INVESTIGATION OF TIDAL GROUNDING LINE MIGRATION USING SAR LINE-OF-SIGHT OFFSET TIME SERIES

Sindhu Ramanath¹, Lukas Krieger¹, Dana Floricioiu¹ and Jan Wuite² ¹German Aerospace Center, Oberpfaffenhofen, Germany ²ENVEO IT, Austria 29th International Polar Conference, Rauris 19.09.2024

Motivation

The grounding line (GL) marks the boundary where an outlet glacier starts to float over open water

Significance:

- Accurate GL locations are needed to compute ice mass loss budget
- Knowledge of melt processes at GLs are essential to understanding the evolution of ice sheets [Rignot, 2023]

Challenges:

- GLs are not visible on the surface → difficult to detect!
- Heterogenous and out of phase movement with tides [Freer et al., 2023], [Milillo et al., 2019]

Grounding line detection with Synthetic Aperture Radar: modeling approach

ERS Interferometric SAR phase, Petermann glacier, Greenland

 ν : Poisson's ratio

E: Young's modulus

Grounding line detection with Synthetic Aperture Radar: modeling approach

ERS Interferometric SAR phase, Petermann glacier, Greenland

- Currently no open source SAR data with < 6 days temporal repeat
- Large variation in E (0.1 10 GPa)
- Difficult to constrain the model due to uncertainties in ice thickness and tide elevation

Grounding line detection with Synthetic Aperture Radar: heuristic approach

Differential Interferometric SAR (DInSAR):

- difference of two interferograms to remove horizontal ice motion
- requires 3-4 acquisitions \rightarrow mixed tidal state
- difficult to get coherent interferograms for fast flowing glaciers

SAR LOS (range) offsets:

- are computed by cross-correlating 2 SAR intensity images → not dependent on coherence!
- Less precise than DInSAR

Goal: Create a dense time series of GLs to facilitate the study of tidal migration

Interferograms from Wallis et al., 2024

Datasets and test site

Variable	Dataset	Spatial resolution	Temporal extent
Sentinel-1 LOS offsets	ENVEO IT [Nagler et al., 2015]	200 m	Apr – Sept 2019
Tide elevation	CATS2008_v2023 [Howard et al., 2024]	2000 m	Coincident with LOS offsets
4 x daily surface level pressure	NCEP/NCAR Reanalysis, NOAA [Kalnay et al., 1996]	2.5°	Coincident with LOS offsets
Grounding lines	Antarctic Ice Sheets climate change initiative (AIS_cci) GL [Floricioiu et al., 2019]	-	1994 - 2022

Ramanath Tarekere, 29th Int. Polar Conference, 19.09.2024

Pearson's correlation between LOS offsets and tide elevation

- The average GL was derived from Apr Sept 2019 acquisitions using TMOC as detailed in Wallis et al., 2024
- TMOC GL is on average biased seawards of the AIS_cci GL by 438 ± 502m

LOS offsets along flowline

LOS offsets along flowline

Change point detection with BEAST

Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) [Zhao et al., 2019]

2012 2014

- Detects trends, seasonality and change points
- Provides uncertainties!
- Physical model agnostic

Ramanath Tarekere, 29th Int. Polar Conference, 19.09.2024

Workflow

1. Extract offsets along ice flow direction

3. Geocode min. tidal displacement

Ramanath Tarekere, 29th Int. Polar Conference, 19.09.2024

Tentative results for 101 flowlines

DLR

If the GL moves in phase with the tides: blue points → grounded ice red points → ice shelf

Outlook

- Develop an effective outlier detection algorithm
- Generate spatially continuous grounding lines
- Validate derived GLs with those derived by unwrapping contemporaneous interferograms
- Quantify the tidal migration across the whole ice shelf
- Investigate the cause for the non-linear and out-of-phase migration, accounting for bed topography and slope

References

- Floricioiu, D.; Krieger, L.; Chowdhury, T.A.; Bässler, M. (2021): ESA Antarctic Ice Sheet Climate Change Initiative (Antarctic_Ice_Sheet_cci): Grounding line location for key glaciers, Antarctica, 1994-2020, v2.0. NERC EDS Centre for Environmental Data Analysis, date of citation. https://catalogue.ceda.ac.uk/uuid/7b3bddd5af4945c2ac508a6d25537f0a/
- Freer, B. I. D., Marsh, O. J., Hogg, A. E., Fricker, H. A., & Padman, L. (2023). Modes of Antarctic tidal grounding line migration revealed by Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) laser altimetry. *The Cryosphere*, 17(9), 4079–4101. https://doi.org/10.5194/tc-17-4079-2023
- Holdsworth, G. (1969). Flexure of a Floating Ice Tongue. Journal of Glaciology, 8(54), 385–397. https://doi.org/10.3189/S0022143000026976
- Howard, S. L., Greene, C. A., Padman, L., Erofeeva, S., & Sutterley, T. (2024) "CATS2008_v2023: Circum-Antarctic Tidal Simulation 2008, version 2023" U.S. Antarctic Program (USAP) Data Center. doi: <u>https://doi.org/10.15784/601772</u>.
- Kalnay et al., (1996) The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470
- MacAyeal, D. R., Sergienko, O. V., & Banwell, A. F. (2015). A model of viscoelastic ice-shelf flexure. Journal of Glaciology, 61(228), 635–645. https://doi.org/10.3189/2015JoG14J169
- Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J., & Prats-Iraola, P. (2019). Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Science Advances, 5(1), eaau3433. <u>https://doi.org/10.1126/sciadv.aau3433</u>
- Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., & Potin, P. (2015). The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sensing, 7(7), 9371-9389.
- Rignot, E. (1996). Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. Journal of Glaciology, 42(142), 476–485.
 <u>https://doi.org/10.3189/S0022143000003464</u>
- Rignot, E., Mouginot, J., & Scheuchl, B. (2011). Antarctic grounding line mapping from differential satellite radar interferometry. *Geophysical Research Letters*, 38(10). <u>https://doi.org/10.1029/2011GL047109</u>
- Rignot, E. Observations of grounding zones are the missing key to understand ice melt in Antarctica. Nat. Clim. Chang. 13, 1010–1013 (2023). https://doi.org/10.1038/s41558-023-01819w
- Rosier, S. H. R., Marsh, O. J., Rack, W., Gudmundsson, G. H., Wild, C. T., & Ryan, M. (2017). On the interpretation of ice-shelf flexure measurements. *Journal of Glaciology*, 63(241), 783–791. https://doi.org/10.1017/jog.2017.44
- Wallis, B. J., Hogg, A. E., Zhu, Y., & Hooper, A. (2024). Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method [Preprint]. The Cryosphere. <u>https://doi.org/10.5194/egusphere-2023-2874</u>
- Wild, C. T., Marsh, O. J., & Rack, W. (2017). Viscosity and elasticity: A model intercomparison of ice-shelf bending in an Antarctic grounding zone. Journal of Glaciology, 63(240), 573–580. https://doi.org/10.1017/jog.2017.15
- Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick, B., Zhang, X., & Brown, M. (2019). Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. *Remote Sensing of Environment*, 232, 11181. <u>https://doi.org/10.1016/j.rse.2019.04.034</u>

SAR geometry

Ramanath Tarekere, 29th Int. Polar Conference, 19.09.2024