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Recent experiments have hinted towards an upcoming era of quantum utility, in which quantum
hardware is able to outperform classical simulation methods for a variety of real-world applications.
In this work, we show how application-inspired families of Clifford circuits can be used to benchmark
the capabilities of current hardware for running certain applications, providing a prediction as to
how measured expectation value fidelities scale with circuit depth. Considering the specific example
of simulating kicked-Ising circuits, we benchmark a 127-qubit superconducting device and suggest
how our circuits can also be used to benchmark recent classical simulation methods.

INTRODUCTION

Quantum computers represent a promising new tech-
nology due to their potential to provide exponential
speedups over classical computers for certain tasks such
as the simulation of quantum systems [1–5] or integer
factorisation [6].

Despite the rapid evolution of the field, quantum com-
puting remains at a stage where current devices are too
small and too erroneous to offer significant computational
speedups for various problems when compared to classi-
cal algorithms [7]. Recent experiments, however, have
hinted towards an upcoming era of quantum utility, in
which noisy intermediate-scale quantum (NISQ) hard-
ware is for the first time able to outperform classical
simulation methods for a variety of real-world problems
[8–10]. Hence, it is necessary to have tools which can
be used to benchmark the capability of current devices
to run particular applications which have the potential to
provide quantum speedups. This requires a full-stack ap-
proach, in which areas such as circuit design and compi-
lation for hardware are considered, as well as the leading
capabilities of classical simulation techniques.

In this work, we introduce a general framework for
producing hardware benchmarks by decomposing target
application circuits in terms of Pauli rotation gates. We
show how our benchmarking circuits can be chosen to be
Clifford and can be orchestrated such that the measure-
ment of a given Pauli string with respect to this circuit
is equal to one. Motivated by the recent work of IBM
and others [10–17], we consider as a specific example the
quantum simulation of a two-dimensional kicked Ising
chain followed by an expectation value measurement of
a Pauli string. Using our benchmark, we establish a re-
lationship between the fidelity of the measured expecta-
tion value and a quantity akin to circuit depth, and show
that this relationship is still obeyed when we perform ac-
tual kicked Ising simulations. We also suggest that, for
specially-chosen circuit parameters, these circuits ought
to be more difficult for classical simulation techniques to
simulate when compared to the recently developed meth-

ods applied to the original kicked Ising circuits. Thus, we
believe they could have use in benchmarking the capa-
bilities of these techniques.
This work is structured as follows. In Section 2, we out-

line some theoretical background relevant to this work,
namely the kicked Ising model, its recent implementa-
tion on IBM superconducting hardware and some classi-
cal methods recently introduced to simulate it. In Sec-
tion 3, we describe our general approach for producing
benchmarking circuits and consider the particular case of
simulating the kicked Ising model using superconducting
hardware by benchmarking the ibm brisbane device. In
Section 4, we consider the possibility of using our circuits
to benchmark those classical simulation methods based
on Clifford perturbation or tensor network approaches.
Finally, we conclude and discuss the potential for future
research.
Alongside this paper, we provide a GitHub repository

containing all code and data produced during this work
[18].

BACKGROUND

Kicked Ising model

In this work we consider the particular application of
simulating the transverse-field (‘kicked’) Ising model with
Hamiltonian

H = −J
∑
⟨i,j⟩

σi
zσ

j
z + h

∑
i

σi
x, (1)

where J is the nearest-neighbour coupling strength and h
is the strength of a transverse field applied globally. The
first sum runs over all pairs of nearest-neighbour qubits
(i, j) and the second runs over all qubits in the underly-
ing graph, which we regard to be two-dimensional. The
operator σi

z, for example, refers to the Pauli-Z operator
acting on qubit i.
This choice of application is motivated largely by the

recent work of IBM [10], in which this application was
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used to showcase the capabilities of their 127-qubit su-
perconducting ibm kyiv processor when combined with
heavily tailored error mitigation. The model also has
various applications in describing and modelling quan-
tum many-body systems [19–22].

Due to device access restrictions, in this work we
instead apply our benchmarks to the near-identical
ibm brisbane device, which has the same qubit layout,
the same native gate set and broadly similar (but on aver-
age slightly greater) error rates. In equation (1), we hence
consider our Hamiltonian acting on a two-dimensional
heavy-hexagon topology dictated by the qubit layout of
these devices (see Figure 1).

In the circuit model, the time evolution e−iHt of H can
be simulated using a Trotter decomposition with layers
of single and two-qubit gates,

e−iHt = [L1L2]
n
+O

(
t2

n

)
(2)

where

L1 =
∏
⟨i,j⟩

exp

(
Jt

n
σz
i σ

z
j

)
, (3)

L2 =
∏
i

exp

(
−ht

n
σx
j

)
. (4)

In the aforementioned IBM paper, the authors fixed
the value of J such that each two-qubit interaction could
be implemented using only one native two-qubit gate on
the device. This meant that a single L1 layer could be im-
plemented using only three layers of simultaneous native
two-qubit gates; we call these layers D1,D2,D3 and de-
pict them in Figure 1. They then simulated this model
(for varying h) using all 127 physical qubits and a cir-
cuit depth of up to 20 Trotter steps (60 layers of CNOT
gates). With the careful use of advanced and tailored
error mitigation techniques, they were able to extract ex-
pectation values of Pauli observables of various weights
with good experimental agreement and accuracy. The
authors claimed that these results were potentially more
accurate than what could be produced using classical
simulation techniques, using their own tensor network
simulations combined with techniques such as analysis of
the observable lightcone to reduce the number of simu-
lated qubits. They showed that this classical data was
less accurate than what they had obtained experimen-
tally.

As a result of these claims, several papers were pub-
lished in which classical simulation techniques were de-
veloped or improved upon in order to produce more ac-
curate results than those from the hardware, including
references [11–17]. We provide a short overview of these
methods in the following subsection.
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FIG. 1. Qubit layout of the 127-qubit ibm kyiv and
ibm brisbane devices, used in the original kicked Ising ex-
periment of [10] and in this work respectively. The colors of
the edges indicate the three layers of simultaneous two-qubit
gates needed to implement all nearest-neighbour interactions.
As in the original work, we apply these layers in the order red,
blue, green and call them D1,D2,D3 respectively.

Classical methods for simulating kicked Ising models

The vast majority of classical simulation methods
proposed across the aforementioned papers were tensor
network-based simulations [10–12, 14, 16], whereby the
expectation value computation is mapped typically to a
tensor network contraction problem [23, 24]. These ap-
proaches are differentiated by the choice of tensor net-
work ansatz and the method for their lossy contraction,
typically relying on identifying ways to simplify compu-
tations via analysis of the system’s entanglement struc-
ture. They begin to break down when considering highly
entangled systems, which have no efficient classical rep-
resentation, or when capturing non-local correlations.
A further method which we consider uses a technique

referred to either as Clifford perturbation theory (CPT)
or sparse Pauli dynamics, originally introduced in [25]
and applied to kicked Ising simulations in [12]. This
method relies on the fact that Clifford gates can be ef-
ficiently classically simulated using the Gottesman–Knill
theorem [26], and that a general n-qubit unitary can be
decomposed as a series of layers of Pauli rotations,

U = U1(θ1) · · ·UN (θN ) (5)

where each gate Ui(θi) = e−iθiPi/2 is a Pauli rotation
with P ∈ {I,X, Y, Z}⊗n a Pauli string. The expectation
value of a Pauli observable O with respect to this circuit
is then



3

⟨O⟩ = ⟨0⊗n|U†OU |0⊗n⟩ (6)

= ⟨0⊗n|U†
N (θN ) · · ·U†

1 (θ1)OU1(θ1) · · ·UN (θN )|0⊗n⟩ .
(7)

This expectation value can be calculated by iteratively
contracting the expression to the middle, using the fact
that that

eiθP/2Oe−iθP/2 (8)

=

{
O, if [P,O] = 0;

cos(θ)O + i sin(θ)PO, if [P,O] ̸= 0,

where [P,O] = PO − OP for general Pauli strings P
and O. This implies that the number of Pauli terms
needed to calculate the expectation value grows expo-
nentially with the number of gates which anti-commute
with Pauli terms from the evolved observable at each it-
eration. Since each term is weighted by a product of
sines and cosines (and thus each weight is monotonically
decreasing with each circuit layer), any small terms are
able to be discarded at the expense of increased error.

The final class of simulation methods relevant to our
work are those methods which consider the lightcone of
measured observables in order to reduce the number of
qubits required to perform classical simulations. This
idea was used in the original IBM paper [10] and im-
proved upon in [13]. In the latter paper, the authors
show that ⟨Z62⟩ can be measured accurately on the 127-
qubit kicked Ising circuits by considering only up to 31
qubits, within the capabilities of even full state-vector
classical simulation. In doing so, they define an effec-
tive fidelity as the ratio of the experimentally measured
expectation value and the ideal value,

Feff =
tr(ρO)

⟨O⟩ideal
, (9)

where O is the measured observable and ρ is the density
matrix of the noisy output quantum state. The authors
then define a effective circuit volume Veff which governs
the scaling of the effective fidelity via

Feff ∼ e−εVeff (10)

where ε is the dominant error per two-qubit entangling
gate. By comparing the mitigated and unmitigated ex-
perimental data from [10], the authors showed that some
circuits had an effective volume of only around 100 two-
qubit gates (compared to 2880 in the original circuit),
implying simulation of a smaller circuit could be used to
reproduce the data with comparable, if not better, accu-
racy. They showed this to be the case with good conver-
gence in results as the number of qubits was increased up
to a maximum of 31.

One can also compare Veff to Vlc, the number of two-
qubit gates in the lightcone of O. We will use this quan-
tity later in our work.

BENCHMARKING NISQ HARDWARE

Our general approach for producing benchmarking cir-
cuits for a specific application circuit and Pauli measure-
ment observable O is the following. We first decompose
the gates of the application circuit into single and two-
qubit Pauli rotations, and separate the circuit into layers
of simultaneously implementable gates. In the kicked
Ising case, this is achieved by first writing the circuits
in terms of RX and RZZ gates (see equations (2)-(4))
– for a single Trotter step, all RX gates can be imple-
mented simultaneously in a single layer whilst the RZZ

gates require three layers of simultaneous gates to imple-
ment all nearest-neighbour interactions (see Figure 1).
The ansatz for a benchmarking circuit is then created by
duplicating the structure of this circuit while no longer
fixing the Pauli associated with each Pauli rotation gate.
We also replace each rotation angle with a global angle
θ which is the same for all gates in the circuit.
In the case of benchmarking a kicked Ising circuit with

L Trotter steps and applied to some connected subset of
qubits Q of the hardware layout shown in Figure 1, this
results in an ansatz

U(θ) =

L∏
ℓ=1

3∏
j=1

∏
(q1,q2)∈Dj :
q1,q2∈Q

eiθP
(ℓ,q1,q2)/2

∏
q∈Q

eiθP
(ℓ,q)/2.

(11)
For all benchmarking circuits, we fix θ = π/2 to yield

a Clifford circuit which can thus be efficiently classically
simulated using the Gottesman–Knill theorem [26]. This
has the natural advantage that at large numbers of qubits
we can exactly calculate expectation values. For hard-
ware with a non-parameterised native two-qubit gate act-
ing as the main source of error, we expect the error be-
haviour of these circuits to be roughly independent of
the choice of θ. This is since, for superconducting hard-
ware such as the IBM devices considered in this work, the
main source of non-measurement (gate) error is from the
two-qubit entangling gates. For both of these devices,
the native two-qubit gate is the ECR gate which is fixed
and thus independent of our circuit angle parameter θ.
In other words, compiling our circuit for this hardware
pushes the dependence on θ onto the single-qubit gates,
whose error rates are generally several orders of mag-
nitude lower than for the two-qubit ECR gates. This
implies that we should expect circuit error behaviour to
be broadly insensitive of θ. We would also expect our
approach to be useful in the case of a parameterised na-
tive two-qubit gate, provided the error rates are roughly
independent of the gate parameters.
To fix the individual Paulis in the circuit, we apply an

iterative method by moving through the circuit layers in
the order in which they are applied. We pick Pauli rota-
tions such that each individual qubit remains in one of
the six Pauli ±1 eigenstates of σx, σy and σz – this allows
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FIG. 2. (a) and (b): the results of running our benchmarking circuits on the ibm brisbane device. We run 10 random
benchmarking circuits for each number of qubits N ∈ {2, 4, 8, 16, 32, 64, 127} and each number of layers L ∈ {1, 2, . . . , 15} and
in each case plot the effective fidelity Feff of the measured expectation value tr(ρZ62) (with exact value ⟨Z62⟩ = 1). In (a), we
plot Feff against the exact observable lightcone volume Vlc. In (b), we combine this data by instead plotting Feff against Vlc/N ,
enabling us to perform a quadratic curve fitting (red line) with a 3σ error margin (red shading), measured over 100 discrete
intervals of Vlc/N . (c): the results of running kicked Ising circuits on ibm brisbane and comparison to the benchmarking
prediction. In this case we run 900 circuits, where each has a randomly chosen number of qubits N ∈ {1, 2, . . . , 16}, circuit
layers L ∈ {1, 2, . . . , 15} and single-qubit rotation angle θh chosen uniformly at random between 0 and π/4. For each circuit we
calculate ⟨Z62⟩ via exact classical simulation, measure tr(ρZ62) on the device and plot the effective fidelity Feff. We see that
almost all the kicked Ising data lies within the 3σ margins of the benchmarking prediction. We also note that the variance in
this data is larger, likely since we are measuring expectation values below 1 and thus have reduced measurement precision.

us to keep track of the state |q⟩ of each qubit q in the cir-
cuit, since the full circuit state remains a product state.

For each two-qubit Pauli rotation eiθP
(q1,q2)/2, this can

be achieved by picking P (q1,q2) = P (q1)P (q2) where |q1⟩ is
an eigenstate of P (q1) and P (q2) ∈ {σx, σy, σz} is chosen
uniformly at random. We then update the state |q2⟩ 7→
P (q2) |q2⟩, another Pauli eigenstate. For the single-qubit
rotations, we simply pick P (q) ∈ {σx, σy, σz} at random
and then update the stored state |q⟩ 7→ P (q) |q⟩. We re-
peat this procedure until we reach the end of the circuit.
At this point, the output state is a known product state
⊗q |q⟩. We note that we can map any Pauli eigenstate to
any other using a single-qubit Pauli rotation gate with
a Clifford rotation angle (i.e. a multiple of π/4). Hence,
our final step is to map the output state of the circuit to
a +1 eigenstate of the Pauli observable O by appending a
single-qubit Pauli rotation to each qubit on which O acts
non-trivially, with negligible cost to the fidelity. This en-
sures that with respect to our benchmarking circuits we
have ⟨O⟩ = 1, and thus the effective fidelity Feff is, by
equation (9), just the measured expectation value.

In Figure 2, we present the results of a 1050-circuit
demonstration in which we benchmark the ibm brisbane

device for running unmitigated kicked Ising simulations
and measuring the observable O = Z62. The measure-
ment of this observable was also considered in the orig-
inal kicked Ising experiment of [10], and corresponds to

measuring one of the central qubits in the device layout
(see Figure 1). Across the demonstration we use increas-
ing numbers of qubits (N = 2, 4, 8, 16, 32, 64, 127) and
Trotter layers (L = 1, 2, . . . , 15), with 10 random circuits
per (N,L) combination.

For each random circuit with N qubits and L layers,
we first pick uniformly at random a subset of connected
qubits QN ⊆ {1, 2, . . . , 127} such that |QN | = N and
qubit 62 ∈ QN . We then start with the ansatz form of
equation (11) and populate the gates of the circuit via the
random procedure above. We then measure the empirical
expectation value tr(ρO) using the ibm brisbane device
and plot the effective fidelity Feff = tr(ρO). These steps
are laid out in the Jupyter notebooks in the associated
GitHub repository, alongside the calibration data for the
ibm brisbane device at the time of its use [18].

In the middle plot of Figure 2, we see that the fi-
delity scaling can be made to be almost independent of
the number of qubits by considering instead the quan-
tity Vlc/N : the size Vlc of the observable lightcone (the
number of two-qubit gates inside the lightcone of Z62)
divided by the number of qubits N in the circuit. This
number is comparable to the circuit depth d, but we find
it to be more descriptive since d is necessarily quantised
to integer values. This allows us to perform a simple
curve fitting – we fit the data to a degree-two polynomial
and also plot three standard deviations above and below
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this curve, measured at regular intervals and indicated by
the red shading. This then gives us a prediction for the
scaling of the effective fidelity as a function of the circuit
depth for circuits with the kicked Ising-type structure.

In the rightmost plot, we test this prediction by run-
ning a large number (900) of randomised, non-Clifford
kicked Ising circuits. For each circuit, we pick uniformly
at random the number of qubits N ∈ {1, 2, . . . , 16}, the
number of circuit layers L ∈ {1, 2, . . . , 15} and the single-
qubit gate rotation angle θh uniformly in (0, π/4). We
classically simulate the exact expectation value ⟨O⟩ and
then measure the empirical expectation value tr(ρO) us-
ing the ibm brisbane device. In Figure 2(c), we plot the
resulting effective fidelity Feff (see equation (9)), again
as a function of Vlc/N , and compare these results to the
prediction from our benchmarking circuits.

We see that the vast majority of our kicked Ising fi-
delities lie within the 3σ boundaries predicted by our
benchmarking circuits, indicating they are successful in
predicting the error behaviour of our application cir-
cuits. We note however that the measured variance in
the kicked Ising data is higher for greater circuit depths
since the measured expectation value tends to decay away
from 1 and hence we have reduced measurement preci-
sion.

POTENTIAL FOR BENCHMARKING
CLASSICAL SIMULATION METHODS

In this section, we show how to generate circuits which
have the potential to be useful in benchmarking the capa-
bilities of leading classical methods for simulating kicked
Ising models. Specifically, we consider the tensor net-
work and Clifford perturbation techniques outlined in the
Background section. We provide some data to support
these findings by analysing entanglement entropy.

To do so, we use an algorithm for circuit generation
which starts with the same ansatz as in equation (11)
and then purposely aims to generate circuits which are
hard for Clifford perturbation theory simulation. It does
this by picking Pauli rotations which anticommute with
the Heisenberg-evolved observable at each layer of the cir-
cuit, thus causing its classical description to grow expo-
nentially (see equation (8)). We then show that this class
of circuits has greater entanglement entropy on its mea-
sured qubits for the measurement of arbitrary weight-two
Pauli strings, implying these circuits are more entangling
and thus potentially more challenging (but not necessar-
ily impossible) for tensor network simulation techniques
to simulate when compared to the kicked Ising circuits
of [10].

Our circuits are generated according to the observable
O which is to be measured, which here we do not fix.
We consider the set S of Pauli strings needed to describe
the observable O =

∑
P∈S aPP , and track the evolution

of this set in the Heisenberg picture as we move through
layers of the circuit (see equation (7)). We start from
the deepest layer of the circuit and work backwards, fix-
ing each Pauli rotation gate by brute-force choosing the
Pauli which anticommutes with as many elements of S
as possible, and then updating the set S using equation
(8). After some number of layers (when we expect |S|
to be large enough that brute-forcing is no longer feasi-
ble), we instead pick Paulis uniformly at random. Since
any Pauli has a 50% likelihood of anti-commuting with
any other Pauli, we expect |S| to grow by a factor of
around (1.5)(|V |+|E|)·(L−Lbf) in this region (for a circuit
on a qubit graph G = (V,E) with |V | the number of
single-qubit gates and |E| the number of two-qubit gates
per layer), thus making CPT intractable at larger circuit
depths.
With this, we set out the algorithm for circuit genera-

tion:

Input: A qubit layout given by connected graph
G = (V,E); a Pauli string O =

∏
v∈V Oi (where Oi ∈

{I, σx, σy, σz}) to be measured; a total number of cir-
cuit layers L and some number Lbf ≤ L of circuit layers
to brute-force. We also input our ansatz based on the
target application circuit, in this case given by equation
(11). We then pick the corresponding Paulis P (ℓ,q1,q2)

and P (ℓ,q) via the algorithm below.

1. Define the set S = {O} and T (P ) = {v ∈ V | P =
⊗w∈V Pw, Pv ̸= I}, where the Pw ∈ {I, σx, σy, σz};
i.e. T (P ) is the set of qubits on which P acts non-
trivially.

2. For each layer ℓ = L,L− 1, . . . , L− Lbf + 1:

(a) For each i ∈ {3, 2, 1} and each (q1, q2) ∈ Di:

i. Pick the weight-two Pauli P such that
T (P ) = {q1, q2} and the set {s ∈
S | [P, s] ̸= 0} is as large as possible.

ii. Update the set S 7→ S ∪ {Ps | s ∈
S, [P, s] ̸= 0} and fix P (ℓ,q1,q2) = P .

(b) For each q ∈ V :

i. Pick the weight-one Pauli P such that
T (P ) = {q} and the set {s ∈ S | [P, s] ̸=
0} is as large as possible.

ii. Update the set S 7→ S ∪ {Ps | s ∈
S, [P, s] ̸= 0} and fix P (ℓ,q) = P .

3. For each layer ℓ = L− Lbf, L− Lbf − 1, . . . , 1:

(a) For each (q1, q2) ∈ E, pick uniformly at
random a weight-two Pauli P with T (P ) =
{q1, q2} and set P ℓ,q1,q2 = P .

(b) For each q ∈ V , pick uniformly at random a
weight-one Pauli P with T (P ) = {q} and set
P ℓ,q = P .
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FIG. 3. Comparison between the entanglement entropy growth of our random benchmarking circuits and the kicked Ising
circuits of the IBM experiment. Each datapoint is averaged over 1000 random instances with 1σ errorbars. This broadly
implies that our benchmarking circuits are more entangling and thus more challenging for tensor network techniques.

We generally find that just one brute-force layer is
sufficient for |S| to become intractably large, indicating
that this class of circuit should prove more challenging
for CPT simulation techniques compared to the original
kicked Ising circuits. This is particularly the case when
one chooses circuit angle parameter θ = π/4 such that
terms in expression of the Heisenberg-evolved observable
O cannot be excluded, since they all have the same weight
(see equation (8)).

We show that this class of random circuit also has the
potential to be challenging for tensor network techniques
via an analysis of entanglement entropy. In Figure 3, we
show the growth of entanglement entropy with the num-
ber of qubits in the circuit. Each datapoint is generated
using 1000 ‘circuit instances’, where for each instance we
pick uniformly at random a connected qubit graph cor-
responding to a connected subset of the ibm brisbane

device. We also pick uniformly at random two measure-
ment qubits q1, q2 from this subset and a uniformly ran-
dom weight-two Pauli observable O to measure on these
qubits (i.e. T (O) = {q1, q2}). For our benchmarking
circuits, we then generate U(π/4) using the algorithm
above, classically simulate its evolution and record the
entanglement entropy,

E = −tr [ρq1,q2 log(ρq1,q2)] , (12)

where ρq1,q2 is the reduced density matrix of the sub-
space spanned by qubits q1 and q2. For the kicked Ising
circuits we repeat the procedure but using standard cir-
cuit parameters from [10], namely θJ = −2Jt/n = −π/2
(which enables each two-qubit Pauli-ZZ rotation to be
compiled using only a single native two-qubit gate) and
θh = 2ht/n = π/4. We see that the entanglement en-
tropy grows much faster with our benchmarking circuits
and appears to plataeu closer to the theoretical limit,
suggesting that these circuits have application in bench-
marking both the CPT and tensor network classical sim-
ulation techniques. This result is perhaps unsurprising
when one considers that the choice θJ = −π/2 in the

original kicked Ising circuits means that these circuits
contain only half as many native two-qubit ECR gates
when compiled to the hardware.

CONCLUSION AND FUTURE WORK

In this work, we showed how a novel approach of de-
composing application circuits into layers of single and
two-qubit Pauli rotation gates can be used to gener-
ate benchmarking circuits which are Clifford and accu-
rately reproduce the scaling behaviours of measured ex-
pectation value fidelities. We gave a concrete demon-
stration of this idea by benchmarking the 127-qubit
ibm brisbane superconducting device against running
kicked Ising demonstrations with various circuit depths,
showing good agreement between the observed scaling of
the benchmarking and application circuits. Our hope is
that this method can be used by researchers to ascertain
the capabilities of both existing hardware and new emer-
gent platforms to run particular applications at scale.
This is particularly relevant during the NISQ era both
for hardware manufacturers seeking to demonstrate the
capabilities of their devices as well as end users wish-
ing to optimise an application for a particular hardware
platform.
Taking a full-stack approach, we also considered two

of the leading techniques for classically simulating kicked
Ising models – namely tensor network and Clifford per-
turbation methods – and gave evidence to show that our
circuits may also have application in benchmarking the
capabilities of these techniques. The ability to simul-
taneously benchmark both quantum hardware and clas-
sical simulation methods is likewise a useful tool for re-
searchers seeking to demonstrate that we have entered an
era of quantum utility. One natural approach for future
research could be to produce a comparative benchmark of
each of the relevant classical simulation techniques using
our benchmarking circuits.
Throughout this research, we have considered only the
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effects of running circuits without the use of error mitiga-
tion techniques. One natural direction for future research
is to consider how these benchmarking circuits could be
used to benchmark the capabilities of different error mit-
igation techniques for different applications. Since we
expect the error behaviour of the benchmarking and ap-
plication circuits to be very similar, the fidelity scaling of
a series of error-mitigated benchmarking circuits should
form an accurate prediction for the fidelity scaling when
running the target application with the same error miti-
gation. This could also form a valuable tool in comparing
the effectiveness of different error mitigation techniques
for a single target application.

CODE AND DATA AVAILABILITY

All program code, simulation and measurement re-
sults produced over the course of this research are avail-
able in the associated GitHub repository [18]. Also
available there is the hardware calibration data for the
ibm brisbane device available at the time that our cir-
cuits were run.
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