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A B S T R A C T

Urban areas account for up to 87% of global energy consumption, with around a third of CO2 emissions from
the building sector. Germany recently enacted a law targeting carbon neutrality in heating by 2045, requiring
all municipalities to submit transformation plans for their heating infrastructure. Many are in early stages and
need innovative methods to achieve these goals. This study proposes an automated GIS-based approach to
generate heat and electricity load profiles for geographically referenced residential buildings and districts in
Germany, using only open data. The methodology offers hourly temporal resolution and spatial detail from
individual buildings to Urban Energy Units (UEUs), a concept introduced in prior studies. Nine distinct heating
load profiles and nine electricity load profiles were identified. These profiles can adapt to different weather
datasets and to three building refurbishment scenarios. The methodology and energy analysis were applied to
a district in Oldenburg, Germany, demonstrating the model’s flexibility under varying boundary conditions.
For this district, the analysis revealed a total heat demand of 9.9 ± 7 GWh/a and an electricity demand of
2.3±0.126 GWh/a, with respective errors of 45% and 39% when compared to other local data, this demand is
presented in both yearly and hourly resolutions. This methodology intends to support German municipalities
by accelerating the initial phases of the municipal heating plans and deliver high-quality data on building heat
and electricity demand.
1. Introduction

Urban areas account for as much as 87% of global energy use,
with roughly a third of greenhouse gas (GHG) emissions coming from
buildings (DESA, 2019; IEA, 2021, 2023; Umweltbundesamt, 2023).
Reducing energy consumption in cities and related CO2 emissions
significantly involves addressing this sector. Around 80% of the German
residential energy consumption is attributed to heating and hot water
systems (IEA, 2020; Umweltbundesamt, 2023), contributing notably to
GHG emissions as displayed in Fig. 1.

Germany has enacted new legislation aiming for heating sector
neutrality by 2045 (BMWK, 2020; BMWSB, 2023). This law man-
dates that all municipalities develop and submit plans for transforming
their heating infrastructure in four phases: inventory analysis, po-
tential analysis, target scenario 2040, and implementation strategy.
Many municipalities have not started with the task, being in need
accurate and high-quality data on building energy demand (Deutscher
Städtetag, 2023). In order to make this possible, specialized engi-
neering firms need to design transformation plans, requiring precise
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data about the energy demand of the specific regions to avoid costly
errors. Load profiles of heat and electricity demand are essential for
energy system modeling and therefore, essential to create comprehen-
sive transformation plans (Büttner, Amme, Endres, Malla, Schachler, &
Cußmann, 2022). Public datasets often lack detailed building character-
istics, previous studies like the ones from Blanco, Aditya, Schiricke, and
Hoffschmidt (2023), Garbasevschi et al. (2021), Ponge et al. (2021),
Wurm et al. (2021) and Blanco, Alhamwi, Schiricke, and Hoffschmidt
(2024), have shown that high-quality data at the building level can be
obtained using open data and machine learning (ML). Blanco et al.
(2024), building on Dettmar, Drebes, and Sieber (2020), introduced
a method for analyzing district-level regions cost-effectively, by iden-
tifying regions within a city which they labeled Urban Energy Units
(UEUs).
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Nomenclature

Abbreviations

AB Apartment Block
ALKIS German Official Cadastral Data

(German: Amtliche Liegenschaft-
skatasterinformationssystem)

AMY Actual Meteorological Year
ANN Artificial Neural Network
BGW German Gas and Water Association (Ger-

man: Bundesverband der deutschen Gas- und
Wasserwirtschaft)

CDS Copernicus Climate Data Store
CHP Combined Heat and Power
DHW Domestic Hot Water
DT Decision Tree
DWD German Meteorological Service (German:

Deutscher Wetterdienst)
GHG Greenhouse Gas
GIS Geographical Information System
HVAC Heating, Ventilation and Air Conditioning
INSPIRE Infrastructure for Spatial Information in the

European Community
ISO International Organization for Standardiza-

tion
IWU Institut Wohnen und Umwelt
JRC Joint Research Centre
LoD Level of Detail
MFH Multifamily house
ML Machine Learning
RF Random Forest
SFH Single-family house
SLP Standard Load Profile
TABULA Typology Approach for BUiLding stock

energy Assessment
TH Terraced house
TRY Test Reference Year
UEU Urban Energy Unit
VDI Verein Deutscher Ingenieur
Symbols

𝐴 Sigmoid parameter 𝐴
𝐴bp Footprint area of a building part
𝐴f Footprint area of the building
𝐴n Total floor area of the building
𝐵 Sigmoid parameter 𝐵
𝑏space Interception of linear equation for space

heat
𝑏water Interception of linear equation for water

heat
𝐶 Sigmoid parameter 𝐶
𝐷 Linear parameter 𝐷
𝑑 Day
𝑓𝑑 ,𝑙 Nominated daily water heat quantity de-

pendent on day (𝑑) and location (𝑙)
ℎ𝑑 ,𝑙 Nominated daily heat quantity dependent

on day (𝑑) and location (𝑙)
𝑙 Location
2 
𝑚space Slope of linear equation for space heat
𝑚water Slope of linear equation for water heat
𝑛𝑓 Number of floors
𝑄 Heat Demand
𝑄′′ Specific Heat Demand
𝑟𝑓 Roof type factor
𝑇 Temperature
𝑇0 Temperature reference limit: 40 ◦C

In their study, Blanco et al. (2024) developed a methodology that
ransitions from a building-oriented perspective to a more comprehen-
ive district-level analysis by subdividing the urban fabric of a city

into smaller units that can be better quantified and classified. This
approach is based on the premise that the urban space of a city can be
ivided into morphological similar units (describing typical settlement
atterns) that can be combined in a modular way for a holistic analysis

of its structure and consequently its energy demand. Their methodology
delineates pre-existing regions within a city and labels them as UEUs.
Each UEU represents a specific geographical area with distinct building
characteristics, settlement patterns, and energy demands. These units
serve as modular building blocks for creating energy districts, as they
can be combined to define larger geographical areas, or districts, each
with its own unique geographic boundaries, features, and energy needs.
By utilizing GIS-based and data-driven models, the subdivision of a
city or region in Germany can be automated, standardizing the process
while reducing both time and costs.

Blanco et al. (2024) were able to classify sixteen different UEU
classes which represent urban regions with specific settlement patterns
and energy demands. The authors developed an automatized process
n order to take any given area in Germany and subdivided into

regions that are later classified into one of the different UEU classes by
tilizing only open geodata, hence the relationship with this study. This
utotomized process was employed in the city of Oldenburg, Germany
nd provided a clear methodology in order to understand heat and
lectricity energy demand of the urban sector at a spatial resolution
t the UEU level and yearly time resolution. This process and the
ifferent UEU classes can be seen both graphically and numerically
nd are explained in this paper in both Sections 3 and 4 as well as in
he graphical abstract. While the previous methods offer high spatial
esolution, it lacks the temporal dimension as it only provides annual

demand values.
This study aims to enhance the temporal resolution of the model

f Blanco et al. (2024) by generating heat and electricity demand curves
with hourly resolution using open-access data, but maintaining at the
same time the model’s spatial resolution at the building and UEU levels.
The goal is to develop a GIS-based method for creating load profiles
for georeferenced residential and non-residential buildings in Germany.
This model aims to support the creation of heating plans in Germany
by providing detailed energy demand insights of their local energy
demand. The study objectives include:

• Construct a building database for any given area using the model
proposed by Blanco et al. (2024).

• Integrate specific localized weather data into the model.
• Generate heat and electricity demand curves for individual build-

ings in the study area for a reference year.
• Aggregate both energy demand curves into the study area’s UEUs.

• Normalize and typify the aggregated demand curves for each UEU
type.

• Assess the relevance of UEUs and their demand curves in real-
world scenarios, particularly for Germany’s municipal heating
plans.
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Fig. 1. Germany’s final energy consumption by sector and final residential energy consumption by category in 2020. Data taken from IEA World statistics Germany (IEA, 2020).
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2. Literature review

Urban energy planning focuses on creating synthetic heat and elec-
ricity load profiles for residential buildings to develop sustainable
nergy solutions Proedrou (2021), Schreiber et al. (2023). Transitioning

from fossil fuel-based heating to electric or hydrogen systems requires
estimating the energy demand of traditional systems Heitkoetter, Med-
jroubi, Vogt, and Agert (2020). As renewable energy replaces electricity
for household needs, it is essential to analyze time-varying factors af-
fecting building energy consumption. Accurate load profile generation
is crucial for optimizing energy demand patterns, which is in itself a
current challenge in energy analysis due to the fact that data such
as user behavior or hourly consumption data is difficult to obtain
because of factors such as unavailability of the data, data privacy
laws compliancies and/or non-real time measure of consumption data.

o address this need, this work applied the methodology developed
y Blanco et al. (2024), creating a building-level resolution database

using publicly available data and generating energy demand profiles
(both heat and electricity) for individual buildings as well as for UEUs.
This section provides a succinct summary of the literature currently
available on methods for modeling heat and electricity load profiles,
current approaches for typifying time-varying profiles, the importance
of both heat and electricity load profiles in the new German legis-
lation for municipal heating planning and the current challenges for
municipalities and energy planners.

2.1. Load profile generation

The classification of residential load profile models is multidimen-
sional, encompassing methodological approaches, sampling rates, ap-
lication domains, and statistical methods (Proedrou, 2021). Method-

ological approaches are typically categorized as bottom-up, top-down,
or hybrid models. Sampling rates are classified into low-, middle-
, or high-resolution models. These models serve various application
domains such as demand-side management, control, design of en-
ergy systems, among others. Statistical methods include Markov chain
modeling, statistical and probabilistic methods, and Monte-Carlo sim-
ulations, among others. However, the literature indicates the need
for additional modeling parameters to comprehensively classify each
model. These parameters include accessibility of the model and data
for consultation by other researchers (Heitkoetter et al., 2020), the
influence of household size and consumer behavior (Flett & Kelly,
2021), and the spatial resolution of the model (Fonseca & Schlueter,
2015).

This paper explores various authors’ works concerning parame-
ters crucial for generating and categorizing both heat and electricity
load profiles in residential dwellings. Each parameter essential in the
context of load profiles will be systematically addressed, establishing
connections with aspects relevant to the present study.
 w

3 
Type of load profile: Some authors, such as Anvari et al. (2022),
Flett and Kelly (2017), Idowu, Saguna, Å hlund, and Schelén (2016),
ave exclusively modeled either heat or electricity demand. Con-

versely, Fischer, Wolf, Scherer, and Wille-Haussmann (2016), Fonseca
and Schlueter (2015), Lindberg, Bakker, and Sartori (2019), Penya,
Borges, and Fernández (2011), Yao and Steemers (2005) have ad-
dressed the modeling of both heat and electricity demand. While con-
centrating on modeling a specific type of demand provides a detailed
nderstanding of that load, the modeling of both demands presents
 more holistic view of the overall energy demand in residential
uildings.
Method: Heitkoetter et al. (2020), Labeeuw and Deconinck (2013)

formulated a top-down model aimed at establishing a mathematical
correlation between reported energy consumption and potential at-
ributable energy consumption per household. On the other hand,
oth Anvari et al. (2022) and Penya et al. (2011) developed hybrid
odels. The former analyzed highly detailed residential electricity con-

sumption data, proposing a broadly applicable, data-driven load model.
The latter focused on non-residential buildings’ load, constructing a
model for short-term forecasting using ML algorithms and workday
schedules as day-type classifiers. While capable of forecasting load
profiles based on statistics, it falls short in generating profiles based
on occupants’ energy demand behavior. This distinction is crucial, as
it enables bottom-up approaches to capture how occupants generate
energy demand, allowing for aggregation at the neighborhood or city
level for comparison with real energy consumption. In the case of
electricity demand load profiles, Fischer, Härtl, and Wille-Haussmann
(2015), Fischer et al. (2016) use a stochastic bottom-up approach
for electrical loads, which is extended to include domestic hot wa-
er (DHW) and space heating demand. A behavioral model is used

to determine DHW consumption, electrical appliance use and build-
ng temperature settings. For heat demand load profiles, Fonseca and

Schlueter (2015) modeled building subsystems representing all possible
heat flows, including heat losses due to ventilation and transmission, as

ell as internal heat gains due to occupancy, solar radiation, appliances
nd lighting. Mathematical and logical relationships between these

variables were used then to estimate the net space heating, cooling and
hot water demand. In all these cases, the unit of study (a household
or a building) is first modeled based on variables such as household
size, occupancy patterns, building characteristics and energy use habits.

he modeled unit is then aggregated to estimate energy demand at the
district or city level.

Box-model: In some prior research (Anvari et al., 2022; Heitkoetter
et al., 2020; Kairisa et al., 2022; Pflugradt & Muntwyler, 2017; Staffell,
Pfenninger, & Johnson, 2023), a white-box approach is employed,
haracterized by the use of open-source data, the publication of imple-
ented code, and explicit explanations of mathematical relationships
ithin the model. In contrast, the majority of authors, as in the case
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of Fischer et al. (2015), Fonseca and Schlueter (2015), Idowu et al.
(2016), Yao and Steemers (2005) and others, adopt a grey box ap-
proach, providing details of their source code and using either public
or non-public data, or providing general explanations of their mod-
eling approach and the equations implemented in the methodology.
Only Labeeuw and Deconinck (2013), Penya et al. (2011) can be cate-
gorized as adopting a black-box approach, as they do not substantially
publish the equations used, the source code or the data used.

Consumer behavior: The studies made by Fischer et al. (2015,
2016), Nijhuis, Gibescu, and Cobben (2016), Pflugradt and Muntwyler
(2017), Yao and Steemers (2005) focus on modeling building occupant
ehavior, detailing factors like illness periods, personal hobbies, and
evice ownership to simulate Domestic Hot Water (DHW) tapping,
lectric appliance use, and temperature settings. They employ statistical
ata or psychological models to represent occupants as desire-driven
gents. While some consulted authors limit their definition to the num-
er of occupants per building Heitkoetter et al. (2020), other authors

like Anvari et al. (2022), Idowu et al. (2016), Labeeuw and Deconinck
(2013), Lindberg et al. (2019), Penya et al. (2011), Sakkas and Abang
(2022) either neglect consumer behavior or rely on standard load
rofiles (SLPs) or historical energy consumption statistics to generate
uture load profiles.
Building details: The authors Fischer et al. (2016), Fonseca and

chlueter (2015), Heitkoetter et al. (2020), Kairisa et al. (2022), Staffell
t al. (2023) constructed models that incorporate highly detailed infor-

mation about each modeled building. These models encompass crucial
arameters such as the building’s age, type, insulation based on en-
rgy class, household area, number of storeys, and heat interaction

with neighboring buildings. This detailed information is particularly
ertinent for models focused on defining heat demand load profiles.
iven the strong correlation between heat demand and local weather
onditions, local weather data is considered a significant input in
hese models. Conversely, some studies in the literature review only
onsider one or two of these parameters, resulting in less accurate
eat load estimations. On the opposite end of the spectrum, certain
apers, particularly those centered on data-driven machine-learning
pproaches, disregard building details as input variables.
Spatial resolution: Most bottom-up models can replicate energy

oad profiles at the building scale, but not all models generate repro-
ucible load profiles for entire cities due to limitations in sourcing

databases. Data-driven ML models developed by Anvari et al. (2022),
Idowu et al. (2016), Lindberg et al. (2019), Sakkas and Abang (2022)
eproduce building-scale profiles, but rely on past energy consump-

tion data and cannot independently generate new data. Conversely,
approaches by Fischer et al. (2016), Fonseca and Schlueter (2015),
Labeeuw and Deconinck (2013), Staffell et al. (2023), Yao and Steemers
(2005) are considered more powerful because they create profiles
without historical data dependency and can be aggregated to higher
resolutions such as administrative districts or municipalities. In terms
f heat load results, the tool of medium to low spatial resolution is

HOTMAPS from the European Union (Hotmaps, 2019) and developed
y Pezzutto, Zambotti, et al. (2019), this tool provides an overview

and rough estimate of the heating and cooling demand default data
for EU28 at national and local level.

Temporal resolution: Temporal resolution models can be divided
nto low-, middle- and high-resolution models (Proedrou, 2021). A low
esolution model has a sampling rate of fewer than 15 min (Fonseca
 Schlueter, 2015; Lindberg et al., 2019; Penya et al., 2011; Sakkas
 Abang, 2022; Staffell et al., 2023). Heating home appliances do

not change instantly; therefore, models oriented to reproduce heat de-
mand profiles have usually low resolution when compared to electric-
ty profiles. Middle-resolution models such as those from Heitkoetter

et al. (2020), Idowu et al. (2016), Labeeuw and Deconinck (2013),
Nijhuis et al. (2016), Saloux and Candanedo (2018), contain a temporal
esolution varying between one but no higher than fifteen minutes.

High-resolution models have a temporal resolution equal or lower to
 e

4 
one minute (Anvari et al., 2022; Fischer et al., 2015, 2016; Kairisa
et al., 2022; Pflugradt & Muntwyler, 2017; Yao & Steemers, 2005).

n interesting project which is worth-mention in this section is the
roject NOVAREF, which is discussed in Lange and Zobel (2017) and

which conducted a detailed, high-frequency measurement of electricity
consumption in single-family homes in Oldenburg, this reference and
respective data will be used for the purpose of validating the present
tudy, the objective of the study conducted by Lange and Zobel (2017)

was to develop and validate new VDI reference load profiles, taking
nto account adjustments for heating limits and low-energy homes. Data
ere collected from 12 homes over a three-year period, demonstrating

he existence of distinct morning, midday, and evening peaks. These
eaks were influenced by both occupant behavior and appliance use.
Modeling approach: The literature review identifies three main

modeling approaches in the context of energy demand. First, models
utilize statistics and probabilities of energy demand, drawing on histor-
ical data or statistical sources to generate artificial load profiles (Anvari
t al., 2022; Fischer et al., 2015, 2016; Fonseca & Schlueter, 2015;

Heitkoetter et al., 2020; Idowu et al., 2016; Kairisa et al., 2022;
Penya et al., 2011; Pflugradt & Muntwyler, 2017; Sakkas & Abang,
2022; Staffell et al., 2023). Second, models that employ Monte-Carlo
simulation for repeated random sampling to produce numerical re-
sults Labeeuw and Deconinck (2013), Zhang (2021). Finally, the third
approach involves Markov chains for developing a household occu-
pancy model and for randomizing load profile behavior (Flett & Kelly,
2017; Labeeuw & Deconinck, 2013; Nijhuis et al., 2016). All the in-
ormation and parameters discussed above are succinctly summarized
n Table 1. Each study presented in this literature review has been

classified according to the respective parameters. Last but not least, the
last row, exemplifies where our research falls in this multidimensional
space.

2.2. Current typification of load profiles for residential buildings

Different approaches are used to identify types of load profiles
in neighborhoods, depending on the final objective of categoriza-
tion. Some methods focus on identifying the main components that
constitute the load profile. For instance, Buchhop and Ranganathan
(2019) employed an artificial neural network (ANN) trained to iden-
tify four residential electricity load types: dishwashers, refrigerators,
furnaces, and stoves. While the model successfully identified some
loads, it did not recognize all. Other studies focus on clustering load
curves. Adonias, Cavalcante, Fontes, and Marambio (2013) developed a
method to select, typify, and cluster load curves, recognizing consump-
tion patterns in the electricity sector. This method was effectively used
to optimize energy consumption following the introduction of more
efficient refrigerators in Brazilian homes.

Similarly, Akperi and Matthews (2014) applied ML clustering tech-
niques to load profiles, finding that K-means clustering achieved the
est performance in creating distinct, well-populated cluster groups.

Gouveia and Seixas (2016) offered another example of a cluster ap-
proach, using a combination of high-resolution smart meters and de-
ailed surveys in Portuguese households. They defined power consump-
ion clusters using Ward’s method of hierarchical clustering. Their
indings indicated three primary factors for electricity usage segmenta-
ion: the structural attributes of a residence (notably its age and size),
he presence and utilization of heating, ventilation, and air conditioning
HVAC) systems and fireplaces, and the characteristics of the occupants
primarily their numbers and monthly income).

Other concepts of load profile classifications are based on qualita-
ive assessments. For example, Agbonaye, Keatley, Huang, Ademule-

gun, and Hewitt (2021) classified neighborhoods using metrics related
o vulnerable consumer groups, such as income levels, the presence of
lder populations, access to gas, or areas with difficult access. This
lassification aimed to propose a flexibility prioritization model to
nsure a fair distribution across various locations in Northern Ireland.

https://www.hotmaps.eu/map
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Table 1
Overview of selected studies concerning the nature of the load profiles, their model characteristics and classification. Annotations:+ = limited, ++ = medium, +++ = high, S&P
= Statistical and probabilistic approach, MC = Monte-Carlo, MkCh = Markov Chain.

Author Load profile Method Box model Consumer
behavior

Building
details

Temporal
resolution

Spatial
resolution

Approach

Yao and Steemers (2005) H& E Bottom-up Grey +++ ++ +++ Building S&P
Penya et al. (2011) H & E Hybrid Black + + + Building S&P
Labeeuw and Deconinck (2013) E Top-down Black + + ++ Building MC&MkCh
Fischer et al. (2015) E Bottom-up Grey +++ ++ +++ Building S&P
Fonseca and Schlueter (2015) H & E Bottom-up Grey ++ +++ + Building S&P
Pezzutto, Zambotti, et al. (2019) H Top-down White + ++ + Regional,

Adm.
S&P

Idowu et al. (2016) H Bottom-up Grey + + ++ Building S&P
Fischer et al. (2016) H & E Bottom-up Grey +++ +++ +++ Building S&P
Nijhuis et al. (2016) E Bottom-up Grey +++ + ++ Building MkCh
Pflugradt and Muntwyler (2017) E Bottom-up White +++ + +++ Building S&P
Flett and Kelly (2017) E Bottom-up Black ++ ++ +++ Building MkCh
Saloux and Candanedo (2018) H Bottom-up Grey ++ ++ ++ Adm.

District
S&P

Lindberg et al. (2019) H & E Bottom-up Grey + ++ + Building S&P
Heitkoetter et al. (2020) H Top-down White ++ +++ ++ Adm.

District
S&P

Kairisa et al. (2022) E Bottom-up White ++ +++ +++ Building S&P
Sakkas and Abang (2022) H Bottom-up Grey + + + Adm.

District
S&P

Anvari et al. (2022) E Hybrid White + + +++ Building S&P
Staffell et al. (2023) H Bottom-up White ++ +++ + Building S&P

Present study H & E Hybrid Grey +++ +++ +++ Building S&P
w
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a

a

2.3. Current challenges in artificial load profiles and municipal heating
plans

The German law for heat planning and decarbonizing heat networks
stablishes a framework for comprehensive heat planning in Germany,
iming for greenhouse gas neutrality in the heat supply sector by 2045,
n alignment with national climate protection goals (BMWSB, 2023).

It mandates that states develop heat plans for municipal areas, ensuring
that by June 30, 2026, regions with over 100,000 inhabitants, and
by June 30, 2028, those with fewer than 100,000 inhabitants, have
such plans in place. These plans, must be based on existing and po-
tential local conditions, outline target scenarios and implementation
strategies for cost-efficient, sustainable, and climate-neutral heat sup-
ply, embracing technology-neutral approaches like district heating and
decentralized solutions such as heat pumps. Additionally, the law sets
the target of 50% by 2030 for climate-neutral heat production, with
specific renewable energy integration goals for heating networks by
2030 and 2040.

According to the German federal government on the heat planning
act (Bundesregierung, 2024) the development of municipal heat plans
involves four mandatory phases. The first phase (inventory analysis)
evaluates the current state of the building stock, its energy demand,
and the energy infrastructure. The second phase (potential analysis)
explores the technical and economical options. The third phase (2040
target) establishes the local actions to take place in order to achieve
local heat neutrality by 2040. The last phase (heat transition strategy)
centers on implementation plans. However, the municipalities responsi-
ble for this planning, encounter different challenges, including the need
for qualified personnel, the high costs involved, and the time-intensive
nature of the projects. Consequently, many municipalities in Germany
are either yet to begin or find themselves in the early phases of this
assignment as previously explained by Blanco et al. (2024).

In order to properly manage energy consumption of the building
ector and accelerate the creation of the municipality heating plans,
ractical models that incorporate large urban areas and their energy
onsumption patterns are essential. One major challenge in meeting
he law’s objectives is the need for accurate energy demand predic-
ions and load profiling. Authors such as Blanco et al. (2024), Fischer

et al. (2016) highlight the critical importance of understanding demand
atterns to optimize the distribution of renewable energy systems.
5 
They discuss the shift toward thermal-electric systems like heat pumps,
hich require interconnected demand profiles for efficient grid and

supply design, which is in itself a current challenge, not just because
for coupling loads of power to heat but also because of the limita-
tions of current methods in accounting for user behavior, technology
diversity in both demand and generation, and the need of covering
demand at high time resolution . Additionally, Fonseca and Schlueter
(2015) emphasize the importance of characterizing energy services
t the neighborhood level, which is crucial for implementing retrofit
trategies and assessing technologies like heat pumps and distributed
eneration schemes. Understanding spatial and temporal variations in

energy demand and supply is vital to ensuring the feasibility and
effectiveness of climate-neutral heat supply solutions, as required by
the law.

The literature review identified a lack of comprehensive, high-
temporal resolution, building-level models that integrate both heat and
electricity demand profiles for urban energy planning. Table 1 presents
8 related studies that were reviewed. It was found that existing models
ften focus on a single type of energy demand 13 of the studies did not
enerate both heat and electricity profiles. Additionally, eight studies
xhibited limited spatial or temporal resolution, while seven studies
acked key parameters such as consumer behavior and detailed building
nformation. The approach by Fischer et al. (2016) comes closest

to achieving a similar scope, incorporating both heat and electricity
demand simulation, but it requires extensive building parametrization,
making it time-intensive.

Moreover, the literature review conducted in Section 2.2 reveals
 potential avenue for further investigation into comprehensive ap-

proaches that integrate quantitative and qualitative elements to de-
velop precise, comprehensive load profiles for neighborhoods. The
existing methods, as exemplified by the works of Buchhop and Ran-
ganathan (2019), Adonias et al. (2013), Akperi and Matthews (2014),
nd Agbonaye et al. (2021), concentrate on particular load components,

clustering techniques, or qualitative classifications. However, there
is no unified model that integrates both high-resolution quantitative
data (e.g. appliance use, occupancy, as discussed by Buchhop and
Ranganathan (2019) and Gouveia and Seixas (2016)) and qualitative
metrics (e.g. socioeconomic factors and vulnerability, as in Agbonaye
et al. (2021)) to create a comprehensive energy demand profile that
addresses diverse neighborhood characteristics.
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Overall, while the law provides a legislative framework for tran-
sitioning Germany’s heat supply to carbon neutrality, addressing chal-
lenges such as accurate load profiling, integrating diverse energy
sources, and understanding spatial and temporal energy demand varia-
tions is essential for its successful implementation. For this reason, this
study focuses on answering the following research questions:

• Can new data-driven approaches accelerate the initial inven-
tory and potential analysis phases of municipal heating plans in
Germany?

• Is it possible to develop a model using open data that provides
hourly energy demand estimates, and if so, how accurate can
these estimates be?

• Can demand curves be standardized and typified for energy anal-
ysis at a district level, rather than just at a building level?

Hence, the following methodology tries to fulfill the research gap
nd answer the research questions by generating typical heat and
lectricity load profiles tailored to various urban spaces, designed to be
n essential resource for the initial phases of municipal heating plans
n Germany. Given the challenges municipalities face—such as limited
etailed building data, shortages of qualified personnel, constrained
esources, and stringent data protection laws—this approach provides
 valuable new tool for accurately assessing energy needs within the

building sector. By addressing these barriers, the methodology supports
municipalities in creating effective, data-informed heating plans despite
limited resources.

3. Methodology

3.1. Selection of the study area

The initial step involves selecting the study area, which can encom-
ass any specific region within Germany. For this research, the focus is
n the city of Oldenburg, Germany. The city is located in the north of
he state of Lower Saxony, Germany with a total area of 103.09 km2 and
 total population of 174 629 as of 2022. This city was chosen based on
revious studies conducted by Blanco et al. (2024) and explained in the

introduction. Fig. 2 shows a graphical representation of the subdivision
of Oldenburg into UEUs as done previously by Blanco et al. (2024),
showing the subdivision of the city center into the different UEU
classes, which are also explained in detail in Section 3.2.2. Subsequent
ubsections introduce the collected datasets for the study area and for

the general model.

3.2. Data collection

The process of gathering accurate and relevant data is crucial for
ensuring the validity and reliability of our study. As mentioned pre-
viously, our research builds upon the work of Blanco et al. (2024),
and thus, the data employed in this study are the same, namely:
3D CityGML–LoD2 Building models, census data, and cadastral data.

dditionally, weather data for the study area and statistical information
bout energy demand parameters based on building types have been

acquired. The subsequent paragraphs provide a detailed explanation for
each data type obtained for this study and their respective sources.

3.2.1. Building stock database
This study applies the building stock database of Oldenburg, as

employed in Blanco et al. (2023, 2024), because it contains key infor-
mation at the building level about the age of the buildings and other
crucial parameters such as building type, use, height, roof type, etc. The

odel developed by Blanco et al. (2024) combines 3D CityGML infor-
mation Models of Germany and Germany’s 2011 census, sourced from
Lower Saxony’s data portal (LGLN, 2021), and the Statistical Office of
he Federal Government (Statistische Ämter des Bundes und der Länder,

2011) respectively, in order to create a complete database, which
6 
includes 28 parameters for 56,749 buildings in Oldenburg, with 80%
residential buildings and 20% with non-residential purposes. Table 2
summarizes the parameters derived from this model.

A particularity of the study of Blanco et al. (2024) is the fact
that it uses a Random Forest (RF)-model to disaggregate the census
information regarding building age (categorized into ten construction
year intervals) because of the fact that Germany’s 2011 census data
are publicly available in a 100 m×100 m grid format, with values
aggregated according to the Infrastructure for Spatial Information in
the European Community (INSPIRE) guidelines (BKG, 2019; INSPIRE,
2017; Statistische Ämter des Bundes und der Länder, 2011). This is the
fficial and only dataset of the country about the year of construction

of buildings.

3.2.2. UEU classes and database
In their study, Blanco et al. (2024) developed a GIS-based model to

categorize urban regions into 16 distinct morphological units, termed
by the authors as UEUs. These units are defined based on local building
arameters, settlement patterns, and energy demands specific to the
erman building stock. Based upon the previously mentioned data

sources, the authors implemented the classification of UEUs in the city
of Oldenburg, resulting in the division of the area into 8249 unique
UEUs. Each UEU was classified by the authors into one of the 16
categories employing a Decision Tree (DT) model. Table 3 gives a brief
escription of this 16 categories, the percentage of area they cover in

Oldenburg, and sample data on heat and electricity demand considering
no refurbishment of the building stock. More detailed information, for
other refurbishment scenarios and building ages, is available in Blanco
et al. (2024). A geographical representation of the UEUs is displayed in
Fig. 2.

3.2.3. TABULA database
A significant source of information regarding the energy and ar-

chitectural characteristics of the German building stock comes from
a report by Loga, Stein, Diefenbach, and Born (2015), part of the

ypology Approach for BUiLding stock energy Assessment (TABULA)
project under the European Commission and coordinated by the Institut

ohnen und Umwelt (IWU), Germany. The TABULA project aimed to
upport the energy efficiency and retrofit objectives of the European
nion by establishing a comprehensive framework for assessing the
nergy demand of national residential building stocks. Each participat-
ng country, including Germany, developed a classification system to
ategorize its diverse building stock.

According to Loga et al. (2015), the German residential building
stock is categorized into various age and size classes based on energy-
relevant characteristics. Building age is particularly crucial as con-
struction methods in different eras affect components such as window
sizes, significantly influencing U-values and overall heating demand.
Therefore, the TABULA project identified 12 building age classes based
on historical data, survey dates, and relevant changes in building
regulations related to thermal engineering. The construction types in
the German building stock were classified into four categories: Single-
family house (SFH), multifamily house (MFH), terraced house (TH),
and apartment block (AB). Typical total heating specific demands were
calculated and presented in k Wh∕(m2a) for each construction type and
building age class. The TABULA database is currently the most detailed
and officially recognized source on the refurbishment status and typical
heating demand values of the German building stock. For summarized
information, refer to Table 4; for further details, consult Loga et al.
(2015).
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Fig. 2. Study Area: Oldenburg, Germany. (Left) Map showing the location of Oldenburg within Germany and its administrative boundaries. (Right) Detailed division of Oldenburg’s
city center into 16 distinct UEUs, labeled UEU 1–16.
Source: Adapted from: Blanco et al. (2024).
Table 2
Building parameters of the database for the city of Oldenburg.

Parameter Units Description

Building ID – Identification sequence of the building
Municipality key – Key of the municipality where the building is located
Address – Address of the building
Measured height m Height measured from the topmost point of the building
Function – Functional use of the building given in CityGML numerical code
Type – Detached, semi-detached, terraced, multi-family
Area m2 Footprint’s area
Perimeter m Footprint’s perimeter
Absolute Height m Height measured from sea level
Roof type class Standardized CityGML roof type
Roof height m Distance measured from the middle eave until the highest roof’s point
No. of storeys – Approximate number of storeys of the building with 3.5 m story height
No. of apartments – Approximate number of apartments of the building
Neighbors IDs – Identification sequence of all the adjacent buildings
No. of neighbors – Number of all the adjacent buildings
Shared perimeter m Sum of all the perimeter shared with adjacent buildings
Volume m3 Volume od the building
2D shape index – Shape smoothness index, expressed as 𝑝

4
√

𝐴
Height-Area ratio m−1 Building height to footprint area’s ratio
Shape compactness – Exposed surface area per unit of volume, expressed as 𝑉 2∕𝑉 3

Floor areas m2 Sum of all floor areas
Surface area m2 Sum of all surface areas
Perimeter index – Building footprint index, expressed as 2

√

𝜋 𝐴
𝑝

Roof pitch angle ◦ Angle with the horizontal of the buildings roof
Roof surface area m2 Surface area of the building’s roof
A/V m−1 ratio between the envelope area and the buildings volume
Building age class Predicted building age categorized into 10 groups based on German census.
Centroid – X, Y and Z Coordinates of the building’s centroid
3.2.4. Weather data
In addition to the building stock database, our model integrates

time series data on local weather conditions. Weather data is necessary
because it directly influences calculations of heat demand. Factors like
environmental temperature and wind conditions faced by the buildings
play a significant role in determining the total heat demand.

To obtain this time series data, the model is able to integrate two
different databases, German Meteorological Service, known as DWD
(Deutscher Wetterdienst) and Copernicus Climate Data Store (CDS).
Weather data from the DWD provides precise Test Reference Years
(TRY) for specific areas in Germany, including average years, extreme
7 
winters, and extreme summers for 2015 and 2045. These datasets
include hourly values for temperature, air pressure, wind speed, solar
radiation, and other parameters. On the other hand, the Copernicus
database, offers datasets for Actual Meteorological Years (AMY) from
2010 to 2020 including hourly values for temperature, wind speed, and
solar radiation across an area of 464 square kilometers, covering the
city of Oldenburg. While the analysis showed in this paper is based
on the official TRY for the time period 1996–2015 from the DWD
(referred to in this paper from now on as TRY2015), our model is able
to accommodate temperature and wind data for any year downloaded
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Table 3
Brief description of UEU classes. Percentage of area covered in Oldenburg by each type. Values for heat and electricity demand considering:
no refurbishment and construction period of 1949–1978. Demand values are expressed in MWh∕(ha × a).
Source: Adapted from Blanco et al. (2024).
UEU Description Percentage % Heat demand Electricity demand

Predominant residential use

1 Single family housing 14.7 433 78
2 Terraced house development 2.2 1040 116
3 Low to mid-rise row development 3.9 1420 268
4 Large-scale development 0.2 1281 395
5 Perimeter block development 0.1 3243 694

Predominant mix use

6 Village development 0 1738 312
7 Historic old town 0.1 3126 751
8 Inner city 0.5 4924 693

Administrative and commercial use

9 Business and offices 0.1 – –
10 Industrial area 7.4 – –

Open spaces

11 Public parks 2.6 – –
12 Cemeteries 0.3 – –
13 Allotment gardens 0.4 – –
14 Arable land 36.9 – –
15 Permanent grassland 1.5 – –
16 Forest 18.0 – –
Unclassified – 11.1 – –
Table 4
Heating energy demand in k Wh∕(m2a) across construction types (SFH: single-family house, MFH: multifamily house, TH: terraced house, AB: apartment block), construction periods,
and refurbishment levels (1: no refurbishment, 2: usual refurbishment, 3: advanced refurbishment). Data taken and adapted from: Loga, Stein, and Diefenbach (2016).

Refurbishment state Construction type

SFH MFH TH AB

1 2 3 1 2 3 1 2 3 1 2 3

Construction
period

Before 1859 282.7 94.8 49.0 284.9 101.1 48.5 – – – – – –
1860–1918 269.7 98.5 57.5 172.5 80.0 40.8 199.5 94.8 51.8 134.5 70.4 36.5
1919–1948 218.5 83.6 50.7 218.5 81.8 47.6 155.8 68.0 43.6 121.9 82.1 50.1
1949–1957 272.9 119.2 61.4 193.7 78.5 48.4 193.4 81.1 51.7 164.0 68.1 41.8
1958–1968 265.3 128.1 69.9 140.2 64.7 40.3 106.9 59.4 38.9 143.3 63.1 39.3
1969–1978 195.3 91.5 58.5 147.9 72.6 45.3 137.6 72.4 47.2 121.7 59.3 37.3
1979–1983 130.6 73.5 45.5 122.6 66.5 42.0 137.6 86.8 51.8 – – –
1984–1994 151.7 96.5 57.2 127.6 70.5 44.0 95.4 70.3 43.2 – – –
1995–2001 98.2 76.0 57.8 80.6 53.0 44.0 69.7 57.3 40.3 – – –
2002–2009 70.1 61.3 55.0 49.9 44.9 41.3 62.0 59.2 50.7 – – –
2010–2015 82.2 67.5 42.0 72.7 44.7 35.3 69.8 57.2 36.8 – – –
2016 and after 69.5 61.0 42.0 71.4 49.1 35.3 58.8 51.7 36.8 – – –
2

from the CDS, enhancing its flexibility. Fig. 3 shows DWD temperature
nd wind data for the TRY2015 of the city of Oldenburg.

3.3. Calculation of heat load profiles

Three approaches to model energy demand in German households
re proposed by Fischer et al. (2016) and Ruhnau, Hirth, and Prak-
iknjo (2019): using a standard load profile (SLP), adopting a reference
oad profile, or employing statistical data-driven methods. The heating
emand in residential homes depends on weather conditions, building
haracteristics, and consumer behavior. By integrating these factors,
 demand profile can be generated using any of these methodolo-
ies (Malla, 2021).

This study utilizes a hybrid approach that combines these methods.
Specifically, the SLP method is employed hourly to generate heat
demand profiles for individual residential buildings. Simultaneously,
data-driven techniques are used to characterize reference load profiles
customized for UEUs as defined by Blanco et al. (2024). This dual
strategy offers a detailed temporal representation of heat demand for
each UEU, while also providing specific information on heat demand
for buildings within a large urban area.
8 
Fig. 3. DWD Weather data for the TRY2015 of the city of Oldenburg. Temperature at
 m above ground in Celsius and wind speed horizontal component at 10 m above

ground in meters per second.
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SLPs were initially introduced by the German Electricty Associa-
ion (VDEW, 2000) for understanding the electricity market. Subse-

quently, the methodology for gas standard load profile was developed
by the Technical University of Munich in collaboration with the Ger-

an Gas and Water Association (BGW) (BGW, 2006; Hellwig, 2003).
This method utilized a sigmoid function to model demand patterns for
small customers in the liberalized gas market. Over time, 14 consumer
load profiles were established, distinguishing between commercial,
retail, service sectors, and households (single and multi-family houses).
Challenges identified included low allocation at extreme temperatures,
insufficient base load, high deviation rates, and seasonal inconsisten-
ies. A status report by the German Association of Energy and Water
ndustries (BDEW), the Association of Municipal Enterprises (VKU),
nd the European Association of Independent Energy and Distribution
ompanies (GEODE) (BDEW, VKU and GEODE, 2016) recommended

corrective measures such as partial linearization and date-dependent
seasonal factors, resulting in a revised profile function called SigLinDe,
which combines sigmoid and linear components. Partial linearization
addresses under-allocation at very cold or warm temperatures, aligning
the function with actual demand patterns.

SLPs are tailored to gas-dependent processes, where a flatter curve
indicates consumers completely dependent on gas, while a steeper
curve signifies households influenced by outdoor temperatures. The
SigLinDe function is represented by Eq. (1), where ℎ𝑑 ,𝑙 denotes the
daily heat quantity dependent on day (𝑑) and location (𝑙), with 𝑇0 as
the upper temperature reference limit set at 40 ◦𝐶. The coefficients 𝐴,
𝐵, and 𝐶 are the sigmoidal of the equation, and 𝐷, 𝑚space,wat er , and
𝑏space,wat er are the linear part refering to the heat coefficients for space
and water, respectively.

To account for thermal inertia in buildings, the daily reference
temperature 𝑇 r ef

𝑑 ,𝑙 considers the weighted mean of ambient tempera-
tures from the current day and the preceding three days, as described
in Eq. (2).

ℎ𝑑 ,𝑙 = 𝐴

1 +
(

𝐵
𝑇 r ef
𝑑 ,𝑙 −𝑇0

)𝐶 +𝐷 + max

⎧

⎪

⎨

⎪

⎩

𝑚space(𝑇 r ef
𝑑 ,𝑙 − 𝑇0) + 𝑏space

𝑚wat er (𝑇 r ef
𝑑 ,𝑙 − 𝑇0) + 𝑏wat er

⎫

⎪

⎬

⎪

⎭

(1)

𝑇 r ef
𝑑 ,𝑙 =

𝑇 amb
𝑑 ,𝑙 + 0.5𝑇 amb

𝑑−1,𝑙 + 0.25𝑇 amb
𝑑−2,𝑙 + 0.125𝑇 amb

𝑑−3,𝑙

1 + 0.5 + 0.25 + 0.125 (2)

In the report made by BDEW, VKU and GEODE (2016), the tem-
perature independent component (𝐷) and the linear function for water
heating (𝑚wat er ⋅𝑇+𝑏wat er) are correlated with gas consumption for water
heating. Notably, the linear function for water heating is relevant only
t temperatures above the linear space heating function. Specifically,
his applies to temperatures exceeding the heating threshold of 15 ◦𝐶.
t temperatures above this threshold, it is assumed that the domestic
ot water demand remains stable. As a result, the daily water heating
emand (𝑓wat er

𝑑 ,𝑙 ) is determined for each location using Eq. (3):

𝑓wat er
𝑑 ,𝑙 =

{

𝐷 + 𝑚wat er ⋅ 𝑇 r ef
𝑑 ,𝑙 + 𝑏wat er , 𝑇 r ef

𝑑 ,𝑙 > 15 ◦𝐶

𝐷 + 𝑚wat er ⋅ 15 + 𝑏wat er , 𝑇 r ef
𝑑 ,𝑙 ≤ 15 ◦𝐶

(3)

In the original method, hourly demand values are calculated for
ach location using hourly demand factors provided by the BGW for
arious building types and temperature ranges (BGW, 2006). These

factors represent hourly proportions of daily demand, totaling 100%
per day. For non-residential buildings the BGW (2006) provides a factor
adjusting daily demand based on the day of the week but do not
explicitly differentiate between space and water demand. Nevertheless,
under the assumption that there is no need for space heating at elevated
ambient air temperatures (𝑇 𝑎𝑚𝑏

𝑑 ,𝑙 ≥ 25 ◦𝐶), the corresponding demand is
associated just to water heating.

The space heating demand is therefore defined as the difference
etween the total heat demand and the domestic hot water demand.
egative values may appear for specific hours, specially in summer.
 p

9 
These negative values are then adjusted to zero (Ruhnau et al., 2019).
his method allows us to calculate an SLP for a specific building type

n a given hour and location as long as a specific weather dataset
s provided. By combining it with the building stock database, tem-
erature and wind datasets of the city of Oldenburg, we are able to
alculate a SLP for each individual building with the database in an
ourly resolution. However these are normalized values, meaning that
he total heat demand on a yearly basis still needs to be calculated in

order to scale such profiles.
The next step is to calculate the total heat demand in a year

of every single building within the study area in order to scale the
respective SLP to have a building-specific heat load profile. In literature
review various methods for calculating yearly heat demand values for
buildings were shown, each with its own set of considerations. In our
pproach, we leverage a rapid and efficient methodology that takes
nto account the geometric properties of the buildings; nevertheless
he proposed model can then later be adapted to use other calculation
ethods. The approach used to calculate the heating demand of build-

ngs was adapted from prior studies by Dochev, Gorzalka, et al. (2020),
Garbasevschi et al. (2021), Wurm et al. (2021). Initially, the method
calculates the overall heated area of a building, considering factors such
s constructed area, volume, building parts, roof type, and number of

floors. Subsequently, the total heat demand is calculated by multiplying
the respective heated area of the building with the specific reference
heat demand value, expressed in watts per square meter per year. These
reference values are tailored to account for all possible combinations
of building age, type, and function. In the case of residential buildings,
the reference heat demand values are taken from the TABULA database
(see Table 4). In the case of buildings with a mixture of residential
a non-residential use, the values are taken from the VDI 3807 report
by the Association of German Engineers (VDI) (VDI, 2014) where
more than 70 building functions were analyzed. The heat demand 𝑄
is a function of the building’s type, age, geometry and function. All
of this can be summarized in Eqs. (4) and (5) taken from Dochev,
Gorzalka, et al. (2020). The factor 0.8 is a factor considered in the
standard DIN V 18599-1 to estimate the relationship between gross
and actual residential floor area. The factor of 0.75 is used to prevent
overestimating the area of a heated attic, as attics are not normally as
large as a full story. It is important to note that the ALKIS cadastral
system includes information on roof types, though the data availability
can vary by region. Each building’s SLP is then modified according
to its annual heat demand. This adjustment ensures that an accurate
heat load value is provided for each hour of the reference year for all
uildings in the study area.

𝑄 = 𝐴n(0.8 ⋅𝑄′′
TABULA ⋅ 𝑟 +𝑄′′

VDI(1 − 𝑟)) (4)

𝐴n = 𝐴f (𝑛f + 0.75 ⋅ 𝑟𝑓 ) +
∑

bp
𝐴bp ⋅ 𝛥𝑛bp (5)

where: 𝑄 is the heat demand of the building. 𝑄′′
𝑇 𝐴𝐵 𝑈 𝐿𝐴 is the specific

heat demand of the respective TABULA building typology and 𝑄′′
VDI

is the specific heat demand of the use type from VDI 3807. 𝐴n is the
total floor area of building. 𝐴f is the footprint area. 𝐴bp is the footprint
area of a building part (a part within the building’s footprint that has a
different number of stories). 𝑛f is the number of storeys. 𝑟𝑓 is the roof
type factor (0 for flat roofs, 1 for the rest). 𝑟 is the share of residential
area in the building. 𝛥𝑛bp is the difference in the number of stories
between the main building and its sections as explained in Garbasevschi
et al. (2021) and Dochev, Seller, and Peters (2020).

Last but not least, the different heat load profiles are then ag-
regated according to the UEUs in which the respective buildings
re located. This is done via a geoprocessing method in which just
he buildings located within the area of each UEU are extracted and
heir characteristics combined. By aggregating the different heat load
rofiles for each building within a UEU we get specific UEU heat load

rofiles which are dependent on their area and their respective building
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stock. Because we have also the architectural and structural properties
of each UEU, we can then analyze the many profiles of the many UEUs
and find common characteristics typifying the heat load profiles for
large settlement areas and showing an effective way to quickly analyze
ommunities and their heat demand.

3.4. Calculation of electricity load profiles

The software resLoadSIM is a stochastic simulation tool developed
by the European Commission’s Joint Research Centre (JRC) for pre-
dicting electricity load profiles for households (Estorff et al., 2022).
Although the software is currently being improved, it stands as an
pen-source tool, readily accessible through the JRC’s GitHub reposi-
ory (JRC, 2019). resLoadSIM was selected for its ability to generate
lectricity load profiles for individual buildings with minute-level res-
lution. It adopts a bottom-up methodology, simulating energy con-
umption at the household level, while leveraging open-source data for
etailed building characteristics and GIS information.

ResLoadSIM accurately models consumer behavior influenced by
eather, the number of inhabitants per household, and appliance usage

patterns, incorporating building details such as age, area and type. It
offers flexible resolution settings for load profiles, providing high and

edium resolution electricity profiles. The application of resLoadSIM’s
esults aims to generate Residential Load Profiles, supporting planning
uthorities in making heating plans while respecting privacy data man-
gement requirements through its statistical and probabilistic building
ategorization approaches.

To begin generating electricity load profiles with resLoadSIM, it is
essential to configure several parameters. These parameters govern the
simulation’s behavior, ensuring it accurately reflects the study’s con-
text. The simulation process requires five input data files each provid-
ing relevant information about the study area, building characteristics,
and simulation settings.

Firstly, a GIS-based dataset containing the geographical limitations
f the study area. Here, the UEUs database is imported. The dataset
ontains a total of 6746 UEUs, characterized by 48 variables and
lassified into 16 distinct UEU classes (Blanco et al., 2024). Due to the

fact that 8 out of the 16 classes are non-residential (as seen in Table 3),
and therefore resLoadSIM is not able to simulate them. This is probably
the main setback in comparison with the heat load profiles where non-
residential areas can be simulated. The remaining 8 residential UEU
classes represent a total of 1923 GIS areas within the city of Oldenburg
ffectively simulated in this analysis.

Secondly, the simulation relies on a set of three configuration files.
The first configuration file, holds parameters governing simulation
ehavior, such as irradiation data for photovoltaic energy generation,

battery charging strategies, power flow specifications, consumer energy
demand control, daylight saving time, and time resolution. The second
file contains the country ISO codes, urban or rural designation, latitude,
longitude, UTC offset, temperature, and irradiation data sourced from
VGIS (Barhdadi & Bennis, 2012). The third configuration file contains
arious factors influencing energy demand, such as laundry quantities,
robabilities of owning additional appliances, and schedules for routine
asks. It also determines wake-up and bedtime schedules and resident
resence at home throughout the day, providing crucial insights for
nergy demand simulation. This file also defines the population dis-
ribution among households per UEU, randomly allocating inhabitants
ased on the statistical distribution of households in Oldenburg from
he census database, as outlined in Table 5. Moreover, resLoadSIM

accounts for demographic factors like the prevalence of retirees in
different household compositions, ensuring the simulated population
distribution mirrors real-world demographics accurately. For example,
a higher proportion of single-person households may be occupied by
etirees. Finally, the last dataset needed for the calculation is: the time

series containing weather data for the TRY2015, including temperature,

wind, and irradiation data.

10 
Table 5
Assignment of family members per household to the proportion of the
building stock in the city of Oldenburg. Distribution of inhabitants per
buildings according to Statistische Ämter des Bundes und der Länder
(2023b).

Family members
per household

Proportion of
buildings

1 41.0%
2 33.0%
3 11.0%
4 13.0%
5 1.5%
6 0.5%

In order to account for seasonal fluctuations and long-term energy
consumption trends, the simulation was carried out over a period of
365 days. Furthermore, in order to maintain the population of the city
of Oldenburg at a constant level throughout the simulations process,
resLoadSIM was set to use a calculated number of households per build-
ng, derived from the Buildings Stock database (see Fig. 4 in the general
ethodology). The estimation of households per building is dependent

on the type of buildings located within the UEU. Therefore, an UEU
comprising detached or semi-detached houses is typically considered
to contain SFHs or detached MFHs.

During the simulation, resLoadSIM generates electricity load pro-
iles per household, each of which is identified by a unique code
hat allows the UEU to be identified. To ensure reproducibility and
esults validation, a random seed was defined equal to the order of

the simulated household load profile as defined by the building stock
database, allowing the simulation to be replicated and the results to be
verified. These load profiles represent the energy demand patterns of
he UEUs, including the activation of different household appliances at
ifferent times of the day. The generation of load profiles derives from
robabilistic methods that predict the energy demand of household
ppliances built upon the behavior of the occupants throughout the
ear. Each household’s load profile is determined by the simultaneous

activation of different appliances during specific operating intervals,
reflecting real world usage patterns. Once the load profiles for individ-
ual households have been generated, they are aggregated across each
UEU to calculate the total electricity demand. This aggregation process
provides a comprehensive picture of energy demand patterns at the
UEU level, facilitating the analysis and typification of energy districts
and residential areas.

3.5. General model and UEU-typical heat and electricity load profiles

The model outlined in this study generates a heat load profile for
all buildings within the selected area using the methodology detailed
in Section 3.3. Subsequently, these individual building profiles are
ombined based on the UEUs in which they are located, t o create a
eat load profile for each UEU within the study area. The model also
enerates an electricity load profile for every UEU in the study area
sing the methodology detailed in Section 3.4. The heat as well as the
lectricity load profiles have an hourly resolution and are based the
RY2015 for the city of Oldenburg, Germany. It is important to note that
hile both electricity and heat load profiles share the same units and

time and spatial resolution, combining those two energy demand values
irectly is not feasible. This is primarily because heating and electrical
ystems operate on separate infrastructures and often rely on different
nergy sources. Heat load profiles are influenced by the efficiency and
apacity of the chosen heating system, such as boilers, heat pumps,
r district heating networks. As a result, a conversion between time
eries of heat and electricity profiles is not straightforward (Böttger,

Götz, Lehr, Kondziella, & Bruckner, 2014; Jesper, Pag, Vajen, & Jordan,
2022) and it is out of the scope of this paper. For this reason, the
analysis of heat and electricity heat load profiles in this study is treated
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Fig. 4. General methodology for the generation of heat and electricity load profiles and their typification according to UEUs. 1: Study area selection. 2: Data collection and
processing. 3: Calculation of SLPs and generation of a database for individual geo-referenced buildings. 4: Classification of the buildings database according to TABULA classes
and generation of the Heat Load Profiles for individual geo-referenced buildings. 5.a: Integration of the UEU database generated by Blanco et al. (2024) and data aggregation
according to the geo-referenced UEUs. 5.b: Integration of the UEU database into resLoadSIM and simulation run. The results are both heat and electricity load profiles for each
geo-referenced UEU with hourly resolution.
separately to accurately analyze each side of the energy demand and
develop effective energy management strategies. Last but not least, the
validation of the model’s results are going to be compared with two
different tools, for the heat demand the comparison will be made with
the tool HOTMAPS (Hotmaps, 2019; Pezzutto, Zambotti, et al., 2019),
and the electricity demand wit the tool NOVAREF (Lange & Zobel,
2017), both of them previously described in the literature review.

When referring to the typification of load profiles, the term ‘‘typical’’
denotes a standardized representation of load profiles aligned with the
aforementioned UEUs. Essentially, when using the term ‘‘typical load
profile’’, it signifies a categorization or standardization of load profiles
based on the characteristics and energy usage patterns observed within
the UEUs. This approach to typification facilitates a systematic under-
standing and analysis of energy demand time-series patterns within
urban areas. The methodology described above is succinctly presented
in the workflow diagram, shown in Fig. 4. This workflow, illustrates
the sequential procedure used to incorporate regional characteristics
and district-level knowledge to model heat and electricity load profiles
at larger urban scales with high spatio-temporal resolution and have a
typical heat load distribution according to specific settlement patterns
of the German urban matrix known as UEUs.

4. Results

The next section presents the study’s results, based on the gen-
eral model outlined in Fig. 4 and an energy analysis of a district
in Oldenburg. Firstly, results for the generation of building-specific
high-resolution heat load profiles and how these different profiles
are matched with the building stock database previously employed
by Blanco et al. (2024). Secondly it shows the methodology for gen-
erating electricity load profiles for the different UEUs. Thirdly it shows
the normalization of both heat and electricity load profiles based
on each UEU. Last but not least, an exemplary energy analysis of a
randomly chosen district in Oldenburg showing the potentials of this
methodology for quickly getting a high-resolution heat and electricity
demand for any given region in Germany.
11 
Fig. 5. Heating energy demand in kWh/(m2⋅ a) for various building refurbishment
scenarios.

4.1. Heat load profiles

The building database used here includes a total of 56 749 build-
ings. According to the city’s administration, there are approximately
45 438 and 2 956 residential and non-residential buildings respectively.
The discrepancy in the number is attributed to individual structures
like garages or garden sheds. For each building, the total annual
heat demand was calculated as outlined in Section 3.3. The specific
heat demands listed in Table 4 are matched with the construction
period and building type characteristics of the building stock. This
matching process allows for three potential scenarios for the total heat
demand, based on the refurbishment states described by TABULA for
the building stock. These scenarios are depicted in Fig. 5.

Fig. 6 illustrates the nominal heat quantity per hour during the
TRY2015 weather scenario, categorizing each profile into different
building types and distinguishing between space and water demand.
The sum of all values add up to 100%, providing a comprehensive
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Fig. 6. Hourly and daily heat quantity (ℎ𝑑 ,𝑙) variations over a year, categorized by space and water heating and building types.
p

overview of the heat distribution throughout each day and the whole
ear. Every single building’s total heat demand is matched with its
orresponding profile, so this way each building has its own individual
eat load profile for space and water heating.

4.2. Electricity load profiles

The explained approach at Section 3.4 to estimate the number of
ouseholds yielded for the city of Oldenburg 100,219 households. The
umber of estimated inhabitants can be calculated by multiplying the
umber of households in each UEU by the distribution of inhabitants
er household as showed in Table 5. This yields a total of 202,938
nhabitants, which represents a 15% increase compared to the ac-
ual population from Oldenburg of 175,878 people in 2024 (Stadt

Oldenburg, 2024). The electricity demand simulation adheres to the
guidelines outlined in the resLoadSIM user manual version 5.0, as
referenced in the literature (Troyer, 2018).

The two main inputs to resLoadSIM were the 100,219 households
nd 365 days. These two variables, together with the configuration
iles, were used to simulate 1943 UEUs containing mainly residential

buildings. Each UEU had a specific number of households and this spe-
cific number was passed to resLoadSIM to run the simulation. The UEUs
containing residential buildings were UEU 1 to UEU 9, excluding UEU
6. Results of the simulation returned one file per UEU. Each file has
ix columns, each indicating load profiles of simulated instant power
emand of household families with minute resolution during one year.

To obtain the electricity demand of each specific geolocalized UEU, the
load profiles of all types of households with different occupants within
the UEU were summed and rearanged with an hourly resolution.

Fig. 7 presents an example of a simulated hourly power demand
f one single household with 2 residents. It follows a standardized
attern of a family that start its activity at 5:00 a.m., with two peaks

of electricity demand at 7:00 a.m. and at 6:00 pm. The load of this
ousehold is never zero, because there are home appliances that are
ontinuously running, like refrigerators or lights.
 v

12 
Fig. 7. Exemplary hourly power demand of a single family house with 2 members on
a 24 h window of a weekday.

4.3. Normalization of heat and electricity load profiles at UEU level

The term typical is used to denote characteristics that are represen-
tative of a specific group, category, or standard. However, it is essential
to note that typical does not imply exactness. With the introduction of
the UEU methodology, urban spaces can now be classified into energy
classes, providing a rapid assessment of their typical energy demand.
Consequently, normalizing and standardizing heat and electricity load
profiles has become feasible. We now have precise heat and electricity
load profiles for various UEU classes. Focusing on residential UEU
classes (1–9), we normalized their distinct load profiles based on total
constructed area and energy demand using Eq. (6), resulting in typical
load profiles for each class.

𝐿𝑃𝑖,(ℎ𝑒𝑎𝑡,𝑒𝑙 𝑒𝑐 𝑡𝑟𝑖𝑐 𝑖𝑡𝑦) = 1
𝑁

𝑁
∑

𝑗=1

𝑈 𝐸 𝑈𝑖,𝑗

𝐴𝑗 × 𝐸𝑗
|𝑖 = 1, 2, 3.. (6)

Figs. 8 and 9 show the results of the normalization for both heat
and electricity profiles for residential UEUs. The results have hourly
resolution given in normalized percentage per constructed hectare. The
rofiles show also the variance of minimum and maximum possible
alues. The different typical normalized UEU-heat load profiles show
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Fig. 8. Normalized and typified heat load profiles for each UEU type under TRY2015 conditions, displayed as a profile for each day from minimum, mean and maximum possible
values (left) and a heatmap (right) for each hour throughout the year in normalized heat percentage per constructed hectare.
a relative small difference between each other in terms of form, due
to the fact that they are based on the specific weather conditions and
SLPs. However, it can be observed that the higher the UEU-class, the
higher the values on winter tend to be, this is due to the fact that
the complexity of the building structures increment with the UEU-class
(see Table 3). The maximal deviation of the profiles from the mean is
20% for the UEU 3, the general standard deviation accounts for 2%, in
contrast with the electricity profiles which present a higher variance.

The heat and electricity typical normalized UEU profiles need to be
analyzed separately to understand better their statistical distribution
and level of confidence. To have a more detailed statistical description
of the level of confidence of these normalized artificial profiles, the
errors were calculated using the absolute difference of the maximum
and minimum values divided by the mean value for every single hour
along the reference year. A statistical examination of the heat profiles
of Fig. 8 was conducted and the statistical mean, minimum, maximum,
standard deviation and percentiles of the corresponding error were
calculated for each UEU profile and are shown in Table 6. The results
show the mean error of UEUs 1 to 5 to be around 60% while for UEUs 7
to 9 above 80%, this can be correlated firstly to the fact that UEUs 1 to
5 are settlement areas, meaning that the residential buildings are more
studied and do not show as much variance as those of non-residential
characteristics, which is the case for UEUs 7, 8, and 9. Secondly, the
variation can be directly related to unknown refurbishment state of the
building stock while for the non-residential UEUs the variance is due
unknown process related and function related energy demand. Maxi-
mum values are found to be in the summer months meaning that there
is zero space heat demand but constant DHW demand. Thus the high
maximum differences. Nevertheless, the 75% is still around the 100%
difference margin, which are the combination of maximal uncertainty
on refurbishment status of the building stock, process related demand
and high DHW demand in comparison with null space demand on the
summer months.
13 
Examination of the typical normalized UEU-electricity load profiles
shows no significant differentiation among the absolute mean values
for all UEUs (see Fig. 9). However, notable differences were identified
in maximum and minimum values, as well as in the deviation from
the mean. For instance, the maximum deviations from the mean in
UEU 1 to 3 were found to be as high as 90%, while in UEU 5 and
9, deviations had a maximum of 48%. The high deviations observed in
the typical electrical load profiles are due to the statistical approach
employed by resLoadSIM in calculating the load profiles. Fig. 9 depicts
the minimum, mean and maximum value that a typical UEU could take
at any hour of a year. It means for instance, that at a given hour,
while some population living at a given UEU 1 was sleeping or working
and not consuming a lot of energy, in other specific apartments, there
were residents actively living and operating different home appliances.
Another reason that explains the different deviations among the UEUs
is based on the number of simulated apartments per UEU. The greater
the number of UEUs, the higher the deviation found, due to higher
probabilities of having different demand behaviors of the residents in
a given UEU.

Table 7 shows a statistical analysis of the absolute error for all
the typical normalized UEU-electricity load profiles. The errors were
calculated using the absolute difference of the maximum and minimum
values divided by the mean value for every single hour along the
reference year. The results show a contrast to the heat demand errors
previously discussed. The UEUs 1 to 5 show the highest variances and
UEUs 7, 8, and 9 show low variance. This can be attributed to a number
of factors. First, the resLoadSIM model is stochastic, meaning that a
random model is applied when simulating the turning on and off of
electrical devices in a specific household, and the more simulations
the more high data-points we can get, and there are more UEUs
of residential areas in total as there are of non-residential. Second,
residential areas show a high volatility and uncertainty in consumption
because of user behavior in contrast to non-residential areas. Third and
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Table 6
Summary Statistics for the absolute error of the typical normalized UEU-heat load profiles. All the values are given in % .

Abs. Error UEU 1 UEU 2 UEU 3 UEU 4 UEU 5 UEU 7 UEU 8 UEU 9
Mean 66.34 54.92 68.06 63.22 49.10 82.71 91.23 194.51
Std 79.27 69.72 109.38 58.85 50.71 188.28 283.12 440.16
Min 0.51 0.51 3.37 0.51 0.11 0.05 0.00 4.93
25% 21.72 18.75 23.56 20.04 14.26 7.60 6.67 30.80
50% 43.68 39.32 44.50 42.99 35.08 20.20 15.51 51.62
75% 108.22 78.56 104.87 111.80 78.38 108.15 42.75 256.89
Max 1441.35 1461.82 2873.94 1028.78 1300.00 2454.09 1800.00 13 540.51
Fig. 9. Normalized and typified electricity load profiles for each UEU type under TRY2015 conditions, displayed as a profile for each day from minimum, mean and maximum
possible values (left) and a heatmap (right) for each hour throughout the year in normalized heat percentage per constructed hectare.
Table 7
Summary Statistics for the absolute error of the typical normalized UEU-electricity load profiles. All the values are given in %.

Abs. Error UEU 1 UEU 2 UEU 3 UEU 4 UEU 5 UEU 7 UEU 8 UEU 9
Mean 484.26 210.32 326.17 194.20 93.32 153.57 87.40 63.89
Std 242.87 101.68 165.75 87.06 42.22 72.80 50.21 44.93
Min 97.95 39.41 70.83 34.86 15.37 7.91 2.13 0.00
25% 332.52 152.21 228.79 142.33 63.928 100.86 47.80 27.59
50% 427.81 191.89 289.21 179.53 88.712 143.69 80.82 53.43
75% 574.31 244.54 378.76 229.22 114.73 190.65 118.43 95.25
Max 3097.18 2010.00 2180.31 987.42 396.365 591.40 316.94 187.72
last, there are less household related electrical appliances simulated in
resLoadSIM for non-residential spaces such as offices.

In this study, we analyze typical electricity load profiles and observe
their resemblance to electricity SLPs commonly used by utilities, as
discussed in Fünfgeld and Tiedermann (2000), albeit with some dis-
crepancies. Fig. 10 illustrates the variability among electricity SLPs,
a typical load profile for UEU 1, and a specific load profile for a
residential unit within UEU 1 with an annual demand of approxi-
mately 1 MWh, spanning from Friday to Monday. It is noteworthy
that the selected comparison days reflect established findings in SLP
research, showing distinct load profile differences between weekdays
and weekends (Fischer et al., 2015). The highlighted UEU 1 exam-
ple exhibits statistically random demand behavior, as described in
Section 3.4 detailing how resLoadSIM conducts simulations, without
14 
following a discernible pattern. In contrast, the mean of all simulated
UEU 1 load profiles in Oldenburg, represented as the typical UEU 1
profile in red, demonstrates behavior closely aligned with weekdays
but diverges slightly on weekends. This mirrors observed patterns in
electricity SLPs, where differences are more pronounced on weekdays
compared to weekends. These variations are crucial given ongoing
technological advancements in residential building operations. While
residences predominantly used less efficient lighting and refrigerators
two decades ago, modern homes are equipped with significantly more
energy-efficient appliances. Additionally, the diverse range of appli-
ances and consumption patterns today contribute to higher peaks in
the typical UEU 1 load profile. These factors explain the observed lower
minimum points and higher maximum values in the typical UEU 1 load
profile compared to electricity SLPs.
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Fig. 10. Hourly power demand comparison: Electricity Standard Load Profile (Fünfgeld & Tiedermann, 2000) (blue line), Typical Load Profile UEU 1 (red line) and a selected
particular simulated UEU 1 (yellow line) for a household with a demand of 1.015 MWh/year. The typical UEU 1 was multiplied by a defined constructed area and total energy
demand to get the electricity load profile. Detailed profiles are plotted for Friday, Saturday, Sunday, and Monday in March. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 11. Validation of simulated data against the NOVAREF project for the city of Oldenburg achieving a correlation between 0.8 and 0.9 for the different UEUs. One single
ay is depicted. On the right is shown the Correlation matrix of simulated electricity load profiles of typical UEUs against measured data from NOVAREF project for the city of
ldenburg for one year.
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Furthermore, the results obtained were validated against measured
ata from a prior study, the NOVAREF project (Lange & Zobel, 2017),

conducted in the city of Oldenburg across multiple apartments. Fig. 11
illustrates the behavior of simulated data for one selected day, where
the correlation between UEU 1 to UEU 5 and the normalized load
profile from the NOVAREF project was notably high, achieving a value
of 0.9. For the remaining UEUs, the correlation ranged between 0.8 and
0.85. Fig. 11 also presents the correlation values between the NOVAREF
imulation and each one of the UEUs, underscoring the robustness
f the simulated data in replicating observed energy consumption
atterns. The high errors highlighted in Table 7 related to the electrical

consumption indicate that the maximum and minimum curves for the
ormalized UEU-electricity profiles need higher refinement. Neverthe-
ess, the mean curve has a high statistical confidence when compared
o SLPs and other models as shown in Figs. 10 and 11.

4.4. Example of a district energy analysis

In order to illustrate the practical applications of the methodology
described in this study, a random district within the city of Oldenburg
was chosen to analyze its energy demand and extract its heat and
lectricity load profiles respectively. The chosen district is made up of
ight different UEUs, one of class 9, one of class 2 and the others of class
 as shown in Fig. 12. The figure also shows the building stock classified

into the specific heat demand of each building as to have an idea of how
the energy demand is distributed. From the methodology above each
UEU is multiplied by its total constructed area and total energy demand
to get the heat and electricity load profile, the same results can be
obtained by adding up all the individual building’s load profiles but the
computational cost is higher. This does not mean much in a small area
like the one chosen, but when scaled to larger areas, the computational
cost can be significant. The heat and electricity energy demands need
to be analyzed separately to understand better their current status and
have better control over possible transformation plans.

The heat energy demand is calculated for every single building
nder the three different refurbishment scenarios, Fig. 12 only shows
he standard refurbishment state but the profiles show the variation
n demand for all three cases. By analyzing the total demand for each
15 
one of the refurbishment scenarios in the study area, we get three
ifferent values for the total yearly heat demand of 19.93, 9.90 and
.26 GWh∕a respectively. This results in a 101% difference between

the standard and the no refurbishment scenarios, and a 37% difference
etween the standard and the advanced refurbishment scenario. An
bsolute difference of 13.6 GWh∕a with standard deviation of 7.07
Wh∕a. A validation of the same area made with the tool HOTMAPS

of the European Union, which is a free tool to give an estimate of the
heat demand of different regions within the European Union, results in
a total yearly heat demand of 10.76 GWh∕a. This means a difference of
85% with the no refurbishment scenario, 8% with the standard scenario
and 42% with the advanced refurbishment scenario, for a overall mean
difference of 45%. The results and errors presented here seem to be con-
sistent with other methodologies already published (Hotmaps, 2019;
Pezzutto, Croce, et al., 2019; Pezzutto, Zambotti, et al., 2019). The
variable that influences the most the total validation and performance
of the model is the refurbishment state of the building stock even if
the hourly variations of the profiles have a standard variation over
00%. The results for the electricity demand cannot be compared
ith real data because it was not possible to obtain measurements

or the region due to data protection laws. However, the validation
nd statistical correlation was of the previous section are still valid.
he total simulated electricity demand of this district is 2.3 GWh∕a
or calculated 623 households in the district. Nevertheless, to verify
he behavior of the simulated electricity load profile, it was compared
ith the load profile that would be representative of 623 households

or the dataset from Lange and Zobel (2017). The standard deviation
is thus calculated to be 126.6 MWh∕a with an overall mean difference
of 39.6%. This result indicates that the simulated electricity demand
per household is approximately 3795 k Wh∕a. A comparison of this
value with the suggested yearly electricity consumption in Germany
for homes with one to three or more people, which averages 3383
k Wh∕a (Statistische Ämter des Bundes und der Länder, 2023a), reveals
 deviation of 412 k Wh∕a.

The methodology presented in this paper is able to differentiate
between different refurbishment states for the building stock giving a
best-worst case scenario for energy planers, particularly important in
the context of the municipality heating plan in Germany.

https://www.hotmaps.eu/map
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Fig. 12. Example of a randomly chosen district in the city of Oldenburg, displaying UEU-types 2, 3, and 9. Heat demand per building is depicted in kWh/(m2⋅ a). Heat and
electricity load profiles for each UEU are presented under TRY2015 conditions, along with the total heat demand according to the three refurbishment scenarios.
5. Discussion and practical application

The practical value of this methodology is highlighted by the need
or many German municipalities to create heating plans for their com-
unities. Given the constraints of limited personnel and the absence

of standardized procedures at the municipal level, the methodology
presented in this paper offers a way to streamline and automate the
initial phase of developing these heating plans. This phase involves
assessing the current condition of buildings and their energy demands,
making the methodology a valuable tool for expediting this process.
This method demonstrates how leveraging data and analytical methods
in conjunction with standardized engineering processes can create a
model that collects and processes open data for large settlement areas to
provide coherent energy demand results with high-temporal resolution.
The methodology extends previous models by Blanco et al. (2024),
enabling district-level focus while maintaining building-level accuracy.

For the account of total heat demand the most critical parameter
seems to be the refurbishment state of the building stock as it gives
the highest uncertainty, in contrast the parameter of the building age
although it results originates from a 100 × 100 m grid and disaggre-
gated to a building level through an ML model developed in previous
studies, it re-gains the original statistical confidence of the census
data at the UEU-level as the buildings are aggregated back into a
district. This means that although the building age is an important
parameter, its uncertainty and significance are lower with respect to
the refurbishment state. This results in an important advantage of the
model presented in this study as it provides different refurbishment
scenarios at the district level for the users or urban planers to choose
or combine at will. Simulation results of an electrical load profile for
a household, compared with both electrical SLP and NOVAREF, show
similarity with typical UEU load profiles, meeting the flexibility needs
of current and future residential conglomerations. Urban projects may
consider lower minimum loads due to efficient appliances, but peaks
can vary based on heating options such as heat pumps or thermal
district connections, and e-mobility requirements.

The geolocation of UEUs linked with their total electrical and heat
emand aids in selecting suitable technologies and energy sources for
16 
local geographical characteristics. For instance, a residential project
might exploit geothermal energy based on underground rock or water
reservoir characteristics. Proximity to a thermal district pipe supplied
by a heat waste provider or a CHP system may influence heating
technology choice, resulting in lower peak loads. These variables im-
pact the optimal renewable energy systems and highlight the need for
flexible, easily implemented load profiles based on project parameters
and geolocated resources.

This method’s significant advantage over previous models is its
ability to provide different demand scenarios with high-temporal reso-
lution according to the refurbishment state of buildings, typically an
expensive dataset for engineering offices to acquire on-site. By pre-
senting best- and worst-case scenarios, engineering offices can explore
different refurbishment scenarios by adjusting the results with their
own factors. It is important also to highlight the limitations of the
model: although the underlying data has a building level accuracy it
is aggregated at the UEU and District levels, so the presented profiles
should only be used at the corresponding spatial resolution. The model
is limited to the geographical region of Germany as the profiles are
highly related to the energy demand of the German building stock,
although building models, weather and TABULA data are available for
other European countries, validation with other geographical regions
has not been made. Last but not least, the model does not include any
economical decisions on the type of technology that a region should
use to reduce their carbon emissions. It is meant to provide a high
temporal resolution energy demand analysis of the current building
stock upon which technical decisions and other technical processes
can be based. The goal is to determine the heat demand of regions
in order to plan where new supply technologies (e.g., heat pumps,
heat networks) should be implemented. The methodology was put into
practice in different pilot projects with different engineering offices
throughout Germany, yielding detailed, documented decision processes
for their heating plans. Nevertheless, Additional refinement of the
methodology is required, by including more specific non-residential
building analysis, different heat demand norms and regulations, and
expansion to other European databases.
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6. Conclusion

This paper presents a new methodology to generate typical heat and
electricity load profiles for various urban spaces classified in previous
studies. These profiles are hourly-specific and based on the hourly
TRY2015 data from the German weather service. The presented method-
ology can be applied to different weather conditions and refurbishment
scenarios of the building stock.

The significant contribution of GHG emissions from the building
ector, combined with prior research on heat demand calculations
nd Germany’s regulatory framework targeting emissions reduction,
trongly motivated this paper. Due to limited detailed building data,
ack of qualified personnel, resources, and complex data protection
aws, municipalities need new tools to analyze their energy needs in
he building sector. The methodology and results presented in this study
im to help municipalities and city planners with these issues and also
ims to be a helpful tool for the initial phases of municipal heating
lans in Germany.

The methodology described in this paper details a model that auto-
atically collects geographical data for any area within Germany, the
odel then processes the data in order to: first, generate a building

tock database with specific information about each building; second,
ollect regional weather data; third, calculate specific load profiles for
ach building type to create hourly profiles; fourth, classify the building
tock into the TABULA building typology, thereby calculating the total

energy demand of each building under various refurbishment scenarios;
and finally, combine the specific load profiles with the energy demand
of buildings within a specific region. The model and its validations
are limited to the geographical region, weather conditions and current
building stock of Germany. Normalizing the UEU load profiles provides
a faster and more efficient way to calculate the energy load profile
for large building settlements. This methodology was applied to the
city of Oldenburg, showcasing a comprehensive energy analysis for a
randomly selected district at the UEU level.

The authors recognize that neither municipalities nor city planners
will use complex models in their decision-making processes. Therefore,
the future outlook of this study is to develop user-friendly software
and QGIS plugins to facilitate the integration of our findings for city
nd energy planners. At the same time the integration with other tools
or simulation and designing of district heating and cooling networks

results to be a promising solution to increase the share of renewable
nergy within the heating and cooling sector.
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