,
particularly for hospitalized and immunocompromised patients, including astronauts with
dysregulated immune function. We investigated 42 clinical E. faecium isolates in simulated
microgravity (sim. µg) using a 2-DClinostat, with standard gravity conditions (1 g) as a control. Isolates
were tested against 22 antibiotics and characterized for biofilm formation and desiccation tolerance.
Results showed varied responses in minimum inhibitory concentration (MIC) values for seven
antibiotics after sim. µg exposure. Additionally, 55% of isolates showed a trend of increased biofilm
production, and 59% improved desiccation tolerance. This investigation provides initial insights into
E. faecium’s changes in response to simulated spaceflight, revealing shifts in antibiotic resistance,
biofilm formation, and desiccation tolerance. The observed adaptability emphasizes the need to
further understand VRE’s resilience to microgravity, which is crucial for preventing infections and
ensuring crew health on future long-duration space missions.

The antimicrobial resistance crisis is a worldwide health threat, which poses
the risk of losing the effectiveness of antibiotics and, therefore, lifesaving
therapy options in the near future. According to the Centers for Disease
Control andPreventionaround35,900deaths, andover 2million infections,
can be ascribed to antimicrobial-resistant bacteria and fungi in the USA
alone. The so called “ESKAPE pathogens” play a key role in the global
challenge of over- and misuse of antibiotics1. This group of bacteria,
including Enterococcus (E.) faecium, Staphylococcus aureus (S. aureus),
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa
(P. aeruginosa), and Enterobacter species, can be multi-drug resistant,
enabling them to survive antibiotic treatments2. They are themajor cause of
healthcare-associated infections resulting in ~33,000 deaths and 874,000
disability-adjusted life-years in Europe alone3,4.

E. faecium is a biosafety level 2 bacterium and an opportunistic
pathogen of the gastrointestinal flora, intrinsically resistant to numerous
antibiotics. In addition, E. faeciummay become resistant to vancomycin, a
first-line antibiotic for many infections. This resistance for glycopeptide
antibiotics is mediated by van genes, with vanA and vanB being highly

relevant, as they can both be plasmid-encoded. The vancomycin-variable
Enterococci (VVE) harbor either the vanA or vanB gene complex, exhi-
biting a vancomycin-resistant genotype with a susceptible phenotype5,6. If
VVE strains are exposed to vancomycin during infection and subsequent
therapy, induction of vancomycin resistance may occur7. VVE strains car-
rying the vanB (VVE-B) gene were included in this study.

In the hospital setting and particularly in immunocompromised
patients8, VRE causes various severe infectious complications, such as
bacteremia and endocarditis9,10. Especially biofilm associated infections,
such artificial valve endocarditis, often further complicate treatment11–13.
With an additional resistance to vancomycin, reserve antibiotics, such as
linezolid and daptomycin, are the only therapy option left for VRE. In
addition, their great tenacity, including high desiccation tolerance14, results
in VRE being a particularly relevant pathogen for (endemic) hospital
outbreaks15.

VRE pose a significant threat, not only to immunocompromised
patients but also to astronauts, given their dysregulated immune function
during spaceflight, which makes them more susceptible to infections16,17.
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Astronauts have to endure various physiological challenges on board the
International Space Station (ISS). These include, but are not limited to
muscle atrophy and loss of bone density18, the increased risk of cancer19,
psychological stress20, altered sleep patterns21, and the spaceflight-associated
neuro-ocular syndrome22.

During spaceflight, the gastrointestinal microbiome of astronauts are
exposed to the harsh environment, exposing them to stress such as
microgravity and increased radiation23,24. The actual presence of anti-
microbial resistances already poses a serious infections risk in a built
environment like the ISS, even in close proximity to Earth25. For example,
during the Apollo 13 mission, a crew member experienced an in-flight
ESKAPE pathogen infection of P. aeruginosa26. This underscores the sig-
nificant challenges posed by infections in the confined and isolated envir-
onments of spacecrafts with only limited medical resources. This scenario
may be further aggravated by infections caused by multi-drug resistant
bacteria. Due to the built environment and the dysregulated immune
functions in spaceflight some similarities can be drawn between the hospital
setting and the spaceflight environment, including a potential risk for VRE
infection.

The query of limited treatment of infections is even further intensified
by the already planned long-termmissions to theMoon, such as the NASA
Artemis missions, and – potentially – to Mars27. This is of particular
importance for potential pathogenic members of the gut microbiomes,
including VRE – that are part of the physiological human microbial flora
and can cause infections under specific circumstances, including dysregu-
lated immune function28,29. The unavoidable carrying along of the human
microbiota, including E. faecium, in combination with a confined envir-
onment, limited treatment options and multiple external stress factors
highlight the crucial need for understanding antibiotic resistance of VRE
under spaceflight conditions. Particularly in the field of human spaceflight,
the research is still evolving and knowledge gaps remain regarding drug
stability and how antibiotic resistances may change in space during long-
term missions30. However, changes in bacterial resistance still require fur-
ther investigation, since different studies show increases, decreases or no
changes in minimal inhibitory concentrations (MIC) due to simulated
microgravity. Overall, there seems to be no general “spaceflight response” of
bacteria and the adaptations vary depending on the bacterial species31–33.
This fact highlights the need to gain further insights into bacterial changes to
microgravity and built environment in order to ensure future safeguarding
of astronauts’ health and gaining valuable insights to address the global
antibiotic resistance crisis34.

Since spaceflight experiments are highly demanding in terms of
planning time, costs, and engineering, and allow only a limited number of
experiments to be conducted, ground-based models and experiments are
essential. These models provide low-shear environments that offer a pre-
liminary approximation of potential changes during actual spaceflight.
However, the direct transferability of results tomicrogravity conditionsmay
be limited and should be approached with caution. Furthermore, compar-
isons between ground-based experiments are hindered by the variety of
simulation systems available. Different systems, such as rotation vessel
culture apparatus, can be used: rotary cell culture system, high-aspect ratio
vessel, or rotating-wall bioreactor, which are often employed for cultures
and incorporate a hydrophobicmembrane for aeration. Additionally, slow-
turning lateral vessel and integrated rotating-wall vessel are also applicable35.
These systems provide low fluid shear forces, replicating the loss of gravity
through the rotation of cells, which nullifies gravity vectors. Other options
for simulating microgravity include random positioning machines and
clinostats.

2D-clinostats have been used in several studies with bacteria36,37. They
are easy to operatewithin a simple setup and are accessible to awide rangeof
experiments. The uniform gravity cancellation across the entire sample
ensures consistent experimental conditions. This is of especial importance
for experiments necessitating prolonged exposure periods38.

In contrast to slow-rotating clinostats which focus on overall geometry
to meet a predetermined condition, fast-rotating clinostats also account for

the sedimentation paths in a fluid. Hence, higher speeds (60 r.p.m) may be
used for high viscositymedia, like agar and adherent cells39–41.With bacterial
colonies growing in the center of the agar plates in alignment with the
horizontal axis and not exceeding a radius of 1 cm, arising centrifugal and
acceleration forces can be neglected: a colony radius of 0.3–0.4 cm, g-forces
of 1.2 × 10−2–1.6 × 10−2 g, ensure exposure to simulatedmicrogravity of the
whole colony based on the following calculation of simulated µg: a =ω 2 r
[ω: angular velocity, r: colony radius]39. The Coriolis force gf = 2ωϕ [g:
gravity, ω: angular velocity, ϕ: angle per unit time] is proportional to the
velocity of the microorganism and the rotation speed40. Previous studies
have shown, that at 60 r.p.m, the resulting Coriolis force is extremely small
and insignificant formicroorganisms due to their low velocity andmass40,42.

Static 1 g controls placed directly next to the clinostat in order to ensure
similar humidity and temperature conditions, have been established as a
standard practice in clinostat experiments36,37. This ensures, that the
observed effects are due to microgravity rather than other factors.

When studying bacterial responses to sim. µg, the medium in which
they are cultured plays a crucial role. Bacterial cells respond differently to
sim. µg on solid media compared to liquid media due to factors like cell-to-
surface interactions, nutrient diffusion, shear stress, and altered gene
expression. For example, Salmonella enterica shows changes in stress
response andmetabolism gene expression43. Solid surfaces allow bacteria to
sense microgravity through different environmental interactions, affecting
horizontal gene transfer44. Microgravity can alter biofilm architecture and
gene expression, highlighting the importance of studying both solid and
liquidmedia to understand these effects42. Solidmedia provide a stable, low-
shear environment, crucial for reliable biofilm studies and consistent
experimental results. Therefore, we chose this setup to ensure the reliability
and consistency of our experimental results.

The impact of microgravity on microbial fitness, tolerances to harsh
environments and antibiotic efficacy still has to be determined for Enter-
ococci. Our study aimed to screen for changes in antibiotic susceptibility,
biofilm formation and desiccation tolerance for 42 E. faecium isolates under
sim. µg. Due to our need to use solidmedia and an exposure tomicrogravity
over 7 consecutive days, we decided for the clinostat as the best option for
our setup. This research is essential for ensuring the health of astronauts
during long-duration space missions, which last from several months to
over a year, and for developing effective strategies to combat antibiotic
resistance. Additionally, it may not only benefit human spaceflight but may
also result in new strategies in healthcare settings.

Results
Antibiotic susceptibility after sim. µg
All E. faecium isolates (VRE n = 15, VVE-B n = 7, VSE n = 20, total = 42)
were evaluated for their antibiotic susceptibility, before (initial) and after
incubation under sim. µg or 1 g conditions. With the exclusion of strains
VRE-6, -8, -10, and -13, all isolates were tested in triplicate for their sus-
ceptibility to 22 antibiotics (Supplementary Material, Table 3, Fig. 8). The
third replicate (Rep. 3) was excluded for the above isolates due to con-
tamination (Supplementary Information). Isolates that showed a single-step
increase or decrease inMIC after exposure to sim. µg (or after 1 g) are listed
in the Supplementary Information (SupplementaryTable 1). These one step
changes in MIC were observed for 59% (13/22) of the tested antibiotics
(ampicillin, daptomycin, fosfomycin, fusidic acid, gentamycin, high level
gentamycin, linezolid, mupirocin, rifampicin, quinupristin/dalfopristin,
trimethoprim/sulfamethoxazol, teicoplanin, vancomycin). Changes to
those antibiotics occurred in 85% (36/42) of the isolates (VRE n = 11, VSE
n = 19, VVE-B n = 6; Supplementary Table 1). For cefoxitin, tigecylin,
erythromycin/clindamycin and clindamycin, no changes were observed for
any tested isolates at all in MIC.

IdenticalMIC after incubation in sim. µg and 1 gwere observed in 30%
of the strains (13/42; VRE n = 6, VSE n = 4, VVE-B n = 3) (Supplementary
Table 2) for nine different antibiotics (ampicillin, daptomycin, ery-
thromycin, fosfomycin, penicillin, rifampicin, quinupristin/dalfopristin,
trimethoprim/sulfamethoxazole, vancomycin). Out of these strains, the
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highest increase in MIC was observed in two VVE-B and one VRE isolate:
the strains VVE-B-16 and -19 increased four steps in their MIC for ery-
thromycin and vancomycin after incubation under sim. µg and 1 g,
respectively. Isolate VRE-8 increased its teicoplanin MIC from 0.25 to
>16 µg/mL (five steps) after incubation under sim. µg and 1 g (Supple-
mentaryTable 2). The highest reduction inMIC in both conditions (sim. µg,
1 g) was observed for isolate VSE-35, which decreased from 8 to 0.5 µg/mL
to vancomycin. This isolate displayed MIC changes in a total of six anti-
biotics (ampicillin, ceftarolin, moxifloxacin, penicillin G, rifampicin, van-
comycin) after incubation in sim. µg and 1 g. Thiswas the highest number of
affected antibiotics out of all isolates. All MIC changes in strain VSE-35
ranged between one and three steps in MIC reductions.

Isolates with altered antibiotic susceptibility after incubation under
sim. µg, which were not identical with the 1 g control are shown in Table 1.
Each of the seven isolates (VRE n = 2, VSE n = 3, VVE-B n = 2) changed in
their MIC to different antibiotics (ceftarolin, gentamycin, moxifloxacin,
oxacillin, rifampicin, quinupristin/dalfopristin, vancomycin) (Table 1). Out

of these seven isolates, four decreased and three isolates increased in MIC
after sim. µg. The MIC of the isolate VRE-2 to gentamicin increased after
sim. µg (initial: 1 µg/mL, sim. µg: 4 µg/mL), whereas the initial MIC was
concurringwith theMICof the control (1 g: 1 µg/mL).VRE-4decreasedone
step in its MIC after exposure to sim. µg against quinupristin/dalfopristin,
however increased inMIC in the control (sim. µg: <0.5 µg/mL, 1 g: 4 µg/mL).
TheMIC foroxacillin reduced three steps after sim. µg for strainATCC6057
while remaining constant under 1 g conditions (Table 1). The MIC to cef-
tarolin of isolate VSE-35 was reduced from >2 to 1 µg/mL after sim. µg and
from >2 to 0.5 µg/mL after 1 g. In addition, the MIC of VSE-35 to moxi-
floxacin decreased after exposure to sim. µg (initial: >2 µg/mL, sim. µg:
<0.25 µg/mL), as in 1 g (1 g: 0.5 µg/mL). Furthermore, isolate VVE-B-17
increased due to sim. µg from8 to32 µg/mLbut decreased to 1 µg/mLunder
1 g conditions to vancomycin (Table 1). Isolate VVE-B-22 increased in the
MIC to rifampicin after sim. µg (initial: 0.5 µg/mL, sim. µg: >2 µg/mL),
remaining unaltered in the 1 g control (1 g: 0.5 µg/mL) (Table 1).

Adherence of VRE after sim. µg
The adherent cells ofVRE isolates ranged from low (OD600nm = 0.03,VRE-2)
to high (OD600nm = 1.68, VRE-7) (Fig. 1). Among all VRE isolates, VRE-7
showed the highest adherence (initial: OD600nm = 1.68, 1 g: OD600nm = 1.57,
sim. µg: OD600nm = 1.23). Five isolates exhibited significant less adherence to
in the initial testing compared to the exposure to sim. µg (VRE-2, -5, -6, -13,
ATCC 15559) (Fig. 1). Additionally, isolates VRE-2, -3, and -6 showed sig-
nificant decrease in the initial testing of adherent cells compared to the 1 g
control (VRE-2 p = <0.05; VRE-3 p = <0.001; VRE-6 p = <0.05) (Fig. 1).
Forty-six percent (7/15 isolates) displayedmore adherent cells when exposed
to sim. µg. Of these, two isolates demonstrated a significant change in
adherence following incubation under sim. µg (VRE-13 p = <0.01; ATCC
51559 p = <0.01) when compared to the control (1 g) (Fig. 1).

Among the five VVE-B isolates tested, isolate VVE-B-17 showed sig-
nificant less adherent cell formation in the initial testing compared to the
adherent cells detected after sim. µg. Isolates VVE-B-17 and -19 showed
significantmore adherence in the 1 g control than in the initial testing. Only
isolate VVE-B-20 exhibited singinficant less adherence in the 1 g control
compared to the initial testing (Fig. 2). Two isolates (VVE-B-16,VVE-B-20)
exhibited increased adherent cells following exposure to sim. µg (Fig. 2).
Three isolates displayed a higher adherence in the control (1 g). Among

Table 1 | Changes of antibiotic susceptibility after sim. µg and
1 g in E. faecium isolates

Changes in MIC (µg/mL)

Isolate Initial Sim. µg 1 g Antibiotic

VRE-2 1 4 1 Gentamycin

VRE-4 1 <0.5 >4 Quinupristin/
dalfopristin

ATCC 6057 >16 >2 >16 Oxacillin

VSE-35 >2 1 0.5 Ceftarolin

VSE-35 >2 <0.25 0.5 Moxifloxacin

VVE-B-17 8 32 1 Vancomycin

VVE-B-22 0.5 >2 0.5 Rifampicin

Alterations are displayed in minimal inhibitory concentrationMIC (µg/mL) for each tested antibiotic.
All isolates were tested in triplicates.
Initial initial MIC of isolate, sim. µg MIC after incubation under sim. µg for 7 days, 1 g (control) MIC
after incubation for 7 days, Isolate: VRE vancomycin-resistant E. faecium, VVE-B vancomycin-
variable E. faecium VanB type, VSE vancomycin susceptible E. faecium.

Fig. 1 | Adherence of VRE (vancomycin-resistant
E. faecium) isolates tested with crystal violet
(0.5%) biofilm assay (n= 15). Initial: adherent cell
formation was initially evaluated with the crystal
violet assay before any treatment. 1 g: isolates were
incubated in normal gravity as a control for 7 days.
Sim. µg: isolates were incubated under sim. µg for
7 days by clinorotation. Isolates were then tested in
their ability to adhere and potentially form biofilms
after 24 h at 37 °C in measuring the optical density
(OD600nm) in a microplate reader. Measurements
were done in triplicates and calculated error bars
show the standard deviation of each sample (n = 3).
Significance was determined by two-sample t-test;
the conditions corresponding to the significance
levels are shown in the parentheses: *p < 0.05;
**p < 0.01; ***p < 0.001.
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these, two isolates (VVE-B-17, VVE-B-19) showed a significant decrease in
adherent cells after incubation under sim. µg (Fig. 2, VVE-B-17 p = <0.01;
VVE-B-19 p = <0.01) than after 1 g. The highest number of adhered cells
was observed in isolate VVE-B-17 and VVE-B-19 after incubation without
sim. µg (1 g, OD600nm = 0.22) (Fig. 2).

The VSE isolates exhibited differences in the number of adherent cells,
with values ranging fromOD600nm = 0.17 (1 g, VSE-34) toOD600nm = 0.447
(1 g, VSE-26). VSE-27 and ATCC 6057 had a significant increased adher-
ence after sim. µg compared to the initial testing (Fig. 3). Among all tested
isolates 65% (13/20 isolates) showed an increased number of adherent cells
after exposure to sim. µg compared to 1 g (Fig. 3). Out of these, two isolates
(VSE-27,VSE-28) exhibited significantly higher adherence compared to the
control (VSE-27 p = <0.05; VSE-28 p = <0.05). Conversely, less adherence
was observed for VSE-41 after exposure to sim. µg compared to the control.

Overall, 30% (6/20 isolates) displayed higher number of adherent cells after
1 g (without sim. µg) (Fig. 3).

Of all tested isolates, 55% (23/42 isolates) hadmore adherent cells after
sim. µg in comparison to the 1 g control. Among these, four isolates
demonstrated significantlyhigher adherence than in the1 g control (VSE-27
p = 0.042; VSE-28 p = 0.035, VRE-13 p = <0.001; ATCC 51559 p = <0.001).
Moreover, for 45%(19/42 isolates) of the isolates, adherencewas evenhigher
in the control (1 g).Among these, three isolates showeda significant increase
in adherence (VSE-41 p = <0.001, VVE-B-17 p = <0.001; VVE-B-19
p = <0.001). In total, the abundance of adherent cells after sim. µg was
higher in VSE compared to VRE and VVE-B isolates. Sixty-five percent of
theVSE isolates showedan increased adherence after sim. µg, whereas itwas
higher under 1 g conditions for 59% of the VRE and 60% of the VVE-B
isolates. Overall, five VRE isolates, one VVE-B isolate and two VSE isolates

Fig. 2 | Adherence of VVE-B (vancomycin-vari-
able E. faecium) isolates tested with crystal violet
(0.5%) biofilm assay (n= 7). Initial: adherent cell
formation was initially evaluated with the crystal
violet assay before any treatment. 1 g: isolates were
incubated in normal gravity as a control for 7 days.
Sim. µg: isolates were incubated under sim. µg for
7 days by clinorotation. Isolates were then tested in
their ability to adhere and potentially form biofilms
after 24 h at 37 °C in measuring the optical density
(OD600nm) in a microplate reader. Measurements
were done in triplicates and calculated error bars
show the standard deviation of each sample (n = 3).
Significance was determined by two-sample t-test;
the conditions corresponding to the significance
levels are shown in the parentheses:
**p < 0.01; ***p < 0.001.

Fig. 3 | Adherence ofVSE (vancomycin susceptible
E. faecium) isolates tested with crystal violet
(0.5%) biofilm assay (n= 20). Initial: adherent cell
formation was initially evaluated with the crystal
violet assay before any treatment. 1 g: isolates were
incubated in normal gravity as a control for 7 days.
Sim. µg: isolates were incubated under sim. µg for
7 days by clinorotation. Isolates were then tested in
their ability to adhere and potentially form biofilms
after 24 h at 37 °C in measuring the optical density
(OD600nm) in a microplate reader. Measurements
were done in triplicates and calculated error bars
show the standard deviation of each sample (n = 3).
Significance was determined by two-sample t-test.
The conditions corresponding to the significance
levels are shown in the parentheses:
*p < 0.05; ***p < 0.001.
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showed less adherence in the initial testing compared to the exposure to
sim. µg.

Desiccation tolerance of VRE after sim. µg
To measure the metabolic activity after sim. µg and desiccation, the
reduction of alamarBlue Cell Viability Reagent was measured. Higher
values indicate greater cell viability. This correlateswith increased survival
after desiccation, thereby indicating higher desiccation tolerance. The
reduction of alamarBlue Cell Viability Reagent for all VRE isolates
(n = 15) after desiccation, bothwith andwithout sim. µg, ranged from35%
(1 g, VRE-10) to 100% (sim. µg, ATCC 51559). Seventy-three percent (11/
15) of VRE isolates exhibited higher metabolic activity when exposed to
sim. µg compared to the control (1 g). Out of these, four VRE isolates
displayed significantly increased viability after being incubated in sim. µg
(VRE-1 p = 0.015; VRE-3 p = 0.016; VRE-4 p = 0.002; VVE-B-21
p = 0.002). Five isolates (VRE-10, VRE-12, VRE-13, ATCC 51559,
DSMZ 17050) showed higher metabolic activity after desiccation under
1 g conditions (Fig. 4).

Six out of seven tested VVE-B isolates (VVE-B-16, -17, -18, -19, -20,
-22), showedno significant changes in their desiccation tolerance, regardless
of the incubation conditions. However, isolate VVE-B-21 exhibits sig-
nificant higher metabolic activity when exposured to sim. µg prior to
desiccation (VVE-B-21 p = 0.0004) (Fig. 5).

The majority of the 20 tested VSE isolates demonstrated increased
tolerance to desiccation after exposure to sim. µg: among these, 70% (14/20
isolates) exhibited enhanced desiccation tolerance following sim. µg expo-
sure compared to the control. Four isolates showed statistically significant
increased metabolic activity when incubated under sim. µg (VSE-24
p = 0.026; VSE-25 p = 0.021; VSE-32 p = <0.001, VSE-39 p = 0.003). In
contrast, two isolates displayed higher metabolic activity in the controls
without incubation under sim. µg (VSE-33 p = 0.032; VSE-34 p = 0.029).

The overall range of metabolic activity among all VSE isolates, after
incubation with and without sim. µg and following desiccation was 8.8%
(1 g, VSE-32) to 100% (sim. µg, VSE-25; 1 g, ATCC 6057) (Fig. 6). In
summary both, VSE (70%) and VRE (64%) showed higher tolerance to

desiccation after sim. µg exposure than under normal gravity. Contrary to
theVVE-B isolates,which showedno in-ordecreasedmetabolic activity due
to sim. µg.

Discussion
Overall, our findings indicate that E. faecium isolate are highly variable in
their antibiotic susceptibility, desiccation tolerance, and biofilm formation
under sim. µg. As a result, there is no generalized adaption to sim. µg that is
transferrable to species level.

Several studies have investigated changes in antibiotic resistances
under space conditions (e.g. Escherichia (E.) coli, S. aureus)31,45 and indicate
an altered genotypic or phenotypic antibiotic resistance46,47. Here, a sys-
tematic investigation of therapeutically relevant antibiotics under space-
flight analog conditions has been conducted. This allows for novel insights
into altered resistance selection and how thismight differ between antibiotic
groups and/or on a strain level.

All isolates (VRE,VSE, andVVE-B) showed changes in theirMICafter
cultivation in sim. µg. This suggests that sim. µg may select for strains
carrying these traits, highlighting the potential for altered resistance under
these conditions. While the underlying mechanism requires follow-up
studies, our findings are in accordance with previous studies in which one
original strain resulted in numerous populationswith varying phenotypes33.

Of special interest is the observed vancomycinMIC increase inVVE-B
isolate (VVE-B-17) under sim. µg conditions due to two reasons: first, since
vancomycin is thefirst-line therapy inmost of invasiveE. faecium infections,
any MIC increases for this antibiotic should be considered highly critical.
Second, a change in gene expression seems to be the possible mechanism in
this particular case: asVVE-B already carry a vanB gene, expression changes
can be considered more likely than a complete change in the genome itself.
The increase inMIC suggests that the bacteria are becoming less susceptible
to vancomycin, potentially leading to treatment failures. This is particularly
alarming in a spaceflight environment where the immune functions of
astronauts are already dysregulated, and the closed environment could
facilitate the spread of resistant isolates. To understand the underlying
mechanisms, genomic analysis is vital for follow-up studies.

Fig. 4 | Reduction (%) of alamarBlue Cell Viability
Reagent after 3 h incubation with VRE (vanco-
mycin-resistant E. faecium) isolates after 24 h of
desiccation. Isolates were incubated in normal
gravity (1 g) and under sim. µg for 7 days (n = 15).
These isolates were then dried for 24 h and tested in
their viability after desiccation by the Cell Viability
Reagent alamarBlue. Measurements were done in
triplicates and calculated error bars show the stan-
dard deviation of each sample (n = 3). Due to tech-
nical constraints, the assay was designed without the
initial measurement to ensure that all samples fit
within a single run of themeasurement, maintaining
consistency and accuracy across all data points.
Significance was determined by two-sample t-test;
The conditions corresponding to the significance
levels are shown in the parentheses: *p < 0.05.
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Interestingly, changes in antibiotic susceptibilitywere also noted under
normal gravity conditions after 7 days of incubation at 37 °C,whichmimics
body temperature. One-third of the isolates demonstrated altered antibiotic
susceptibility to nine different antibiotics, indicating that prolonged incu-
bation can induce resistance changes in E. faecium even without sim. µg.

Changes in resistance were observed across six different antibiotic
classes: glycopeptides (vancomycin), aminoglycosides (gentamicin), rifa-
mycins (rifampicin), fluoroquinolones (moxifloxacin), beta-lactams (cef-
taroline, oxacillin), streptogramins (quinupristin/dalfopristin). Some of
these classes, such as aminoglycosides and rifamycins have shown to have
synergistic effects in combination therapies– although lately cephalosporins
have been favored over aminoglycosides due to a better side-effects profile48.

However, no pattern throughout the different antibiotic classes was noted.
Importantly, we could also not find a common response to sim. µg for each
of the respectivegroups–VRE,VVE-B,VSE.This variability suggests thatE.
faecium can alter both intrinsic and acquired resistances under sim. µg, and
that there is no universal resistance response within the species. In general,
changes in antibiotic resistance profiles could be due to altered shear forces,
mass diffusion rates, and osmotic gradients35. Understanding these
mechanistic effects is crucial to ensure the health for astronauts on space-
flight missions and planned long-term future missions.

Various studies have investigated antibiotic resistances under space-
flight- or analog conditions and antibiotic-resistant bacteria have been
detected on board of the ISS49,50. However, no VRE have been detected thus

Fig. 6 | Reduction (%) of alamarBlue Cell Viability
Reagent after 3 h incubation with VSE (vanco-
mycin susceptible E. faecium) isolates after 24 h of
desiccation. Isolates were incubated in normal
gravity (1 g) and under sim. µg for 7 days (n = 20).
These isolates were then dried for 24 h and tested in
their viability after desiccation by the Cell Viability
Reagent alamarBlue. Measurements were done in
triplicates and calculated error bars show the stan-
dard deviation of each sample (n = 3). Due to tech-
nical constraints, the assay was designed without the
initial measurement to ensure that all samples fit
within a single run of themeasurement, maintaining
consistency and accuracy across all data points.
Significance was determined by two-sample t-test.
Significance was determined by two-sample t-test;
the conditions corresponding to the significance
levels are shown in the parentheses: *p < 0.05.

Fig. 5 | Reduction (%) of alamarBlue Cell Viability
Reagent after 3 h incubation with VVE-B (van-
comycin-variable E. faecium) isolates after 24 h of
desiccation. Isolates were incubated in normal
gravity (1 g) and under sim. µg for 7 days (n = 15).
These isolates were then dried for 24 h and tested in
their viability after desiccation by the Cell Viability
Reagent alamarBlue. Measurements were done in
triplicates and calculated error bars show the stan-
dard deviation of each sample (n = 3). Due to tech-
nical constraints, the assay was designed without the
initial measurement to ensure that all samples fit
within a single run of themeasurement, maintaining
consistency and accuracy across all data points.
Significance was determined by two-sample t-test.
Significance was determined by two-sample t-test;
The conditions corresponding to the significance
levels are shown in the parentheses: *p < 0.05.
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far. Nevertheless, vancomycin resistance genes and genomic signatures of
the closely related speciesEnterococcus faecalis (E. faecalis) were found from
a dining table on the ISS51. Moreover, 4.3% E. faecalis strains detected from
the air on board the ISS were resistant to five out of nine tested antibiotics
(chloramphenicol, erythromycin, high-level streptomycin, kanamycin,
tetracycline)52. In another study, an E. faecalis strain, recovered from a steel
surface after 12 months on the ISS, showed resistances to nine different
antibiotics and was therefore, out of 78 isolates, the isolate with the max-
imum resistance profiles53. Additionally, 29 antimicrobial resistance genes
were found on surfaces inside the ISS54 and 123 antimicrobial resistance
genes were detected from 24 collected samples (over a 1-year period)25.

For gram-negative bacteria like E. coli, an increase in resistance in
colistin and kanamycin was observed45. Another gram-negative bacterium,
P. aeruginosa, showed also significant increased MICs to colistin in a
spaceflight experiment55. Yet, comparability to our study is impeded due to
those organisms being gram-negative and, therefore, have a different cel-
lular membrane and wall structure. This not only means, that resistance
mechanisms vary considerably, but also that different antibiotic classes were
tested in the first place due to intrinsic resistances caused by these
dissimilarities.

While comparability might be slightly improved when looking at
gram-positive organisms, results are not readily transferrable between
species. This, again, is due to different intrinsic resistances and resistance
mechanisms. This should not be overlooked, given that our results already
indicate tremendous differences within a species, and a comparison should
be made carefully. Yet, because of a similar cellular construction, certain
derivations may be possible when looking at different antibiotic classes. For
instance, oxacillin MIC increased slightly in S. aureus45. In contrast, we
observed a decreased resistance to oxacillin in aVSE isolate.However, apart
from the already stated difference – oxacillin being an isoxazolyl penicillin
and therefore one of themain therapy options for S. aureus infections while
playing no role in treatment of E. faecium – our results occurred after
exposure to sim. µg and not during a spaceflight experiment, and, therefore,
are not directly comparable.

Under sim. µg, in a HARV, S. aureus showed no significant differences
in susceptibility to erythromycin, flucloxacillin, or vancomycin31. Con-
versely, vancomycinMIC increased in some of our strains after exposure to
sim. µg by clinorotation. Furthermore, we detected an increased inMIC for
erythromycin and vancomycin after both conditions in three isolates (VVE-
B-16, -19, -20), incubation under sim. µg and 1 g. Resistances against flu-
cloxacillinwerenot investigated inour study.Yet, this underlines the already
stated fact about not only interspecies but also intraspecies variability: as
flucloxacillin also belongs to the group of isoxazolyl penicillins, a similar
tendency as in the study of Tixador et al. should have been expected for S.
aureus45. Moreover, gram-positive bacterium Lactobacillus (L.) acidophilus,
showed significantly increased antibiotic resistance after sim. µg, to cefa-
lexin, sulfur gentamicin, and sodium penicillin56. However, in this experi-
mental setup a 2-D RWV was used with a low rotation speed of 30 r.p.m.,
not 60 r.p.m. Lactic bacteria, such as Lactobacillus can also exhibit vanco-
mycin resistance which is caused by a change from the D-Ala-D-Ala
C-terminus of peptidoglycans to a D-Ala-D-Lac terminus57 – similar to the
acquired resistance against vancomycin in VRE58. However, hybridization
experiments failed, pointing toward a different resistance mechanism, such
as a natural ligase, in Lactobacillus spp.56. This illustrates that phenotypic
changes, even in gram-positive bacteria, cannot be fully understoodwithout
further insights into their underlying mechanisms. In conclusion, the dif-
ferent results stress the importance of understanding antimicrobial resis-
tances in highly relevant species under spaceflight or analog conditions.
When comparing studies concerning antibiotic resistance, it is important to
note that they vary from actual spaceflight experiments, andmany different
test systems are used when simulating microgravity. Additionally, the stu-
dies differ in model organisms (gram-positive or gram-negative) and the
antibiotics tested, which makes a close comparison of our results difficult.
Further, they stress theneed for understanding the observed changes in each
of the species and strains in a molecular level.

For immunosuppressed patients as well as astronauts on the ISS,
biofilms present a great health hazard59,60. They can maintain a continuous
infection focus that, again, can provoke hospital-acquired infections such as
bacteraemia and urinary tract infections61. Ongoing research on biofilm
formation under varying gravitational conditions is necessary to fully
understand the impact of gravity – especially for clinically relevant species
such as E. faecium. In our study, using adherent cell measurements as a
surrogate parameter for biofilm formation, the highest biofilm levels were
observed inVRE isolates under both sim. µg andnormal gravity, supporting
the link between antibiotic-resistant E. faecium and increased biofilm
production62. Biofilmproductionwas generally higher undernormal gravity
than sim. µg for both VRE and VVE-B isolates, suggesting prolonged
incubation supports biofilm formation. Recent literature shows adaptations
in stressed biofilms due to nutrient depletion24,63. No similar literature has
been found that supports or aligns with our findings regarding increased
biofilm production solely due to prolonged incubation. Against our
expectations, we did not observe any common phenotypes or any isolates
standing out regarding development of increased biofilm and antimicrobial
resistance. Of interest, strain VRE-7 seemed to produce notably more bio-
film under all tested conditions when compared to the other strains. No
common phenotype was found within VVE-B, VRE, and VSE. Overall, our
results clearly show that E. faecium is able to alter in its adherence and
therefore potentially in biofilm formation after exposure to sim. µg
(regardless if it is in- or decreased biofilm).

Sobisch et al.53 assessed the biofilm production of several Enterococci
isolates and classified the ISS isolate of a multi-drug resistant E. faecalis as a
strong biofilm former53. Other space related experiments showed an
increased biofilm production of P. aeruginosa64 and thicker biofilms with
higher tolerance to stressors (salt, ethanol) after sim. µg in E. coli. Moreover,
as expected, those biofilms were found to be more resistant to certain
antibiotics65. Especially in biofilms, the dissemination of plasmids carrying
antibiotic resistance genes is very likely66. Yet, not least because of various
Earth-based modeling systems used to study the effects of microgravity on
microorganisms, there still remain many open questions about biofilm
formation under spaceflight conditions38.

Enterococci arehighly tolerant todesiccation, surviving severalmonths
on dry surfaces like glass, stainless steel, plastic, and cloth67. This contributes
to their environmental persistence and increases the risk of transmission
among hospital patients and astronauts on the ISS, since both are confined
spaces with limited access, which amplifies this risk. So far, there was no
difference found between VSE and VRE regarding the survival on dry
surfaces68. This correspondswith ourfindings, sincewe foundno significant
differences inmetabolic activities forVSE andVRE.Under desiccation,VSE
and VRE may more effectively express stress response genes that enhance
survival mechanisms like DNA repair, protein stabilization, andmembrane
integrity maintenance. These desiccation resistance genes might be upre-
gulated in VSE and VRE but not in VVE-B. Since the genes responsible for
desiccation tolerance in Enterococci are not well understood, a genomic
analysis of nanopore sequenced isolates is currently underway to investigate
genes involved in this process. A study found that the desiccation tolerance
of E. faecalis isolates from ISS did not differ from control isolates69, sug-
gesting that the extreme environment on the ISS is not necessarily selecting
for desiccation tolerant isolates. This aligns only partially with our results, as
we found individual isolates that increased in desiccation due to sim. µg.
Therefore, our results provide initial insights into desiccation tolerance in E.
faecium and its potential relation to gravity loss.Here,we demonstrated that
E. faecium can change in its desiccation tolerance on dry surfaces under sim.
µg conditions, yet the exact underlying mechanisms remain unclear.

One limitation that needs to be considered when looking at the results
of our study is the fact that the final testing was carried out under 1 g
conditions. However, this constraint, caused by currently available tech-
nology andassays, is not limited toour study, but rather is commonproblem
for Earth-based studies. Testing under continuous microgravity conditions
might render different results. This matter could be resolved by testing
under real microgravity, for example on the ISS. However, as mentioned,
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capacity is currently limited. In addition, biohazardous substances and
liquids are high risk materials on board the ISS. Future long-termmissions
to the moon and the construction of the lunar gateway may provide new
opportunities70.

Furthermore, novel methods to test adherent cells as a key component
of biofilm formation could be beneficial in advancing our understanding of
this process71. The crystal violet assay is an indirect biofilmdetectionmethod
thatmeasures the extracellularmatrix but also total cell biomass of biofilms;
hence, it does not distinguishes between live and dead cells13,72. Biofilms are
complex structures composed of cells and extracellular polymeric sub-
stances that can extend beyond just the adherent layer. Crystal violet binds
to peptidoglycan in the cell membrane and to EPS components such as
proteins, polysaccharides, and extracellular DNA, thereby staining the
entire biofilm. This allows for the biofilm being both visible and
quantifiable73. This semi quantitative method is widely recognized and
validated in the scientific community for assessing biofilm formation74–77.

Despite its limitations, the crystal violet assay effectively indicates a
strain’s ability for increased adherence, whichmay lead to enhanced biofilm
formation capabilities. It is recommended as a screening tool, not a stand-
alone experimental tool, which allows for high-throughput screening,
making it suitable for our experimental setup75,78. Amore accurate approach
to analyzing enhanced biofilm production would be a quantitative PCR-
based assessment or sequencing genes that are hallmarks of biofilm for-
mation. The genomes of several isolates are currently being analyzed to
investigate specific genes such as esp and other genes involved in biofilm
development inEnterococci, including acm, scm, sgrA, and ecbA. These data
will be included in a future publication. Combining both methods, the
crystal violet assay together with the analysis of biofilm-related genes, has
previously been demonstrated to be successful with Enterococci72,75. This
highlights the importance of combining phenotypic assays, like the crystal
violet assay, with genotypic analysis to obtain a comprehensive view of
biofilm formation, which is also effective in multispecies biofilm
formation79.

In conclusion, we showed that sim. µg can influence antibiotic sus-
ceptibility in E. faecium isolates, since four isolates decreased and three
isolates increased in MIC after sim. µg to seven different antibiotics
(Tabel 1). Especially, theMIC increase tovancomycin shows the importance
to investigate further how the loss of gravity can change antibiotic sus-
ceptibility in E. faecium. We showed that two VRE isolates and four VSE
isolates exhibited significant changes in adherence under sim. µg, suggesting
the potential for increased biofilm formation in these isolates (Figs. 1, 2, 3).
These phenotypic changes may arise from changes, involving genomic
alterations, or acclimation, involvingdifferential gene expression.Moreover,
fourVRE, fourVSE, and oneVVE-B isolate displayed significant changes in
their desiccation tolerance after sim. µg (Figs. 4, 5, 6). To further deepen our
understanding, especially regarding genetic variability and the selective

Table 2 | Overview of all tested E. faecium including the
associated vancomycin resistance gene (vanAB) determined
by PCR, isolation source and specimen

E. faecium isolates

Isolate vanAB gene Isolation source Isolation specimen

VRE-1 vanB Clinical isolate Blood

VRE-2 vanB Clinical isolate Blood

VRE-3 vanB Clinical isolate Urine

VRE-4 vanB Clinical isolate Other clinical
specimens

VRE-5 vanA Clinical isolate Blood

VRE-6 vanB Clinical isolate Urine

VRE-7 vanB Clinical isolate Urine

VRE-8 vanB Clinical isolate Other clinical
specimens

VRE-9 vanB Clinical isolate Other clinical
specimens

VRE-10 vanB Clinical isolate Urine

VRE-11 vanB Clinical isolate Other clinical
specimens

VRE-12 vanB Clinical isolate Other clinical
specimens

VRE-13 vanB Clinical isolate Blood

ATCC 51559 vanA Clinical isolate Other clinical
specimens

DSMZ 17050 vanA Clinical isolate Other clinical
specimens

VVE-B-16 vanB Clinical isolate Urine

VVE-B-17 vanB Clinical isolate Other clinical
specimens

VVE-B-18 vanB Clinical isolate Urine

VVE-B-19 vanB Clinical isolate Urine

VVE-B-20 vanB Clinical isolate Other clinical
specimens

VVE-B-21 vanB Clinical isolate Urine

VVE-B-22 vanB Clinical isolate Blood

VSE-23 / Clinical isolate Urine

VSE-24 / Clinical isolate Urine

VSE-25 / Clinical isolate Urine

VSE-26 / Clinical isolate Urine

VSE-27 / Clinical isolate Other clinical
specimens

VSE-28 / Clinical isolate Other clinical
specimens

VSE-29 / Clinical isolate Other clinical
specimens

VSE-30 / Clinical isolate Urine

VSE-31 / Clinical isolate Other clinical
specimens

VSE-32 / Clinical isolate Urine

VSE-33 / Clinical isolate Urine

VSE-34 / Clinical isolate Other clinical
specimens

VSE-35 / Clinical isolate Other clinical
specimens

ATCC 6057 / Dairy products Food production

VSE-37 / Clinical isolate Other clinical
specimens

VSE-38 / Clinical isolate Urine

Table 2 (continued) | Overview of all tested E. faecium
including theassociated vancomycin resistancegene (vanAB)
determined by PCR, isolation source and specimen

E. faecium isolates

Isolate vanAB gene Isolation source Isolation specimen

VSE-39 / Clinical isolate Urine

VSE-40 / Clinical isolate Urine

VSE-39 / Clinical isolate Urine

VSE-42 / Clinical isolate Other clinical
specimens

For this study, 42 E. faecium biosafety level 2 isolates, each obtained from distinct patients,
including three reference strains (DSMZ 17050, ATCC 51559, ATCC 6057) were tested.
VRE vancomycin-resistant E. faecium (minimal inhibitory concentration (MIC) >4), VVE-B
phenotypically tested vancomycin susceptible E. faecium isolates harboring a vanB gene (MIC ≤ 4),
VSE vancomycin susceptible E. faecium.
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pressures imposed by the sim. µg environment, it is essential to conduct
genotypic analyses as part of future investigations. These analyses will be
crucial for uncovering the underlying mechanisms at play.

Material and methods
E. faecium isolates
In total 42 E.faecium isolates (VRE n = 15, VVE-B n = 7, VSE n = 20) from
various clinical specimen including three reference strains (DSMZ 17050,
ATCC 51559, ATCC 6057) were tested in this study (Table 2).

Cultivation of isolates
For cultivation all E. faecium isolates, stored as cryocultures (−80 °C) were
streaked out on SBA (sheep blood agar; Oxoid™, Thermo Fisher Scientific
Inc., Waltham,MA, USA). The agar plates were incubated at 37 °C for 24 h
and stored afterwards at 4 °C. For all experiments, colonies from 24 h old
plates were used to set aMcFarland standard of 0.5MFU (McFarlandUnit)
in NaCl (0.85%) using a nephelometer (DensiCHEK, bioMérieux Inc.,
USA). The turbidity of 0.5MFU corresponds approximately to 1.5 × 108

cells/mL80.

Simulation of microgravity
From the preparedMcFarland standard, 10 µLwere pipetted on themiddle
of the IsoporeTM PC membrane filter (0.4 µm, 13mmØ) (Merck KGaA,
Darmstadt,Germany) in the center of a SBAplate.Theplateswere left under
the sterile bench for the droplet to dry. All agar plates were subsequently
closed with parafilm. They were then placed into a fast-rotating 2-D
clinostat (uniaxial clinostat, UN-KTM2, Advanced Engineering Services,
Co. Ltd.) and incubated at 37 °C81,82. The rotation axis of the clinostat was
aligned parallel to the ground and set to 60 rpm. The controls (1 g) were
placed next to the clinostat into the incubator (37 °C). After 7 days of
incubation, each filter membrane with the grown colony on top was
transferred into a 1.5mL reaction tubewith 1mLNaCl (0.85%).All samples

were vortexed for 15 s to dissolve the colony from the membrane filter. A
McFarland standard was prepared for further testing of antibiotic sus-
ceptibility, biofilm formation and desiccation tolerance (Fig. 7).

Antibiotic susceptibility testing
To determine the antibiotic susceptibility, standard MIC plates
MICRONAUT-S MRSA/GP (Merlin Diagnostika, Bornheim, Germany)
were used. The previously describedMcFarland standard was prepared and
100 µL of the suspension wasmixed with 11.5mL ofMueller Hinton broth.
This mixture was applied into the MIC 96-well plate, with 100 µL for each
well. After incubation for 18–24 h at 37 °C the plate was evaluated and read
visually by analyzing the bacterial growth (visible pinpoint). In total the
antibiotic susceptibility for each strain was tested in regads to 22 different
antibiotics (Supplementary Material, Table 3, Fig. 8). Each isolate was
assessed for susceptibility in triplicates after exposure to both sim. µg and 1 g
using three MIC plates, with one replicate utilized for the initial testing to
determine the MIC of each isolate.

Desiccation assay
To assess the viability of E. faecium cells after 24 h desiccation, the ala-
marBlue reagent was used. This method enables the detection of metabolic
activity by measuring the absorbance (OD570nm, OD600nm) with the multi-
detection microplate reader (Infinite M1000, Tecan Trading AG, Switzer-
land). AMcFarland standard of each strainwas prepared and 100 µL of that
suspensionwere transferred into eachwell of a 96-well plate in triplicates.As
a control, twelvewells were filledwith 100 µLNaCl (0.85%)without any cell
suspension. The microtiter plate was placed under the sterile bench to dry
for 24 h at room temperature. After desiccation (24 h), all wells were mixed
with 180 µL of BHI media. Additionally, 20 µL of the alamarBlue™ Cell
Viability Reagent (Thermo Fisher Scientific Inc., Waltham, MA, USA) was
added. In the multi-detectionmicroplate reader the plate was incubated for
15 h at 37 °C and measurements were taken every 30min.

Fig. 7 | Workflow overview from E. faecium sample preparation to final analysis
(antibiotic susceptibility testing, biofilm formation, desiccation tolerance) after
simulation of microgravity for 7 days by 2D-Clinorotation.MFU McFarland

Unit, MIC minimal inhibitory concentration, sim. µg simulated microgravity, NaCl
Sodium Chloride 0.85%. Created with BioRender.com.
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Crystal violet biofilm assay
Biofilm formation was determined according to Stepanovic et al.76 with
modifications: a McFarland standard for each E. faecium strain was pre-
pared. Next, 100 µL of the suspension was pipetted into a 96-well plate and
100 µL of BHI media was added and mixed well. The microtiter plate was
wrapped with parafilm and incubated for 24 h at 37 °C. Afterwards, the cell
suspension was discarded and all used wells were carefully washed twice
with 200 µL PBS. The microtiter plate was left to dry for 10min. Then
100 µL 0.5% crystal violet (Merck KGaA, Darmstadt, Germany) was added
and the plate was covered with aluminum foil for 30min at room tem-
perature. Next the supernatant was discarded followed by three washing
stepswith 200 µL distilled water, respectively. Last, each well was filled with
300 µL EtOH (≥99.8%) and put on a shaker at room temperature for 5min
to dissolve the staining from the biofilm. The optical density (OD600nm)
measurement of the biofilm in each well of the 96-well plate was done with
the multi-detection microplate reader.

Data analysis
All figures and statistical analysis were processed with Excel (Microsoft
Office Standard 2019) and SigmaPlot (Systat Software, Version 14.5). If
sampling sizewas applicable for statistical analysis the two-sample Student’s
t-test was performed. The presented data are depicted by the arithmetic
means with the corresponding with calculated standard error.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.
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