Efficient Brayton Batteries: Powering Integrated Electricity, Heat, and Cooling Solutions

Dr.-Ing. Michael Krüger German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart, Germany Michael.Krueger@dlr.de

Motivation

- Integrating Carnot batteries enhances sector coupling by linking electricity, heating, and cooling, optimizing renewable energy use.
- Innovative Brayton battery systems enable CO₂-free heat generation for industrial and residential applications, aiding decarbonization.
- Utilizing waste heat in combined systems boosts energy efficiency, reducing losses and maximizing performance.

Objectives

Conduct extensive design calculations, including topological analysis, to:

- optimize system parameters and configurations, enhancing efficiency and reducing costs,
- explore additional benefits beyond electricity only, including integrated systems for combined heat, power, and cooling.

Approach & Methods

- A concept study⁽¹⁻³⁾ evaluated Brayton batteries using air, CO₂, and Ar, with or without recuperators, considering various points for heat integration or extraction.
- Compressor outlet temperature COT=450°C (state of the art) and COT=625°C (under development) were assessed.
- Over 200,000 concepts were analyzed, driven by the combinatorial possibilities of placing one or more heaters and coolers at different points, supported by the development of a universal tool for topological analysis (see Fig 1).
- Lead concepts were defined for each application with or without **W**aste **H**eat Integration (@90°C):
 - Electricity only;
 - Combined Heat (@250°C) and Power;
 - Combined Cooling (@6°C) and Power;
 - Combined Heat (@250°C), Cooling (@6°C), and Power.

Fig. 1: Universal simulation tool for topological analyses using in Ebsilon Professional[®]

Fig. 2: Summarized results: Maximum values for round trip efficiency (RTE) and round trip utilization (RTU) at compressor outlet temperature COT=450°C

- Promising lead concepts with above-average efficiency were identified (see Fig. 2-3).
- Round trip efficiency (RTE) for electricity ranges from 20-50%, improving with higher compressor outlet temperatures. This considers every loss-inducing element in the conversion chain.
- Combined generation improves round trip utilization (RTU) but lowers electric RTE.
- Waste heat integration boosts RTU for combined heat and power (see Fig. 4), but this does not apply to cooling.
- Recuperators shift heat, enabling efficiency gains in combined electricity generation, particularly at lower compressor outlet temperatures.
- No viable conceptual solution was found for combined heat, cooling, and power.
- Dynamic system simulations ⁽⁴⁾:
 - Part load operation of turbomachinery is adequately reflected.
 - A variation in turbine outlet pressure found an optimum when both turbines operated with equal pressure at their outlets.

Fig. 3: Summarized results: Maximum values for round trip efficiency (RTE) and round trip utilization (RTU) at compressor outlet temperature COT=625°C

omorrov

• Future work will aim to develop flexible systems capable of providing both heat and cooling, either simultaneously or in alternating cycles, to meet diverse application needs.

Fig. 4: Exemplary lead concept combined heat and power with waste heat integration

Funding: The contents presented here were generated within the framework of the project "**SWS-SYS**: System simulation and system analysis for heat-based electricity storage systems", which received funding from the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under grant agreement No. 03El3045

on the basis of a decision by the German Bundestag

References

(1) Krüger, M. Appl. Sci. 2024, 14, 6073
(2) Krüger, M. IRES Conference 2023
(3) Krüger, M. IWCB 2022
(4) Krüger, M. Appl. Sci. 2024

(in preparation)