
The good, the bad and the ECSS

DLR Institute of Software Technology, Department for Flight Software

RUST FOR SPACE 
APPLICATIONS AND RTEMS

1

Jan.Sommer@dlr.de

Andreas.Lund@dlr.de

Hany.Abdelmaksoud@dlr.de

Tamara.GutierrezRojo@dlr.de

mailto:Jan.Sommer@dlr.de
mailto:Andreas.Lund@dlr.de
mailto:Hany.Abdelmaksoud@dlr.de
mailto:tamara.gutierrezrojo@dlr.de


ESA activity: cRustacea in Space

▪ Execution on embedded targets

▪ Execution on RTEMS operating system

▪ Developer friendliness

▪ Integration with legacy C-code

▪ ECSS standard conformity

▪ Qualification effort

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

WP01

WP02

WP03

2

Evaluate Rust for spacecraft onboard software development regarding

https://activities.esa.int/4000140242


WP01: Questions investigated

▪ Can we create cross-compilers for our hardware
targets, i.e. Zynq (and later probably Leon/Noel)?

▪ Can we create cross-compilers for our used operating
systems i.e. RTEMS?

▪ And both at the same time?

▪ Which Rust features are then available for us?

▪ Multithreading? 

▪ std library? 

▪ Unit test execution? 

Is Rust viable for our targets?

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

A small orange crab holding a white sign clipart

3



WP01: Explored options for Rust application on RTEMS

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

Build Rust 

toolchain for Zynq

(bare metal) 

Determine correct 

target flags

Build Rust application for

RTEMS

Check out GCC Front-End 

for Rust

Try to build gcc cross-

compiler for RTEMS 

(Im-)Possible alternative

4

Port stdlib to 

RTEMS

Build [no_std] 

application for 

RTEMS

Currently the project is in a too early

stage to be useful for our work. Still 

worth to follow future developments.

https://rust-gcc.github.io/

https://rust-gcc.github.io/


WP01: Build #[no_std] application for RTEMS

▪ Use the standard rustc compiler for

compiling user application

▪ Use #[no_std], #[no_main] 

▪ Export Rust functions to extern C

▪ Compile parts separately

▪ Init C-code for RTEMS with gcc cross-

compiler

▪ Rust code with rustc compiler

▪ Call exported Rust functions from C

5 ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

arm-rtems6-gcc

cross-compiler cross-linker

RTEMS

Kernel

BSP

builds

User application

RTEMS 

configuration

C application

code

compiles

rustc

llvm

Rust application

code

compiles



RTEMS executable

WP01: Porting stdlib to RTEMS

6 ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

arm-rtems6-gcc

cross-compiler cross-linker

RTEMS

Kernel

BSP

User application

RTEMS 

configuration

C application

code

links

cargo

llvm

Rust application

code

Rust std library

▪ armv7-rtems-eabihf
▪ New Tier 3 target in Rust compiler

▪ Includes std library

▪ Update of RTEMS documentation soon

builds

▪ Cargo builds RTEMS application

▪ Determines compile flags

▪ Compiles C and Rust code

▪ Links final binary

https://doc.rust-lang.org/nightly/rustc/platform-support/armv7-rtems-eabihf.html
https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy


D
L
R

 C
C

 B
Y

-N
C

-N
D

 3
.0

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

WP02: ON-BOARD APPLICATION
EXAMPLE

7



WP02: Questions investigated

▪ Are the Rust language features really

that beneficial?

▪ How does Rust code integrate with our

development infrastructure (gitlab, 

JUnit tests, Doxygen, static analysis)

▪ How does Rust integrate with existing

code (C/C++)

▪ How much effort is it to learn Rust as a 

C/C++ developer?

Is a move to Rust worth it?

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

A small orange crab sitting on a keyboard of a desktop pc clipart

8



WP02: Use case example

▪ Comparison RUST vs. C

▪ Collecting differences in development

▪ Compare the reliability (e.g. by Valgrind)

▪ Minimal example for common satellite application

▪ Command & Data Handling → PUS services:

▪ Service 3 Housekeeping

▪ Service 8 Function Management

▪ Service 20 Parameter Management

▪ Mock Sensor in C 

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
9



Comparison - Research

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

We compared the implementation of three ECSS Packet Utilization Services in Rust and C.
Our comparison focused on the following key points:

▪ Memory safeness and consumption

o Memcheck

o Heap consumption

▪ Developer friendliness

o Readability

− Syntax and Expressiveness

− Ownership and Borrowing

− Lifetimes

− Error Handling

o Writability

− Learning Curve

− Tooling and Ecosystem

− Debugging and Testing

− Code Safety

RUST vs. C clipart

10



Developer Friendliness / Readabiltiy

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

•Syntax and Expressiveness:

•C: Traditional syntax with explicit control structures like if statements and for loops.

•Rust: Modern syntax with pattern matching (match) and iterators for concise, 

readable, and maintainable code.

•Ownership and Borrowing:

•C: Manual memory management, prone to dangling pointers and undefined

behavior.

•Rust: Ownership and borrowing rules ensure safe memory management, 

preventing data races and enhancing reliability but can be complex at first.

•Lifetimes:

•C: No explicit lifetime management, risking unsafe memory access in concurrency.

•Rust: Explicit lifetime annotations ensure memory safety, especially for concurrent

programming, adding complexity but guaranteeing data validity.

•Error Handling:

•C: Relies on return codes and structs, leading to unstructured error handling.

•Rust: Uses the Result type for structured error handling, making code more

predictable and interfaces clearer.

A small orange crab reading a book clipart

11



Developer Friendliness / Writability

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

•Learning Curve:

•C: Easier for basics but requires deep understanding for concurrency and memory

management.

•Rust: Steeper learning curve due to ownership rules, but compiler aids learning. 

Takes more time initially.

•Tooling & Ecosystem:

•C: Mature ecosystem; manual integration for libraries and tools.

•Rust: Modern tooling (cargo) for simplified package management and rapid 

ecosystem growth.

•Debugging:

•C: Uses GDB; requires deep memory and hardware knowledge due to manual

memory management.

•Rust: Also uses GDB but benefits from compile-time checks and safer memory

management, reducing runtime errors.

A small orange crab writing a book clipart

12



Developer Friendliness / Writability(2)

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

•Testing:

•C: Lacks built-in testing; requires external frameworks.

•Rust: Built-in testing framework integrated with cargo, simplifying testing

processes.

•Code Safety:

•C: Programmer-managed safety; prone to undefined behavior and vulnerabilities.

•Rust: Enforces compile-time safety, preventing many common issues for more

secure code.

A small orange crab writing a book clipart

13



WP03: PA ASPECTS OF CRITICAL
SOFTWARE IMPLEMENTED IN RUST

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
14



WP03: Questions investigated

▪ How easy is it to extract code 
metrics from Rust? 

▪ Are all metrics from C needed?

▪ Is it possible to qualify Rust code 
according to ECSS standards?

▪ Does using Rust simplify the
qualification process?

How difficult is it to qualify Rust Code?

A small orange crab wearing glasses sits on a big book cartoon

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
15



WP03: Applicable Standard documents

▪ ECSS-Q-ST-80C 

▪ 29 relevant requirements identified

▪ ECSS-E-ST-40C 

▪ 14 relevant requirements identified

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
16



WP03: Testing and Collection of Code Metrics

▪ Unit testing, static analysis and coverage tools were analyzed and surveyed

Tasks Surveyed tools

Build cargo

Static analysis rustc

rust-clippy

Unit tests cargo-test

cargo-nextest

Code coverage llvm-cov (instrumentation-based)

clang (source-based)

cargo-tarpaulin

grcov

kcov

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
17



WP03: Key Findings

▪ Rust’s strong focus on compilation allows us to:

▪ Use rustc as static code analysis tool → might reduce effort compared to C

▪ Get instrumentation-based code coverage

▪ Impact on qualification process

▪ Memory safety and Rust‘s focus on concurrency are features that may be beneficial

▪ cargo-test provides robust support, availability and documentation for different 

platforms, and ensures maintainability

▪ rust-clippy offers more metrics to measure code quality

▪ tarpaulin‘s scope is currently limited to line coverage and LLVM instrumentation-based

coverage provides branch coverage at an unstable level (impact on req. 6.2.3.2)

18 ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software



Summary

▪ Rust and stdlib can be ported to RTEMS and added as a proper target

▪ Port needs to stabilize. Ideally aim for a Tier 2 target

▪ Add further architectures, like Leon/Noel processor family

▪ Rust can support developers in writing memory safe and concurrent code

▪ Existing/qualified C code can still be used side-by-side → Gradual adoption possible

▪ Needs some getting used to lifetimes and ownership rules

▪ Rust provides necessary tools for ECSS qualification

▪ Many relevant requirements can be fulfilled, some need further evaluation

▪ Rust ecosystem provides means to extract relevant metrics

19 ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-2-target-policy


Wishlist and Future Work

▪ RTEMS QDP

▪ Add the RTEMS POSIX API as it is used by the Rust port

▪ Evaluate and qualify the Rust compiler for RTEMS

▪ How to do schedulability analysis with RTEMS?

▪ Community Discussion about ECSS Qualification

▪ Regarding static analysis metrics provided by the Rust compiler and rust-clippy

▪ More thorough examination of other available tools for code coverage metrics 
(including branch coverage)

▪ Try out Rust in scoped real project

▪ Including qualification according to ECSS

We are happy to contribute

20 ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software

Wishes



WP03: Relevant Requirements from ECSS-Q-ST-80C

▪ Is it possible to qualify Rust code according to ECSS standards?

How difficult is it to qualify?

ECSS-Q-ST-80C Requirement Impact from tools usage Future actions for complete evaluation

5.2.1.1 Indirect N/A

5.2.1.3 Indirect N/A

5.2.1.4 Partial Evaluation on Rust compiler and static analysis metrics

5.2.5.1 Partial Evaluation on Rust compiler and static analysis metrics

5.3.1 Partial Evaluation on technology maturity aspects from the tools usage

5.3.2.1 Partial Evaluation on technology maturity aspects from the tools usage

5.3.2.2 Partial Evaluation on Rust compiler and static analysis metrics

5.6.1.2 Partial Further analysis on other code coverage tools and unit testing tools’ performance

5.6.2.1 Partial Further analysis on performance

6.2.2.2 Partial Evaluation on Rust compiler and static analysis metrics

6.2.2.3 Partial Evaluation on Rust compiler and static analysis metrics

6.2.3.2 Partial Further analysis on other code coverage tools and unit testing tools’ performance.

6.2.3.4 Indirect N/A

6.2.5.1 Indirect N/A

6.2.6.1 Indirect N/AADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
21



WP03: Relevant Requirements from ECSS-Q-ST-80C

▪ Is it possible to qualify Rust code according to ECSS standards?

How difficult is it to qualify?

ECSS-Q-ST-80C Requirement Impact from tools usage Future actions for complete evaluation

6.2.6.2 Indirect N/A

6.2.7.2 Indirect N/A

6.2.7.3 Partial Evaluation on Rust compiler and static analysis metrics

6.2.7.4 Indirect N/A

6.2.7.7 Indirect N/A

6.3.4.1 Indirect N/A

6.3.4.2 Indirect N/A

6.3.4.4 Indirect N/A

6.3.4.5 Partial Evaluation on Rust compiler and static analysis metrics

6.3.5.32 Indirect N/A

6.3.7.2 Indirect N/A

7.1.4 Direct Evaluation on Rust compiler and static analysis metrics. Further analysis on 

other code coverage tools and unit testing tools’ performance

7.1.5 Partial Further analysis on other code coverage tools

7.2.2.1 Indirect N/A

ADCSS 24, Rust for Space applications and RTEMS, 2024-10-23, 

DLR Institute of Software Technology, Department for Flight Software
22


