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open-source large language models and geo-knowledge
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aInstitute of Data Science, German Aerospace Center (DLR), Jena, Germany; bInstitute of Software 
Technology, German Aerospace Center (DLR), Cologne, Germany 

ABSTRACT 
Toponym resolution is crucial for extracting geographic informa-
tion from natural language texts, such as social media posts and 
news articles. Despite the advancements in current methods, 
including state-of-the-art deep learning solutions like GENRE and a 
sophisticated voting system that integrates seven individual meth-
ods, further enhancing their accuracy is essential. To achieve this 
goal, we propose a novel method that combines lightweight and 
open-source large language models and geo-knowledge. 
Specifically, we first fine-tune Mistral (7B), Baichuan2 (7B), Llama2 
(7B & 13B), and Falcon (7B) to estimate toponyms’ unambiguous 
reference (e.g., city, state, country) given their contexts. 
Subsequently, we correct inaccuracies in generated references and 
determine their geo-coordinates via sequentially querying 
GeoNames, Nominatim, and ArcGIS geocoders until a successful 
geocoding result is achieved. Our methods demonstrate enhanced 
performance compared to 20 existing methods, as evidenced 
across seven challenging datasets including 83,365 toponyms 
worldwide, with the Mistral-based method leading, followed by 
Baichuan2, Llama2, and Falcon-based methods. Specifically, the 
Mistral-based method achieves an Accuracy@161km of 0.91, sur-
passing GENRE, the best individual method, by 17% and the 
seven-methods composite voting system by 7%. Moreover, our 
methods are computationally efficient, operable on one general 
GPU, have modest memory requirements (14 GB for 7B models 
and 27 GB for 13B models), and exceed both GENRE and the vot-
ing system in inferring speed.
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1. Introduction

In this era, characterized by a vast array of semi-structured and unstructured natural lan-
guage texts, a hidden treasure trove of geographic information awaits discovery. This 
information is embedded in a wide range of sources, from social media posts and news 
articles to scientific publications and historical documents, often in the form of 

CONTACT Xuke Hu xuke.hu@dlr.de 
� 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by 
the author(s) or with their consent.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 
https://doi.org/10.1080/13658816.2024.2405182

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2024.2405182&domain=pdf&date_stamp=2024-09-23
http://orcid.org/0000-0002-5649-0243
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2024.2405182


toponyms and place names (Hu et al. 2023b). This wealth of information offers a unique 
geospatial lens that deepens our understanding of our world (Hu and Adams 2021). 
Extracting the geographic information from texts, also named geoparsing, is important 
for a variety of applications across domains such as spatial humanities (Gregory et al. 
2015), geographic search (Purves et al. 2018), disaster management (Zhang et al. 2021), 
urban planning (Milusheva et al. 2021), and epidemiological studies (Scott et al. 2019). 
Geoparsing consists of two steps: toponym recognition, which is to recognize toponyms 
mentioned in texts, and toponym resolution or geocoding, which is to determine the 
geospatial representation or geo-coordinates of the toponyms. While significant progress 
has been made in toponym recognition (Hu et al. 2022a, 2022b, 2023c), toponym reso-
lution remains a complex challenge due to the inherent ambiguity of toponyms. For 
instance, in the example of Figure 1, there are nearly 400 global locations named 
‘Victoria Park’, according to data retrieved from OpenStreetMap (OSM).1

The resolution of toponyms has been addressed using two distinct methods. The first 
method, traditional toponym resolution, specifically targets toponyms or location entities. 
On the other hand, the second method employs entity linkers, which extend beyond 
mere toponym resolution by associating a broader range of entities—including Person, 
Organization, and Location—with corresponding entries in knowledge bases (KBs) such as 
Wikipedia (2004), Wikidata (Vrande�ci�c and Kr€otzsch 2014), and DBpedia (Auer et al. 2007). 
Recent advancements in deep learning have significantly improved toponym resolution 
accuracy. Notable examples include CamCoder (Gritta et al. 2018) and sophisticated entity 
linkers such as BLINK (Wu et al. 2020b), GENRE (De Cao et al. 2021), and ReFinED (Ayoola 
et al. 2022). Furthermore, we have proposed an ensemble method (Hu et al. 2023a), 
known as a voting system to further enhance the accuracy. It integrates seven distinct 
approaches including GENRE, BLINK, and CamCoder. Despite these advancements, the 
average accuracy of the most advanced method at predicting locations within 161 km 
(Accuracy@161km) remains at 0.84, as documented in our previous work. Therefore, there 
is still a need to further improve the accuracy of these methods.

In the rapidly evolving field of natural language processing, large language models 
(LLMs) such as GPT-4 have marked a transformative era, greatly influencing both aca-
demic research and practical application development across various sectors, including 

Figure 1. Example of toponym ambiguity. Around 400 different places worldwide are named 
‘Victoria Park’, such as the park in London, Ontario, the park in London Borough of Tower Hamlets, 
London, UK, and the neighborhood in Los Angeles, California.
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geospatial science (Ji and Gao 2023, Hochmair et al. 2024). There is also a growing 
interest and application of LLMs in geoparsing, a subfield of geospatial science. 
Studies like (Hu et al. 2023c) have employed GPT-based models, including GPT-3 and 
ChatGPT, to effectively identify location mentions from social media data, a critical ini-
tial step in geoparsing. Unlike toponym recognition, toponym resolution depends 
heavily on extensive geo-knowledge, typically found in comprehensive gazetteers like 
OSM. LLMs, despite their advanced capabilities, are not equipped with complete geo- 
knowledge (Mai et al. 2024). Moreover, large-size models like GPT4, which has about 
1.76 trillion parameters, necessitate significant computational resources and energy 
consumption. This presents a significant limitation for their practical application in 
geoparsing, where efficient and cost-effective processing of large volumes of text data 
is crucial, such as in creating geographic indices for daily generated terabytes of docu-
ments to support geographic search.

This study is motivated by the question: How can we develop an enhanced 
method for toponym resolution that is both accurate and computationally efficient? In 
response, we propose combining lightweight (e.g., 7 or 13 billion parameters) and 
open-source LLMs with geo-knowledge for toponym resolution. This method not 
only aims to elevate accuracy but also ensures compatibility with standard comput-
ing hardware and adheres to open-source principles. Specifically, we first fine-tune 
pre-trained models such as Mistral (7B) (Jiang et al. 2023), Baichuan2 (7B) (Baichuan 
2023), Llama2 (7B & 13B) (Touvron et al. 2023), and Falcon (7B) (Penedo et al. 2023) 
to estimate toponyms’ unambiguous reference, including city, state, and country 
information, such as rendering ‘Paris, Texas, United States’ for ‘Paris’ in the text ‘ I 
live in Paris, a city of TX’. This allows us to interpret the intended meaning of topo-
nyms within texts. However, comprehensive toponym resolution requires access to 
extensive properties beyond mere unambiguous reference, including geo-coordinates 
and even detailed geospatial representations (e.g., polygons), population statistics, 
type, and administrative level information, which are not typically provided by 
standard LLMs. Moreover, instances occur where the references generated by the 
fine-tuned models are inaccurate. For instance, the reference ‘Dean Woods Road, 
Metcalfe County, Kentucky, United States’ provided for ‘Dean Woods Road’ is not 
existing, whereas the correct reference should be ‘Dean Woods Road, Adair County, 
Kentucky, United States’. To address these limitations, we enhance our method by 
combining three geocoding services including Nominatim,2 GeoNames,3 and ArcGIS.4

This step can not only fixes inaccuracies in generated references (e.g., correctly geo-
code the inaccurate reference ‘Dean Woods Road, Metcalfe County, Kentucky, United 
States’) but also acquires geo-coordinates, detailed geospatial representations, and 
additional toponym attributes. Our method is rigorously benchmarked against the 
latest and commonly used 20 methods for toponym resolution across 7 diverse 
datasets. This paper’s central contribution is proposing an advanced toponym reso-
lution method that leverages the capabilities of lightweight and open-source LLMs 
and geo-knowledge, which can run efficiently on a single general GPU.

The paper is structured as follows: Section 2 provides an overview of the existing 
literature on deep learning-based entity linking and the use of LLMs in geospatial sci-
ence. Section 3 details our proposed method. In Section 4, we present the 
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experimental evaluation and findings. Section 5 discusses bias issues. Finally, Section 6
concludes the paper and outlines potential avenues for future research.

2. Related works

In our prior study (Hu et al. 2023a), we reviewed traditional toponym resolution 
approaches, which were classified into three groups: rules, learning and ranking, and 
learning and classification, but did not address entity linkers. This section will focus on 
an in-depth review of the latest advancements in deep learning-based entity linkers. 
Additionally, we will discuss utilizing LLMs, especially generative AI, in geospatial sci-
ence and in its subfield, geoparsing. For an in-depth examination of techniques and 
theoretical foundations of LLMs, refer to the survey papers by Chang et al. (2024) and 
Min et al. (2023).

2.1. Deep learning-based entity linking

Entity linking (Carmel et al. 2014), a generic task in text understanding, consists of two 
main steps: entity recognition that detects named entities, such as Persons, 
Organizations, and Locations, in texts, and entity disambiguation which involves asso-
ciating mentioned entities in texts with their corresponding entries in knowledge 
bases like Wikipedia. Toponym resolution is the specialized form of entity 
disambiguation.

Guo and Barbosa (2018) presented the walking named entity disambiguation 
method, which employs information-theoretic semantic relatedness and random walks 
on disambiguation graphs for named entity disambiguation. This approach includes a 
revised iterative algorithm and a new learning-to-rank method. Yang et al. (2019) 
introduced dynamic context augmentation (DCA) for entity linking, sequentially accu-
mulating and utilizing context from previously linked entities within a document. This 
approach, employing supervised and reinforcement learning, incorporates entity prop-
erties and relationships and uses attention mechanisms to manage relevance and 
reduce error propagation.

To improve model performance, numerous studies have employed unsupervised or 
semi-supervised techniques, such as training models on unlabeled data from 
Wikipedia and Wikidata. For instance, Orr et al. (2020) proposed Bootleg, a self-super-
vised entity disambiguation system. By extracting relational and contextual informa-
tion from Wikipedia and Wikidata, the system self-learns entity and relation 
embeddings, particularly focusing on rare or ‘tail’ entities. Wu et al. (2020a) introduced 
BLINK (Bi-encoder for Linking Knowledge), a scalable zero-shot entity linker. BLINK 
uses a two-stage process with a bi-encoder and cross-encoder for entity linking. The 
model’s bi-encoder is pre-trained on Wikipedia and further trained on specific datasets 
such as the WikilinksNED (Onoe and Durrett 2020) unseen-mentions dataset with 
around 2.2 M examples. GENRE (De Cao et al. 2021), a system for autoregressive entity 
retrieval, is pre-trained on the BART (Lewis et al. 2019) language model and BLINK 
dataset with 9 M document-mention-entity triples from Wikipedia. It is further fine- 
tuned on datasets like AIDA-CoNLL (Hoffart et al. 2011) for entity disambiguation. 
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Barba et al. (2022) presented EXTEND, which treats entity disambiguation as text 
extraction rather than classification tasks and introduced two Transformer-based mod-
els. Yamada et al. (2022) introduces LUKE, an entity disambiguation technique based 
on BERT (Devlin et al. 2019), which combines words and entities as input tokens. It is 
trained using a large entity-annotated corpus obtained from Wikipedia. The model’s 
training task involves predicting masked entities, similar to BERT’s masked language 
model objective. Ayoola et al. (2022) proposed ReFinED, which combines mention 
detection, fine-grained entity typing, and entity disambiguation in a single forward 
pass. It targets Wikidata, enabling it to link to more entities than models primarily rely-
ing on Wikipedia.

The utilization of advanced entity linkers, notably those pre-trained on extensive 
Wikipedia or Wikidata documents, has exhibited superior proficiency in disambiguating 
entities, including toponyms. Nonetheless, the evaluation results in our previous 
research (Hu et al. 2023a) also illuminate the room for optimization in the performance 
of existing entity linkers for toponym resolution tasks.

2.2. LLMs for geospatial science

The advent of LLMs has substantially enhanced the ability of machines to understand 
complex user queries and boosted language processing effectiveness, thereby benefit-
ing numerous domains, including geospatial science. Many studies have investigated 
the potentials and constraints of LLMs within this domain (Ji and Gao 2023, Mooney 
et al. 2023, Tao and Xu 2023, Xie et al. 2023, Yin et al. 2023, Hochmair et al. 2024). For 
example, Xie et al. (2023) examined the application limits of AI foundation models in 
geospatial contexts and advocated for tailored geo-foundation models. It spotlights 
the divergence between conventional data types, such as natural language texts and 
video, for which AI models are designed, and geospatial data, pointing out the neces-
sity for innovation in this domain to advance related fields. Ji and Gao (2023) assessed 
how well LLMs interpret and represent spatial concepts described in texts. It reveals 
that while these models can grasp basic spatial relationships, they struggle with more 
complex geometric reasoning and specific spatial tasks, such as distance measuring, 
suggesting a gap that needs to be bridged for advanced geospatial artificial intelli-
gence (GeoAI) functions. Hochmair et al. (2024) compared the performance of 
ChatGPT-4, Bard, Claude-2, and Copilot on various geospatial tasks, such as spatial lit-
eracy, GIS concepts, and mapping. Results indicate that ChatGPT-4 outperformed other 
chatbots across most tasks. Juh�asz et al. (2023) explored the potential of using GPT- 
3.5-turbo to enrich OpenStreetMap (OSM) by suggesting the most appropriate tagging 
(e.g., ‘highway’¼‘primary’, ‘ lanes’¼ 3) for each road in OSM based on derived descrip-
tions of Mapillary images. Tao and Xu (2023) used ChatGPT to design thematic maps 
given public geospatial data and to create mental maps based on textual descriptions 
of geographic space. Yin et al. (2023) introduced a benchmark to assess the GPT-3 
model’s performance in geocoding address parsing, comparing it with three trans-
former-based models and one LSTM-based model. The dataset included 21 input 
errors/variations from real user logs and diverse address formatting across the U.S. The 
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results showed that the Bidirectional LSTM-CRF model slightly outperformed the trans-
former-based models, including GPT-3.

Some research has also been conducted on applying LLMs in geoparsing, a sub- 
field of geospatial science. For instance, Li et al. (2023a) introduced GeoLM, a geospa-
tial language model that was pre-trained using data from sources like Wikipedia, 
Wikidata, and OpenStreetMap. GeoLM can be adapted to support multiple downtown 
tasks, such as toponym recognition, resolution, relation extraction, and geo-entity typ-
ing tasks. In the relation extraction task, GeoLM outperforms GPT-3.5. Mai et al. (2022) 
explored the potential of leveraging LLMs, like GPT-2 and GPT-3, for GeoAI. They dem-
onstrate that LLMs outperform task-specific models in geospatial semantics tasks, 
including toponym recognition and location description recognition. Hu et al. (2023c) 
investigated the utility of various GPT models, including GPT-2, GPT-3, ChatGPT, and 
GPT-4, for the extraction of location descriptions from social media during disaster 
events. They compared these models against traditional Named Entity Recognition 
(NER) tools and a fine-tuned BERT model. The study utilized a dataset of annotated 
tweets from Hurricane Harvey. The results demonstrate that geo-knowledge-guided 
GPT models significantly outperformed NER tools and the fine-tuned BERT model in 
recognizing both complete location descriptions and their associated categories.

These studies underscore the considerable potential of LLMs in geoparsing. On one 
hand, utilizing much larger models, such as GPT-3.5 and 4, can substantially enhance 
performance. On the other hand, relying on large-sized models also limits the applic-
ability as they cannot be deployed on standard hardware and consume considerable 
energy.

3. Proposed approach

Our approach, outlined in Figure 2, is a two-stage process involving training (fine-tun-
ing) and geocoding. We fine-tune four LLMs, including Mistral (7B), Baichuan2 (7B), 
Llama2 (7B & 13B), and Falcon (7B) in the training phase using one toponym reso-
lution dataset. The models are trained to interpret a given toponym within its narra-
tive context as the input and generate the unambiguous reference (e.g., city, county, 
state, country) as the output. During geocoding, we fix the inaccurately generated 

Figure 2. Workflow of the proposed approach. In the example, ‘Paris’ is the target toponym.
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references and determine toponyms’ geo-coordinates or geospatial representations by 
querying the reference against three geocoders—Nominatim, GeoNames, and the 
ArcGIS geocoder. Detailed discussions of each stage follow.

3.1. Training

During the training phase, we first prepare the training data, followed by fine-tuning 
the four distinct models. The LGL5 (Local-Global Lexicon) corpus is our main training 
data, which was created by Lieberman et al. (2010), containing 588 human-annotated 
news articles published by 78 local newspapers. We selected this corpus due to its 
high quality and the abundance of ambiguous toponyms stemming from its diverse 
local newspaper sources. Annotations in the corpus include the GeoNames ID for each 
toponym, which we utilize to extract their unambiguous reference. For Mistral, Llama2, 
and Falcon, we prepare it as the standard format of Alpaca instruction-tuning dataset,6

which encompasses three parts: Instruction, Input, and Output. Their definitions are 
as follows:

� Instruction is a directive to the model, i.e.,‘Identify the unambiguous reference of 
ftoponymg (marked with «START» and «END») in the text.’

� Input refers to the text where the toponym is embedded, with the toponym itself 
enclosed in «START» and «END» tags.

� Output corresponds to the unambiguous reference for the marked toponym, 
including the city, county, state, and country information. A correctly identified ref-
erence allows us to deduce the precise geographic meaning of the toponym.

Figures 3 and 4 illustrate two training examples. The LGL corpus is characterized by 
predominantly lengthy texts, often exceeding 200 words, and primarily features loca-
tions within the US. To broaden the diversity and improve the representation within 
our training data, we augmented it with an additional 145 training examples gener-
ated by ChatGPT. These examples contain shorter texts and cover locations globally. 
Each generated example was subsequently manually reviewed and adjusted for accur-
acy. Overall, our training corpus includes a total of 4,291 examples. Note that, for 

Figure 3. Training example illustrating unambiguous reference estimation for ‘Hurricane’.
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Baichuan2, a different format7 was required. Therefore, we further converted the 
Alpaca instruction-tuning dataset to meet the Baichuan2 format requirements.

We found that the formulation of training examples influences the model’s per-
formance. For instance, modifications to the instruction field, such as omitting the 
explicit mention of the target toponym (e.g., ‘ Identify the unambiguous reference of the 
toponym marked with «START» and «END» in the text.’ ) resulted in a significant decrease 
in model effectiveness. Furthermore, we attempted to fine-tune the model to directly 
generate the geo-coordinates (latitude and longitude) of toponyms. However, this 
approach did not yield satisfactory results. The model either generated inaccurate 
geo-coordinates or the geo-coordinates of the same toponym varied each time. This 
could be due to the fact that LLMs do not possess precise knowledge of the geo-coor-
dinates of toponyms. Moreover, a mere latitude and longitude coordinate pair is often 
insufficient. Frequently, additional information about the toponym, such as its type, 
administrative levels, and complete geospatial representation, for instance, as a poly-
gon or line segment, is required. In contrast, the parental administrative units of topo-
nyms are more likely to be included in the knowledge of LLMs. Therefore, we opted 
to instruct the model to output the parental administrative units (e.g., city, state, and 
country information) of a toponym, and subsequently utilize geocoders to acquire the 
accurate geo-coordinates and other relevant information of the toponyms.

In our methodology, we utilized the Low-Rank Adaptation (LoRA) (Hu et al. 2021) 
technique for fine-tuning LLMs on standard GPUs with limited resources. This method 
has been validated for its effectiveness in numerous downstream tasks (Lermen et al. 
2023, Nguyen et al. 2023, Li et al. 2023b). Rather than adjusting all the weights in the 
weight matrix of a pre-trained model, LoRA fine-tunes two smaller matrices that 
approximate the larger matrix, forming the so-called LoRA adapter. Once fine-tuned, 
this adapter is integrated into the pre-trained model for inference purposes. This study 
applied this technique to four open-source LLMs.

� Mistral (Jiang et al. 2023), released in September 2023 by Mistral AI. Currently, it 
comprises several versions, including a 7B model.

� Baichuan2 (Baichuan 2023), released by Chinese Baichuan Intelligent company in 
October 2023, is a series of large-scale multilingual language models containing 7 
billion and 13 billion parameters.

Figure 4. Training example illustrating unambiguous reference estimation for ‘Scottish Highlands’.
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� Llama2 (Touvron et al. 2023), released by Meta in July 2023, includes 12 models 
ranging from 7B to 70B parameters.

� Falcon (Penedo et al. 2023), released in May 2023, is a language model family by 
the Technology Innovation Institute, including three versions: 7B, 40B, and 180B.

3.2. Geocoding

In this phase, our process begins with employing the fine-tuned model to deduce the 
unambiguous reference of a toponym from its contextual information. Subsequently, 
this inferred reference is used to query geocoders to ascertain its geographical coordi-
nates. This step not only rectifies inaccuracies in generated references but also 
acquires geo-coordinates, detailed geospatial representations, and additional toponym 
attributes. For instance, consider the reference ‘Dean Woods Road, Metcalfe County, 
Kentucky, United States’, where the county information is erroneous. Despite this dis-
crepancy, the reference can still be geocoded to a location near its true geographic 
position. Multiple geocoding services exist, such as Nominatim, GeoNames, and ArcGIS 
geocoder. Each of these services, while useful, is not without its limitations, often 
encountering difficulties in geocoding a reference accurately due to either stringent 
requirements for precise reference inputs or the incomplete global representation of 
locations. To mitigate these limitations, we employ a strategy of sequential querying 
among the three geocoders, prioritizing them in the order of GeoNames, Nominatim, 
and then the ArcGIS geocoder.8 This approach ensures that if one service fails to yield 
a result, the next geocoder in the sequence is immediately queried, thereby enhancing 
our geocoding process’s overall reliability. The Google Maps API9 is widely recognized 
for its comprehensive coverage and reliability in geocoding. However, it is a costly ser-
vice, despite offering a monthly free access limit of 40,000 requests (valued at 200 $). 
Given that our test datasets contain nearly 80,000 toponyms, which will be discussed 
in subsequent sections. Each of the fine-tuned LLMs generates different references for 
the same toponyms, resulting in a high demand for geocoding requests during experi-
ments. Furthermore, we are continuously adjusting the fine-tuning strategies to 
improve each LLM and then testing them, which would further increase the demand 
for geocoding requests on a daily basis. Therefore, due to its cost, the Google Maps 
API has not been utilized in our study.

4. Experiments and evaluation

In this section, we initially set the parameters. This is followed by a brief introduction 
to the test datasets, evaluation metrics, and an overview of 20 existing approaches 
which can be used to resolve toponyms. We then compare our approaches with these 
existing approaches, focusing on their accuracy and computational efficiency.

4.1. Parameter setting

In our experimental setup, the training corpus was partitioned into training and evalu-
ation subsets at a ratio of 9:1. The LoRA technique was pivotal in our approach, with 
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the LoRA attention dimension set to 8 and the LoRA alpha, the scaling parameter, 
fixed at 16. Additionally, we set the LoRA dropout rate to 0.1. Optimization during 
fine-tuning was achieved using the AdamW optimizer with a learning rate of 0.003. 
We set these parameters based on numerical experimental results to ensure optimal 
performance. It is crucial to acknowledge that the prediction outcomes from the 
model are not perfectly indicative of the final geocoding accuracy. For example, given 
a gold standard annotation such as ‘Paris, Lamar County, Texas, United States’, varia-
tions in prediction like ‘Paris, Texas, United States’ or ‘Paris, Texas, US’—though not 
exact matches—are still valid interpretations of ‘Paris’ in the sentence ‘ I live in Paris, a 
place in Tx’. Consequently, training or evaluation losses do not fully mirror the true 
accuracy and performance of the trained model. To select the most effective model, 
we examined models from steps near the point where the training or evaluation loss 
stopped decreasing.

The fine-tuning was conducted on an NVIDIA Tesla V100 GPU equipped with 40GiB 
RAM, while the actual GPU memory consumption varied depending on the model’s 
size. Specifically, for the 7B models, approximately 14 GB of GPU memory was utilized, 
whereas the larger 13B model required about 27 GB of GPU memory.

4.2. Test data for toponym resolution

We utilized 7 public datasets as test data, details of which are summarized in Table 1. 
The geographical spread of the toponyms in the test datasets is depicted in Figure 5. 
Note that different studies employ varying definitions of toponyms (Wang and Hu 
2019). Gritta et al. (2020) proposed a taxonomy that classifies toponyms into multiple 
types, including literal (e.g., ‘Earthquake in Turkey is serious.’), demonyms (e.g., 
Canadian), metonymy (e.g., ‘Mexico changed the law.’), and languages (e.g., Spanish 
and Chinese). This study utilizes datasets that encompass all types of toponyms as 
defined by Gritta et al. (2020). The 7 datasets employed in our study are detailed as 
follows:

� TR-News: Developed by Kamalloo and Rafiei (2018), this dataset comprises news 
articles from various sources.10

� GeoWebNews: Assembled by Gritta et al. (2018), it includes news articles collected 
during the first week of April 2018.11

� GeoCorpora: Curated by Wallgr€un et al. (2018), this dataset features tweets from 
various global events in 2014 and 2015.12

Table 1. Summary of the 7 test datasets.
Name Text Count Toponym Count Type KB/Gazetteer

TR-News 118 1,319 News GeoNames
GeoWebNews 200 2,601 News GeoNames
GeoCorpora 6,648 3,100 Tweet GeoNames
WikToR 5,000 25,242 Wiki article Wikipedia
WOTR 1,644 11,795 History GeoNames
CLDW 62 34,713 History GeoNames
NCEN 455 4,595 History Wikipedia
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� WikToR: Created automatically by Gritta et al. (2018), it consists of 5,000 Wikipedia 
articles, rich in ambiguous toponyms.13

� WOTR: This dataset, crafted by DeLozier et al. (2016), is based on the Official 
Records of the War of the Rebellion.14

� CLDW (Corpus of Lake District Writing): Formulated by Rayson et al. (2017), it 
encompasses writings about the English Lake District from the seventeenth to the 
early twentieth century.15

� NCEN (Nineteenth-Century English Newspapers): Created by Ardanuy et al. (2022), 
it comprises news articles published in England between 1780 and 1870.16

It is important to note that entity linkers typically employ Wikipedia as the primary 
target KB. However, most datasets in our study link toponyms to GeoNames, with 
exceptions being WikToR and NCEN. A significant challenge we encountered pertains 
to the inconsistent geocoding of certain coarse-grained locations, such as countries, 
between Wikipedia and GeoNames. For instance, ‘United States’ is geocoded as 
(40, -100) in Wikipedia and (39.76, -98.5) in GeoNames, while ‘China’ is represented as 
(35, 103) and (35, 105) in Wikipedia and GeoNames, respectively. Such discrepancies in 
the datasets pose a risk of incorrect evaluations. We excluded 29 frequently misaligned 
places from the evaluation process, as detailed in our previous study (Hu et al. 2023a). 
One potential approach to address the limitations of point-based evaluation is to use 
toponyms’ geospatial representations, such as polygons or line segments, which can 
provide more accurate evaluations. However, this method imposes high demands on 
both the datasets and the methods used. The datasets used in our study only provide 
geo-coordinates or a link to Wikipedia or GeoNames, from which we cannot obtain 
detailed geospatial representations beyond just geo-coordinates for most toponyms. 
Similarly, most methods link toponyms to either GeoNames or Wikipedia, making geo-
spatial representation-based evaluation infeasible at present.

Additionally, our previous study (Hu et al. 2023a) used 12 publicly available data-
sets. In this paper, we have selected 7 of these 12 datasets, excluding TUD-Loc-2013 

Figure 5. Geographical spread of the 83,365 toponyms from the 7 datasets.
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(Katz and Schill 2013), NEEL,17 GeoVirus (Gritta et al. 2018), SemEval (Weissenbacher 
et al. 2019), and LGL. This decision was based on our observation that the former four 
datasets predominantly contain simple, coarse-grained, and unambiguous place 
names, such as country names. The effectiveness of resolving these names largely 
depends on the gazetteers or knowledge bases employed, which may present incon-
sistencies in the coordinates of coarse-grained places. As LGL serves as the training set 
in our approach, it has also been omitted from the method evaluation to avoid bias.

4.3. Evaluation metrics

Our evaluation incorporates three principal metrics, as defined in Gritta et al. (2020), 
crucial for a comprehensive analysis of geocoding accuracy and error:

� Accuracy@161km: This metric calculates the percentage of geocoding errors 
within a 100-mile (161 km) range.

� Mean Error (ME): This metric computes the average distance error for all 
toponyms.

� Area Under the Curve (AUC): The AUC for toponym resolution quantifies geocod-
ing accuracy by using the Trapezoid Rule18 to integrate the area under a curve of 
logarithmically adjusted errors, diminishing the influence of outliers for a more bal-
anced evaluation.

4.4. Compared approaches

Table 2 enumerates various representative approaches. The Voting approach integrates 
seven distinct approaches—GENRE, BLINK, LUKE, CamCoder, Edinburgh geoparser 
(Grover et al. 2010), CBH, and SHS—into a unified voting system. For detailed descrip-
tions of the voting system and other approaches, refer to our previous study (Hu et al. 

Table 2. Summary of 20 representative approaches.
Name Method Type

Entity-Fishing20 entity linker
MulRel-NEL (Le and Titov 2018) entity linker
DCA (Yang et al. 2019) entity linker
BLINK (Wu et al. 2020b) entity linker
Bootleg (Orr et al. 2020) entity linker
GENRE (De Cao et al. 2021) entity linker
ExtEnD (Barba, Procopio, and Navigli2022) entity linker
LUKE (Yamada et al. 2022) entity linker
ReFinED (Tom Ayoola 2022) entity linker
Nominatim TR (rule)
ArcGIS TR (rule)
Population (Speriosu and Baldridge 2013) TR (rule)
Adaptive learning (Lieberman and Samet 2012) TR (learning & ranking)
CLAVIN21 TR (rule)
TopoCluster (DeLozier, Baldridge, and London 2015) TR (learning & classification)
Mordecai (Halterman 2017) TR (rule)
CBH, SHS, CHF (Kamalloo and Rafiei 2018) TR (rule)
CamCoder (Gritta et al. 2018) TR (learning & classification)
Voting (Hu et al. 2023a) hybrid

TR denotes toponym resolution.
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2023a). As a standard practice, we assume that all toponyms are accurately identified, 
allowing us to input the gold-standard toponyms directly into the entity disambigu-
ation or toponym resolution processes. For entities associated with Wikipedia or 
Wikidata, we extract their geographical coordinates based on the available geo-proper-
ties. In instances where associated Wikipedia or Wikidata entities lack geographical 
annotations, we assign (0,0) coordinates, indicating an invalid estimation. For such 
cases, we set a distance error of 20,039 km, the maximum possible error on Earth, as 
per Gritta et al. (2020).

In addition to the existing approaches, we have expanded our evaluation to include 
a much larger model with fine-tuning, namely Llama2 (70B). This is done to provide a 
more comprehensive assessment of the impact of model size on the accuracy of the 
proposed method. The fine-tuning and testing process for Llama2 (70B) is consistent 
with the approach used for the other five lightweight models.

4.5. Results

We merge toponyms from the 7 test datasets, with toponym counts ranging from 
1,319 to over 30,000, and then collectively calculate the three metrics, 
Accuracy@161km, ME, and AUC, ensuring a more equitable evaluation. The comparative 
performance of existing methods and our proposed methods is depicted in Figure 6. 
In the figure and the subsequent ones, as well as the tables, FT is used as an abbrevi-
ation for ‘fine-tuned’.

Our proposed methods, which are based on fine-tuned models, exhibit significant 
improvements over the existing ones. The method that fine-tunes a much larger 
model, Llama2 (70B), is the best performer. However, the increase in Accuracy@161km, 
from 0.91 achieved by the fine-tuned Mistral (7B) model to 0.93, is not substantial, 
given the significant increase in size from 7B to 70B. While among the lightweight 
models (7B or 13B), the method based on fine-tuned Mistral (7B) stands out. It sur-
passes the best prior approach, the voting approach, by 7%, 64%, and 10% in the 
aforementioned metrics. When compared to the best individual method, GENRE, it 
shows even more significant improvements of 17%, 90%, and 32% in the same met-
rics. In 91% of the cases, the distance error is below 161 km, which satisfies the 

Figure 6. Accuracy@161km ("), AUC (#), and ME (#) for each approach on the complete test data-
sets. The top 3 scores are highlighted.
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requirements of many practical applications. For instance, this allows for the search of 
relevant content, such as news, in the vicinity of a certain city. Additionally, it is 
observed that the Llama2 (13B)-based approach marginally outperforms its 7B coun-
terpart. Among the existing techniques, the voting approach, combining seven individ-
ual methods, emerges as the most accurate, followed by GENRE and BLINK—both 
well-regarded entity linkers.

The comprehensive results for both established and novel methods across each 
dataset are detailed in Tables 3–5. Our proposed approaches demonstrate superior 
performance over existing techniques in most assessed metrics within the 7 datasets. 
An outlier is the WOTR dataset, where the voting approach equals the performance of 
the Mistral (7B)-based approach and surpasses the other methods. We observe that 
the proposed approaches perform particularly well on the WikToR dataset, achieving 
an impressive accuracy of 0.98. This is largely due to the dataset’s composition, which 
includes Wikipedia articles about places where higher-level administrative units are 
mentioned within the text. LLMs are adept at extracting key surface information from 
the text. For example, in Figure 7, the higher-level administrative units of ‘Santa Cruz’ 
(i.e., ‘Davao del Sur, Philippines’) are included in the text, allowing the model to accur-
ately infer its unambiguous reference. Moreover, in numerous scenarios, the fine-tuned 
models demonstrate the capability to deduce unambiguous references even without 
explicit mention of higher-level administrative units. This ability stems from their vast 
pre-trained data, which encompasses basic geographic knowledge. This is exemplified 
in Figure 8, where the toponym ‘OleMiss’ is correctly resolved by the fine-tuned model 
without explicit higher-level administrative units in the texts. These two strengths sig-
nificantly contribute to the superior performance of our proposed methods in topo-
nym resolution.

Despite these strengths, a noted limitation of the models is their occasional propen-
sity to generate fictitious references. This issue is caused mainly by their incomplete 
geographic knowledge, which, unlike exhaustive gazetteers such as OpenStreetMap, 
may encompass limited geographical locations. Consequently, the models sometimes 
produce references that are plausible in structure yet factually incorrect. Illustrative 
examples of this can be found in Figures 9 and 10, where the fine-tuned Mistral mod-
els erroneously generate references like ‘Kiri Kiri Prison, Auckland, New Zealand’ and 
‘Bellamy, Jefferson County, West Virginia, United States’. These inaccuracies 

Figure 7. An example of correctly estimating unambiguous references by the fine-tuned Mistral 
model, where higher-level administrative units are mentioned in the text.
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predominantly occur with less prominent locations, such as ‘Bellamy’, a community in 
the US, which might not be well represented in the model’s pre-trained data. To miti-
gate this effect, deeper integration of LLMs with comprehensive geographic know-
ledge. For instance, providing the models with a broader range of candidate 
references for each toponym (e.g., ‘Bellamy’ and ‘Coatopa’) during fine-tuning and 
inference might significantly enhance the accuracy of reference predictions.

4.6. Few-shot prompting vs. fine-tuning

In this section, we examine the effectiveness of few-shot prompting in toponym reso-
lution tasks. We have selected three chat models for this purpose: the original Llama2 
(7B), Llama2 (13B), and Mistral (7B). We use a prompt-based approach, asking the 

Figure 8. An example of correctly estimating unambiguous references by the fine-tuned Mistral 
model, where higher-level administrative units are not mentioned in the text.

Table 3. Accuracy@161km for each dataset (GC denotes GeoCorpora). Numbers in bold signify the 
best scores.

TR-News NCEN GWN GC WikToR WOTR LDC

Fishing 0.6 0.63 0.56 0.45 0.35 0.54 0.6
DCA 0.64 0.66 0.6 0.62 0.21 0.51 0.56
REL 0.66 0.51 0.65 0.72 0.27 0.54 0.56
BLINK 0.76 0.82 0.75 0.75 0.68 0.74 0.78
Bootleg 0.74 0.68 0.7 0.69 0.7 0.65 0.66
GENRE 0.82 0.82 0.8 0.79 0.88 0.77 0.69
ExtEnD 0.71 0.64 0.68 0.68 0.57 0.64 0.55
LUKE 0.71 0.55 0.74 0.57 0.48 0.42 0.55
ReFinED 0.36 0.48 0.26 0.7 0.74 0.76 0.55
Nominatim 0.68 0.7 0.66 0.74 0.21 0.52 0.24
ArcGIS 0.68 0.71 0.67 0.77 0.24 0.55 0.55
Adaptive 0.66 0.41 0.6 0.54 0.15 0.36 0.29
Population 0.72 0.6 0.62 0.71 0.22 0.43 0.27
CLAVIN 0.71 0.67 0.66 0.77 0.22 0.5 0.41
TopoCluster 0.67 0.72 0.69 0.71 0.24 0.61 0.72
Mordecai 0.68 0.58 0.61 0.66 0.15 0.42 0.36
CBH 0.77 0.57 0.65 0.36 0.43 0.54 0.59
SHS 0.69 0.4 0.57 0.73 0.76 0.43 0.44
CHF 0.77 0.48 0.65 0.75 0.44 0.52 0.56
CamCoder 0.67 0.62 0.6 0.72 0.67 0.47 0.54
Voting 0.86 0.87 0.83 0.84 0.91 0.81 0.8
FT-Falcon (7B) 0.95 0.85 0.87 0.89 0.95 0.75 0.86
FT-Llama2 (7B) 0.96 0.87 0.9 0.9 0.97 0.75 0.88
FT-Llama2 (13B) 0.96 0.88 0.9 0.9 0.98 0.79 0.87
FT-Baichuan2 (7B) 0.94 0.86 0.89 0.89 0.98 0.79 0.88
FT-Mistral (7B) 0.93 0.88 0.89 0.89 0.98 0.81 0.89
FT-Llama2 (70B) 0.97 0.92 0.9 0.92 0.99 0.84 0.91
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Table 4. AUC for each dataset (GC denotes GeoCorpora). Numbers in bold signify the best scores.
TR-News NCEN GWN GC WikToR WOTR LDC

Fishing 0.45 0.36 0.46 0.6 0.55 0.49 0.44
DCA 0.41 0.34 0.45 0.44 0.69 0.52 0.48
REL 0.4 0.5 0.42 0.36 0.62 0.48 0.52
BLINK 0.3 0.17 0.33 0.31 0.25 0.29 0.28
Bootleg 0.33 0.32 0.38 0.39 0.24 0.38 0.39
GENRE 0.25 0.16 0.28 0.28 0.12 0.27 0.35
ExtEnD 0.36 0.36 0.39 0.4 0.38 0.41 0.49
LUKE 0.35 0.45 0.34 0.49 0.49 0.6 0.47
ReFinED 0.61 0.52 0.71 0.37 0.24 0.3 0.49
Nominatim 0.39 0.34 0.4 0.37 0.66 0.47 0.76
Adaptive 0.33 0.63 0.4 0.47 0.84 0.7 0.73
Population 0.26 0.45 0.37 0.31 0.67 0.56 0.72
ArcGIS 0.39 0.31 0.4 0.35 0.64 0.45 0.44
CLAVIN 0.26 0.37 0.33 0.23 0.66 0.49 0.58
TopoCluster 0.37 0.32 0.38 0.37 0.63 0.42 0.32
Mordecai 0.31 0.46 0.38 0.34 0.77 0.57 0.65
CBH 0.21 0.46 0.33 0.65 0.46 0.48 0.44
SHS 0.29 0.6 0.41 0.28 0.25 0.55 0.56
CHF 0.21 0.53 0.33 0.26 0.46 0.49 0.45
CamCoder 0.31 0.43 0.38 0.27 0.3 0.52 0.47
Voting 0.21 0.14 0.26 0.23 0.1 0.25 0.24
FT-Falcon (7B) 0.07 0.24 0.15 0.15 0.12 0.32 0.26
FT-Llama2 (7B) 0.06 0.22 0.12 0.13 0.1 0.32 0.21
FT-Llama2 (13B) 0.07 0.2 0.12 0.13 0.1 0.3 0.22
FT-Baichuan2 (7B) 0.08 0.22 0.14 0.15 0.1 0.3 0.21
FT-Mistral (7B) 0.09 0.2 0.14 0.15 0.1 0.29 0.2
FT-Llama2 (70B) 0.06 0.17 0.12 0.12 0.09 0.28 0.19

Table 5. Mean Error in kilometers for each dataset (GC denotes GeoCorpora). Numbers in bold 
signify the best scores.

TR-News NCEN GWN GC WikToR WOTR LDC

Fishing 5424 6590 5371 9729 5104 7016 6987
DCA 3510 5750 5143 5158 7119 6479 7181
REL 3364 7117 4286 3502 5546 4700 7194
BLINK 1655 1776 2243 1577 1217 1040 2323
Bootleg 2943 5825 4494 4425 1483 4501 6050
GENRE 645 894 1088 684 1006 492 4383
ExtEnD 3099 6530 4444 4618 4505 5190 7939
LUKE 3431 8479 2558 6812 7292 9651 5776
ReFinED 5970 10078 8715 3588 3836 2776 8280
Nominatim 1412 3722 1982 1731 3894 2252 13509
Adaptive 5842 11343 7355 8667 15646 11783 13942
Population 1935 5744 4910 3683 4179 5521 10490
ArcGIS 1537 2351 1661 1224 3884 2166 3565
CLAVIN 2862 4622 4705 2777 4171 3929 7262
TopoCluster 1213 1311 1069 1036 3819 1338 1417
Mordecai 3600 6257 5041 4967 9298 6292 10032
CBH 1593 5916 4116 11930 1037 4032 5628
SHS 2375 6828 5237 3154 1078 5219 8133
CHF 1285 6019 3809 2985 1264 3987 5823
CamCoder 3022 5332 5032 3506 501 6067 6101
Voting 403 542 646 460 273 389 928
FT-Falcon (7B) 162 445 409 327 80 353 369
FT-Llama2 (7B) 120 418 293 247 37 303 346
FT-Llama2 (13B) 137 314 259 264 36 257 344
FT-Baichuan2 (7B) 295 437 458 333 32 240 311
FT-Mistral (7B) 261 457 371 323 34 251 285
FT-Llama2 (70B) 61 172 319 183 24 180 277
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models to determine the unambiguous reference of a toponym. To ensure the models 
understand our intent, we include three examples of the desired output in the 
prompt. Figure 11 illustrates the prompt that we have designed for this task. The 
placeholder ‘fg’ in the prompt will be substituted with the target toponym for each 
query. Note that, we experimented with numerous prompts, and the final one pre-
sented is the most effective according to our testing. After generating the output, we 
further process it to extract the precise and structured reference, as there is frequently 
additional explanatory information included in the output, such as ‘The unambiguous 
reference of Jena in the text is (Jena, Germany)’, a repetition of a toponym in the output 
such as ‘(Germany, Germany)’, or ‘Unknown’ placeholder in the reference. The final ref-
erence is then converted to geographical coordinates by querying three geocoders, a 
process the same as our proposed methods. The overall results of the few-shot 
model-based approaches and the fine-tuned model-based approaches on the entail 
test datasets are presented in Table 6.

The results of our study indicate that few-shot model-based strategies do not per-
form as well as their fine-tuned counterparts. This discrepancy in performance can be 
attributed to the fact that few-shot models may sometimes struggle to fully compre-
hend the true intent of the task at hand. For example, the Llama2 (13B) model returns 
‘Paris, United States’ as the reference for ‘Paris’, despite the fact that there are numer-
ous places named ‘Paris’ within the United States, making the reference still ambigu-
ous; The Mistral (7B) model occasionally misidentifies the target toponym, such as 
returning ‘Edmonton, Ky, United States’ for the target ‘Ky’. The Llama2 (7B) model is 
less reliable, sometimes just repeating the prompt such as outputting “Boulevard 

Figure 9. Fictitious reference generated by the fine-tuned Mistral model, where the correct refer-
ence is ‘Kiri Kiri Prison, Lagos, Nigeria’.

Figure 10. Fictitious reference generated by the fine-tuned Mistral model, where the correct refer-
ence is ‘Bellamy, Alabama, USA’.
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Voltaire’s formal name, Boulevard Voltaire’s parental administrative units” for the query 
‘Boulevard Voltaire’. In contrast, fine-tuning can improve a model’s ability to generate 
the desired output. Our findings highlight the importance and necessity of fine-tuning 
for effective and accurate toponym disambiguation.

4.7. Impact of geocoders

In this section, we explore the influence of utilizing different geocoders and their com-
binations to convert estimated unambiguous references into geo-coordinates, using 
results obtained by the Mistral model as a case study. Eight approaches were 
employed to geocode references inferred by Mistral: GeoNames (referred to as G), 
Nominatim (referred to as N), Photon19 which is an open-source OSM-based geocoder 
(referred to as P), ArcGIS geocoder (referred to as A), combining GeoNames and 
Nominatim (referred to as GþN), combining GeoNames and ArcGIS geocoder (referred 

Table 6. Comparison of fine-tuned (FT) and few-shot (FS) prompting models’ performance on 
toponym resolution tasks.

Accuracy@161km (") AUC (#) ME(#)

FS-Llama2 (13B) 0.88 0.20 276
FT-Llama2 (13B) 0.9 0.18 224
FS-Mistral (7B) 0.86 0.21 429
FT-Mistral (7B) 0.91 0.17 211
FS-Llama2 (7B) 0.82 0.24 617
FT-Llama2 (7B) 0.89 0.19 236

Figure 11. Prompt for estimating toponyms’ unambiguous reference.
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to as GþA), combining GeoNames and Photon (referred to as Gþ P), and combining 
Geonames, Nominatim, and ArcGIS (referred to as GþNþA). The combination meth-
ods imply that if one geocoder fails to geocode a reference, the subsequent one will 
be applied. The results are presented in Table 7.

Both GeoNames and Nominatim geocoders have strict requirements for the input, 
limited to exact matching, which leads to low accuracy. In contrast, ArcGIS and 
Photon support fuzzy matching. For example, when provided with the correct refer-
ence ‘Bantam, Litchfield County, Connecticut, United States’, Nominatim still fails to geo-
code it but successfully geocodes ‘Bantam, Connecticut, United States’, where the 
county information is omitted. Similarly, for ‘Dean Woods Road, Metcalfe County, 
Kentucky, United States’, where the county ‘Metcalfe County’ is incorrect, both 
Nominatim and Geonames fail to geocode it. However, ArcGIS successfully geocodes 
these references or returns nearby locations. Conversely, when the input reference is 
correct and has exact matches with the GeoNames and Nominatim, they tend to pro-
duce more accurate results than ArcGIS. For instance, the reference ‘Zhejiang, China’, 
representing Zhejiang Province in China, is erroneously geocoded by ArcGIS as 
‘Zhejiang, Baise, Guangxi, China’, a village in Guangxi Province. Nevertheless, 
Nominatim and GeoNames accurately geocode this reference. This explains why 
employing them prior to ArcGIS can further enhance performance.

4.8. Place category

In our research, we examine the resolution abilities of existing methods and our new 
LLM-based techniques on four kinds of geographic entities: administrative units (like 
countries, states, and counties), Points of Interest (POIs), including parks, churches, and 
hospitals, traffic ways (such as streets, highways, and bridges), and natural landmarks 
(examples being rivers, beaches, and hills). We identified a total of 5,272 administrative 
units, with examples including ‘Germany’, ‘Wuhan city’, and ‘Ferguson’; 482 POIs such 
as ‘Montreal-Pierre Elliott Trudeau International Airport’, ‘T.J. Health Hospital’, and ‘Saint 
Peter and Saint Paul Coptic Orthodox Church’; 1,324 natural features like ‘Oulart Hill’, 
‘Rich Mountain’, and ‘Eel River’; and 314 traffic ways, for instance, ‘Chapman Highway’, 
‘14th street bridge’, and ‘3 Aurangzeb Road’. We utilized the GeoNames IDs of topo-
nyms in the datasets to determine their categories. To increase the number of fine- 
grained places, we searched for toponyms without GeoNames IDs, which however, 
contained keywords such as ‘road’, ‘street’, ‘bridge’, ‘highway’, ‘school’, ‘hospital’, 
‘airport’, and ‘church’. These toponyms were then manually verified and categorized.

Next, we calculated the Accuracy@161km for each type of location. As shown in 
Figure 12, many of the tested approaches effectively resolve coarse-grained categories 
such as administrative units, with eight correctly resolving over 80% of administrative 
units. However, accurately resolving fine-grained locations like POIs, natural features, 

Table 7. Comparison of accuracy across different geocoders on Mistral’s results.
G N A P GþN GþA Gþ P GþNþA

Accuracy@161km 0.65 0.60 0.89 0.88 0.86 0.90 0.89 0.91
ME 6323 7234 273 294 1601 269 282 211
AUC 0.42 0.46 0.17 0.22 0.22 0.17 0.20 0.17
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and traffic ways is more challenging, with only six, three, and five methods, respect-
ively, achieving more than 70% accuracy. One contributing factor is incomplete geo-
graphic knowledge, particularly regarding fine-grained places within LLMs. The 
findings show that excluding the Llama2 (70B) based approach, our fine-tuned models 
perform best for administrative units, POIs, and traffic ways, while the voting method 
is most effective for natural features. Nevertheless, there is still room for improvement 
in accurately resolving these fine-grained places.

4.9. Computational efficiency

While accuracy is crucial for geoparsing methods, computational speed is equally 
important, particularly for applications prioritizing quick processing over higher 
accuracy. For instance, web search engines require the rapid geocoding of vast 

Figure 12. Accuracy@161km on four place types with 5,272 admin units, 482 POIs, 1,324 natural 
features, and 314 traffic ways. The top 3 scores are highlighted.
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volumes of documents to support geo-search functionalities. Consequently, we 
have comprehensively analyzed the computational efficiency of the studied 
approaches.

This investigation involved running each approach on the complete datasets, focus-
ing on measuring the time consumed during operation, excluding the training phase. 
The recorded times, as depicted in Figure 13, provide insights into the efficiency of 
each method. The traditional toponym resolution approaches were tested on a Dell 
laptop equipped with an Intel Core i7-8650U CPU (1.90 GHz 8-Core) and 16 GB RAM. 
The fine-tuned models and the deep learning-based ELs, which usually require a GPU 
execution environment, were run on an NVIDIA Tesla V100 GPU. Llama2 (70B) was run 
on four Tesla A100 GPUs. It is important to note that for our proposed approaches, 
we measured only their inference time—the duration required to estimate the unam-
biguous reference of a toponym—excluding the time taken for subsequent geocoder 
queries, which varies based on the chosen geocoder and its deployment (local or 
remote).

Figure 13. Time consumption for each approach running on the complete test datasets.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 21



Our analysis reveals a notable variance in time efficiency among different toponym 
resolution approaches. TopoCluster requires approximately 180 hours for completion. 
In stark contrast, CLAVIN stands out for its speed, accomplishing the task in just about 
1 minute. The time consumption for a voting ensemble is cumulative, summing up to 
61 hours based on the duration of each incorporated approach. Our proposed meth-
ods based on lightweight models exhibit enhanced efficiency, particularly with 7B 
models, which take between 6 and 11 hours, averaging 0.3 to 0.5 seconds per topo-
nym. Our methods are faster than GENRE and BLINK, the most accurate individual 
approaches when running on identical hardware platforms. In comparison, the Llama2 
(70B) model takes nearly 45 hours and requires significantly more computing 
resources.

5. Discussion

5.1. Popularity and population bias

Popularity and population bias are common issues in existing toponym resolution 
approaches, as they tend to favor places with larger populations or greater popularity 
during disambiguation to achieve the highest accuracy. In this section, we will discuss 
whether the proposed approaches have addressed these biases. In Table 2, 
Nominatim, Population (GeoNames-based), and ArcGIS are representative methods 
that select the most popular or the one with the largest population from a list of 
returned results given a toponym. As Table 3 illustrates, these methods yield good 
results (over 0.6) on datasets such as TR-News, NCEN, GeoWebNews, and GeoCorpora, 
which primarily contain popular places, such as Germany (country). However, when 
processing datasets with a higher degree of ambiguity, such as WikToR, WOTR, and 
LDC, their accuracy decreases significantly, particularly on WikToR, with an accuracy 
below 0.25. This is due to the presence of numerous ambiguous toponyms and 
unpopular places in these datasets. For instance, in WikToR, each toponym refers to 
multiple distinct places across the world, such as Santa Maria, California, US; Santa 
Maria, Bulacan, Philippines; Santa Maria, Ilocos Sur, Philippines; and Santa Maria, 
Romblon, Philippines for ‘Santa Maria’, or Paris, France; Paris, Tx, US; Paris, Wisconsin, 
US; and Paris, Ontario, Canada for ‘Paris’. This demonstrates that the three geocoders 
exhibit a bias towards popularity and population, which explains their low perform-
ance on the three ambiguous and challenging datasets. In contrast, the proposed 
Mistral-based approach achieves scores of 0.98, 0.81, and 0.89 on the three datasets, 
indicating that our proposed method has effectively addressed the popularity and 
population bias.

To further conduct a quantitative analysis assessing whether our approach exhibits 
population bias, we select toponyms from our test datasets whose GeoNames IDs 
have been annotated. Utilizing the GeoNames ID, we can retrieve the population data 
for these toponyms. We then categorize these toponyms into 11 groups according to 
their population size, ranging from 1 to 5,000, 5,000 to 10,000, and so forth. We utilize 
the Mistral-based approach’s estimation and calculate the proportion of toponyms 
within each group that exhibit a distance error of less than 161 km. Figure 14 depicts 
the relationship between the population group and the Accuracy@161km, where the 
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variable ‘num’ under each bar represents the number of toponyms in the correspond-
ing group. The Accuracy@161km for each group remains consistent, with all groups 
achieving a score above 0.8. For example, both the group with a population under 
5,000 and the group with a population between 5 and 10 million record an 
Accuracy@161km of approximately 0.85. These findings suggest that our proposed 
approach does not exhibit a bias towards populations.

5.2. Geographic bias

Many toponym resolution approaches exhibit geographic bias, resulting in inconsistent 
performance across different regions, with some approaches favoring certain regions 
over others (Liu et al. 2022). We believe that our proposed approaches have addressed 
this issue. As shown in Figure 5, each dataset’s toponyms have different geographic 
distributions across the globe. However, our proposed Mistral-based approach 
achieves high Accuracy@161km scores, with all scores above 0.88, as shown in 
Table 3, except for the WOTR dataset, which focuses on historical toponyms in the US. 
Furthermore, the toponyms in the WikToR dataset are almost equally distributed glo-
bally, and the Mistral-based approach achieves an Accuracy@161km of 0.98 on this 
dataset. These results suggest that our approaches do not exhibit geographic bias and 
perform consistently well across different regions.

6. Conclusion

This study presents a novel approach to toponym resolution that combines lightweight, 
open-source LLMs (e.g., Mistral, Baichuan2, Llama2, and Falcon) and geo-knowledge. The 
efficacy of our approach is validated through extensive testing on the 7 public datasets, 
which encompass four distinct types of text. The results clearly demonstrate the superior-
ity of our proposed method, elevating the performance of toponym resolution to a new 
benchmark. Moreover, the fine-tuned models showcase remarkable computational effi-
ciency, maintaining manageable GPU memory usage: 14 GB for the 7B models and 

Figure 14. Relationship between population size and Accuracy@161km for the Mistral-based 
approach, with the number of toponyms in each group indicated by the variable ‘num’.
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outperforming the existing state-of-the-art approaches—including a voting system and 
two deep learning-based entity linkers (namely, GENRE and BLINK)—in terms of speed. 
On average, the 7B models can infer the unambiguous reference of a toponym in 0.3 to 
0.5 seconds, satisfying the requirements of many applications.

Looking forward, our upcoming research will concentrate on diminishing the size of 
these models to boost processing efficiency, possibly by employing knowledge distilla-
tion techniques (West et al. 2021). Furthermore, we intend to delve into the deeper 
fusion of geo-knowledge with LLMs to enhance the accuracy. We also plan to extend 
the models’ capabilities to accommodate multilingual contexts, not limited to English, 
thereby widening their applicability in various international settings.

Notes

01. https://www.openstreetmap.org/.
02. https://nominatim.org/.
03. https://www.geonames.org/.
04. https://developers.arcgis.com/documentation/mapping-apis-and-services/geocoding/.
05. https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/ 

Corpora/lgl.xml.
06. https://github.com/tatsu-lab/stanford/_alpaca.
07. https://github.com/baichuan-inc/Baichuan2/tree/main/fine-tune/data.
08. https://geocoder.readthedocs.io/providers/ArcGIS.html/#geocoding. Using this API, we can 

access the ArcGIS geocoder without a key or token.
09. https://developers.google.com/maps/documentation/geocoding/overview.
10. https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/ 

Corpora/TR-News.xml.
11. https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/tree/master/data.
12. https://github.com/geovista/GeoCorpora.
13. https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/ 

Corpora/WikToR.xml.
14. https://github.com/barbarainacioc/toponym-resolution/tree/master/corpora/WOTR.
15. https://github.com/UCREL/LakeDistrictCorpus.
16. https://bl.iro.bl.uk/concern/datasets/f3686eb9-4227-45cb-9acb-0453d35e6a03.
17. http://microposts2016.seas.upenn.edu/challenge.html.
18. https://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html.
19. https://github.com/komoot/photon.
20. https://github.com/kermitt2/entity-fishing.
21. https://github.com/Novetta/CLAVIN.
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