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ABSTRACT

Imaging spectrometers, also known as hyperspectral sensors, acquire reflectance spectra
from targets on ground in up to hundreds of narrow spectral bands over a wide range
of the electromagnetic spectrum. Having an increased spectral resolution with respect
to other kinds of optical imagery, such as panchromatic and multispectral, hyperspectral
data can discriminate materials more accurately and thus allow new applications in remote
sensing. Nevertheless, the Earth’s surface topography causes the occlusion of incoming
illumination for ground targets, leading to shadow effects in the acquired images. Shadows
can considerably decrease the performance of image analysis algorithms, and have thus drawn
growing attention in the literature. Although shadow issues have been discussed for some
kinds of optical sensors, few works have addressed these effects and their unique challenges in
hyperspectral imagery, demanding novel shadow-aware methods. This dissertation proposes
three robust algorithms, built on one another, for tackling shadow effects in hyperspectral
images.

The dissertation first presents a shadow detection and removal framework based on physical
assumptions and spectral unmixing. The main idea is to model the shadow formation using
a few physically interpretable shadow-related parameters, and apply them in order to detect
and remove shadows. Specifically, a novel physics- and shadow-aware spectral mixing model
is proposed, which considers how material spectra and shadows contribute to the individual
pixel spectrum measured by the sensor.

The described spectral mixing model can tackle only simple scenarios because it assumes
simplified optical interactions and illumination conditions on ground. Thus, the following
work improves the model to handle more complicated and generalized cases. The improved
model regards the entire radiative propagation process, from illumination sources to the
backscattered signals recorded by the sensor, using a discrete-time stochastic process and
physical assumptions.

As the model’s complexity increases, resolving unknown parameters via spectral unmixing
becomes an ill-posed problem. Hence, a novel spectral unmixing approach for a robust
estimation based on the Alternating Direction Method of Multipliers (ADMM) and data
fusion is proposed. The ADMM decomposes a complex optimization problem into sub-
problems, each of which is easier to solve. Digital Surface Models (DSMs) are also employed
in this approach, as they are insensitive to shadow effects. In addition, spatial relationships
between neighboring pixels are considered.

The proposed methods have been extensively evaluated using several simulated and real
datasets in small and large regions. Results demonstrate that the proposed research works are
effective and superior to state-of-the-art methods, both qualitatively and quantitatively.
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ZUSAMMENFASSUNG

Abbildende Spektrometer, auch bekannt als hyperspektrale Sensoren, erfassen Reflexion-
sspektren von der Erdoberfläche in bis zu Hunderten von schmalen Spektralbändern über
einen breiten Bereich des elektromagnetischen Spektrums. Aufgrund der höheren spektralen
Auflösung im Vergleich zu anderen Arten optischer Bilder, wie panchromatischen und multi-
spektralen, können Hyperspektraldaten Materialien genauer unterscheiden und ermöglichen
so neue Anwendungen in der Fernerkundung. Allerdings führt die Topographie der Erdober-
fläche dazu, dass die einfallende Beleuchtung für Bodenziele teilweise verdeckt wird, was
zu Schatteneffekten in den aufgenommenen Bildern führt. Schatten können die Leistung
von Bildanalysealgorithmen erheblich beeinträchtigen und haben daher in der Literatur
zunehmende Beachtung gefunden. Obwohl Schattenprobleme für einige Arten von optischen
Sensoren bearbeitet wurden, haben sich nur wenige Arbeiten mit diesen Effekten und ihren
besonderen Herausforderungen bei hyperspektralen Bildern befasst, die neue Methoden zur
Schattenberücksichtigung erfordern. In dieser Dissertation werden drei robuste, aufeinander
aufbauende Algorithmen zur Bewältigung von Schatteneffekten in hyperspektralen Bildern
vorgeschlagen.

In der Dissertation wird zunächst ein Verfahren zur Schattenerkennung und -entfernung
vorgestellt, das auf physikalischen Annahmen und spektraler Entmischung basiert. Die
Hauptidee besteht darin, die Schattenbildung anhand einiger physikalisch interpretierbarer
schattenbezogener Parameter zu modellieren und diese zur Erkennung und Entfernung von
Schatten anzuwenden. Insbesondere wird ein neuartiges physikalisches und schattenberück-
sichtigendes spektrales Mischungsmodell vorgeschlagen, das berechnet, wie Materialspektren
und Schatten zu dem vom Sensor gemessenen individuellen Pixelspektrum beitragen.

Das beschriebene spektrale Mischungsmodell kann nur einfache Szenarien bewältigen, da es
von vereinfachten optischen Interaktionen und Beleuchtungsbedingungen am Boden ausgeht.
Daher wird in der folgenden Arbeit das Modell verbessert, um kompliziertere und allgemeinere
Fälle zu behandeln. Das verbesserte Modell betrachtet den gesamten Strahlungsausbre-
itungsprozess, von den Beleuchtungsquellen bis zu den vom Sensor aufgezeichneten rück-
gestreuten Signalen, unter Verwendung eines zeitdiskreten stochastischen Prozesses und
physikalischer Annahmen.

Da die Komplexität des Modells zunimmt, wird die Lösung unbekannter Parameter durch
spektrale Entmischung zu einem schlecht gestellten Problem. Daher wird ein neuartiger
spektraler Entmischungsansatz für eine robuste Schätzung auf der Grundlage der Alternating
Direction Method of Multipliers (ADMM) und von Datenfusion vorgeschlagen. Die ADMM
zerlegt ein komplexes Optimierungsproblem in Teilprobleme, von denen jedes einfacher
zu lösen ist. Bei diesem Ansatz werden auch digitale Oberflächenmodelle verwendet, da
sie unempfindlich gegenüber Schatteneffekten sind. Darüber hinaus werden räumliche
Beziehungen zwischen benachbarten Pixeln berücksichtigt.

Die vorgeschlagenen Methoden wurden anhand mehrerer simulierter und realer Datensätze in
kleinen und großen Regionen eingehend bewertet. Die Ergebnisse zeigen, dass die vorgeschla-
genen Forschungsarbeiten sowohl qualitativ als auch quantitativ wirksam und den aktuellen
state-of-the-art Methoden überlegen sind.
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1
Introduction

“The more I live, the more I learn. The
more I learn, the more I realize, the less I
know.”

- Michel Legrand
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2 1. Introduction

1.1 Motivation and Challenges

Over the past century, remote sensing has become an important technique to observe Earth’s
surface from a distance, as it allows monitoring large regions of the ground surface time-
efficiently from airborne and spaceborne sensors. Hyperspectral remote sensing, which has
evolved from hyperspectral imaging or imaging spectroscopy, has attracted increasing atten-
tion for Earth observation [1]. Compared to previous optical systems, such as panchromatic
and multispectral, hyperspectral imaging collects spectral signals using typically hundreds of
spectral bands with narrow spectral bandwidth, e.g., 10 nm, thus acquiring more precise spec-
tral information of a target on ground. This brings opportunities for the use of hyperspectral
imaging in various applications in Earth observation, such as precision agriculture, food
security, mineralogy, water constituents analysis, and precise urban and natural resources
monitoring [2–4].

Fig. 1.1 (a) presents an airborne hyperspectral image as a true color composite in a suburban
area and gives an example of shadow effects. Shadows, formed when an object (partly) blocks
light from an illumination source, is one of the main inevitable phenomena in optical imagery
and can have an undesired impact in image analysis, such as inaccurate classification and
segmentation results [5]. For instance, the state-of-the-art image segmentation framework
Segment Anything Model (SAM) was applied to Fig. 1.1 (a), partitioning the image into
homogeneous regions as shown in Fig. 1.1 (b). This segmentation framework was trained on
11 million images and demonstrates good overall transferability to remote sensing imagery
in segmentation tasks [6]. Nevertheless, several unsuccessfully segmented regions can be
spotted, in particular in shadowed regions, where the same object, if partially shadowed, is
segmented in two regions following the shadow boundaries.

(a) (b)

Figure 1.1: An example of image segmentation in the area of Oberphaffenhofen, Bavaria, Germany:
(a) an airborne hyperspectral image shown as a true color composite acquired by the HySpex sensor
(VNIR-1600); (b) image segmentation result of (a) generated by SAM [7].

One solution to this challenge is deriving shadow-removed images by simulating how affected
pixels would appear if illuminated by direct sunlight, and using these data as input for
image segmentation. Shadow detection and removal for optical images have been addressed
since the 1990s. From then on, numerous methods have been proposed to detect, mitigate,
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and remove shadow effects [8–10]. Previous works have concentrated on shadow issues for
panchromatic and Red, Green, and Blue (RGB) imagery, because their spatial resolutions
are typically very high and shadows can impact image analysis significantly. Thanks to the
rapid development of sensor technology in the past decades, airborne hyperspectral imaging
can also provide high-resolution images, making shadow effects non-negligible. Nevertheless,
shadow effects in hyperspectral imagery have attracted limited attention, and several critical
questions need to be sufficiently addressed in resolving shadow issues.

Question 1: How can we resolve shadow effects by considering the characteristics of hyper-
spectral imagery?

Featuring up to hundreds of narrow spectral bands, hyperspectral imagery offers a fine
description of spectral features. This brings valuable information when tackling shadow
issues but also raises several challenges.

• With the increase of spectral bands, the curse of dimensionality can happen, where
analyzing data in high-dimensional spaces becomes difficult. Moreover, the inter-
class similarity and intra-class variability make it challenging to extract meaningful
information [11, 12].

• A large amount of bands offers a fine description of spectral features. However, this
indicates that more spectral features need to be recovered in shadowed regions.

• Hyperspectral imagery is a type of raster data, where each pixel records signals of an
area whose size is associated with the ground sampling distance. Thus, the signal at
one pixel can be a complex mixture consisting of several ground objects under both
sunlit and shadowed illumination conditions.

• Hyperspectral remote sensing imagery is typically acquired above the Earth’s surface
from a distance of hundreds to thousands of kilometers. In passive optical remote
sensing images, in addition to shadow effects, other factors can affect the path from
the sensor to the Earth’s surface during the image acquisition. In particular, the
atmosphere plays an essential role, as it affects the propagation of electromagnetic
radiation. This brings a coupled and complicated influence on the imaging system.

• Training datasets are necessary when dealing with shadow effects using machine learning,
especially for deep learning frameworks. For hyperspectral imagery, the increased
dimensionality along the spectral direction requires larger amounts of training data.
However, it is challenging and expensive to build training datasets for shadow detection
and removal tasks for hyperspectral remote sensing imagery. Thus, approaches that
require a limited amount of training samples are desired.

Question 2: How can we take advantage of three-dimensional (3D) data when dealing with
shadow effects in hyperspectral imagery?

In addition to two-dimensional (2D) imagery, 3D representation of the Earth’s surface is
an additional data source in spaceborne and airborne image analysis [13]. A representative
type of 3D data is Digital Surface Models (DSMs), which provides a detailed description
of surface topography by capturing the elevation of the Earth’s surface including natural
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and artificial features, with respect to a fixed elevation reference, such as a reference geoid
[13, 14].

Previous works have demonstrated the advantages of applying DSMs together with spectral
information in answering remote sensing questions [15, 16]. In particular, the occlusion
of light causing shadow effects can be explained by DSMs and auxiliary data, such as the
acquisition time and the geo-location of the study area [17].

Question 3: How can we jointly consider spectral and spatial information in resolving shadow
issues in hyperspectral imagery?

Shadow detection and removal are fundamental and challenging tasks in image analysis,
and resolving shadow issues requires an understanding of the image semantics [18]. Spatial
information captures relationships among pixels or regions. Previous works have demonstrated
that jointly considering spatial and spectral information can significantly boost performance
in various remote sensing tasks, such as image classification [19], segmentation [20], and
feature learning [21, 22]. Specifically, different approaches have been proposed for different
tasks. In order to jointly consider spectral and spatial information in resolving shadow
problems, it becomes essential to understand the underlying relations between shadow effects,
spectral, and spatial information.

1.2 Research Scope

In order to answer the above-mentioned research questions, the goal of this dissertation is to
develop advanced and robust algorithms for resolving shadow issues in hyperspectral images,
whose results potentially support widespread image analysis methods in presence of shadow
effects. In detail, the research objectives are:

Objective 1: According to Question 1, shadow detection and removal for hyperspectral
remote sensing imagery face additional challenges, compared to traditional panchromatic
and RGB imagery. Specifically, coupled factors should be considered, namely the curse
of dimensionality, the retrieval of information at the sub-pixel level, atmospheric effects,
and limited training data. Recently, physics-based approaches have attracted attention
for tackling shadow problems through physical assumptions. If one can model the shadow
formation using a few physical-interpretable and shadow-related parameters, detecting and
removing shadow effects via those parameters is promising. Nevertheless, existing methods
lack studies on modeling shadow effects, especially for hyperspectral images. This leads
to the first objective of this dissertation: developing a physics-aware shadow detection and
removal framework exclusively for hyperspectral images.

Objective 2: Understanding shadow formation and modeling shadow effects accurately
are essential in resolving shadow issues. In practice, modeling shadow effects is difficult.
Existing works deal with shadow effects using simplified physical assumptions and can not
represent all typical situations of optical interactions. Hence, the second object of this
dissertation focuses on improving the physics-aware modeling of shadows by considering more
comprehensive scenarios in the presence of shadows and nonlinear optical interactions.
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Objective 3: According to Objective 2, an improved shadow-aware model accounts for
typical ground scenarios. Nevertheless, resolving unknown parameters in the model is an
inverse and ill-posed problem [23]. Incorporating auxiliary information can improve the
performance of the inverse process and improve the robustness of the parameter estimation.
In order to answer questions 2 and 3, the third objective of this dissertation is developing a
spatial-spectral shadow-aware spectral unmixing method that jointly considers spectral, spatial,
and topographical information in dealing with shadow issues.

1.3 Outline of this Dissertation

This is a cumulative dissertation for hyperspectral image analysis focusing on shadow issues.

Chapter 2 introduces fundamental knowledge associated with the objectives of this dis-
sertation. It starts with different categories of remote sensing data, with a focus on the
characteristics of passive optical images. Later, it introduces important physical quantities in
radiometric propagation, which becomes the foundation to present two important radiometric
effects in passive remote sensing images, namely shadows and atmosphere. Afterward, it
continues with the essential technique in hyperspectral image analysis, i.e., spectral unmixing,
and related several classic solvers.

Chapter 3 gives a comprehensive summary and discussion of the state-of-the-art methods. It
analyzes shadow-aware approaches for different types of optical remote-sensing imagery. The
methods are divided into three groups, according to image categories: panchromatic, RGB,
and multi- and hyperspectral. Each group discusses shadow detection and removal methods
separately. Finally, it summarizes the contributions of this dissertation.

Chapter 4 introduces three datasets used in this dissertation, including two datasets acquired
by airborne sensors and one dataset by ground measurement.

Chapter 5 presents a summary of main contributions associated with three peer-reviewed
journal publications, corresponding to three Objectives in Section 1.2. The full papers can
be found in the attached Appendix. Later, an overall discussion is presented to address the
remaining open points.

Chapter 6 concludes this dissertation and unveils potential research directions in the future.





2
Theoretical Background

“A picture is worth a thousand words. Is this true, and if so, why?”

- James B. Campbell and Randolph H. Wynne
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2.1 Remote Sensing Imagery

Remote sensing refers to the acquisition of physical characteristics of an object, area, or
phenomenon from a distance. In the scope of this dissertation, remote sensing refers to
acquiring information about Earth, including its surface and atmosphere, using sensors
mounted on platforms [24]. Typical remote sensing platforms include ground-based (mobile
and tripod), airborne (manned aircraft and unmanned aerial vehicles), and satellite platforms
[25]. In earlier times, aerial photographs were acquired and utilized to produce landscape
measurements with extensive human labor. In 1972, the launch of Landsat-1 marked a
milestone for systematic and repetitive observation of Earth’s surface and introduced an era
of digital image analysis for remote sensing [24]. According to image acquisition techniques
[26], remote sensing can be categorized into active remote sensing and passive remote sensing
(Fig. 2.1). In active remote sensing, sensors emit and receive electromagnetic radiation to
and from observed targets, respectively, such as radar, Synthetic Aperture Radar (SAR),
and Light Detection and Ranging (LiDAR). In passive remote sensing, sensors capture the
radiation that is scattered, transmitted, and emitted from targets, typically originating from
solar illumination.

In images of the Earth’s surface collected by passive sensors, each pixel captures the solar
radiation scattered and emitted from an area associated with the Instantaneous Field of
View (IFOV) of the sensor at one or more regions in the electromagnetic spectrum. Each
region in the spectrum is referred to as a spectral band. Spatial and spectral resolutions
are two fundamental measures of images. Spatial resolution can be defined as the smallest
spatial area on the ground surface measured by a sensor, and its value depends on the
imaging system and the distance between the sensor and the targets. Spatial resolution is
often associated with Ground Sampling Distance (GSD) that measures the distance between
the centers of two neighboring pixels on the ground surface. Spectral resolution defines the
ability to resolve features in the electromagnetic spectrum and can be identified as the width
of a spectral band. The weighted average of wavelengths against spectral response functions
is referred to as the central wavelength [27].

Typical remote sensing sensors are panchromatic, multispectral, and hyperspectral. Fig. 2.2
illustrates a comparison of their spectral characteristics.

2.1.1 Panchromatic

Panchromatic imagery captures back-scattered radiation using one single spectral band,
which covers several regions of the electromagnetic spectrum, namely green, red, and near-
infrared, ranging typically from 450 nm to 900 nm. Panchromatic sensors compensate their
limited spectral information with a higher spatial resolution [24].

2.1.2 Multispectral

Multispectral imagery captures images at more than one spectral band, typically from 3 to
15, and may acquire radiation in the electromagnetic spectrum ranges of ultra-violet, visible,
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(a) Passive remote sensing (b) Active remote sensing

(c) Electromagnetic spectrum

Figure 2.1: Remote sensing image acquisition with the passive form in (a) and the active form in
(b). Typical types of imaging with electromagnetic spectrum from small to large wavelengths in (c).

and infrared. Each spectral band typically spans from tens to thousands of nanometers.
Compared to panchromatic imagery, the higher number of spectral bands in multispectral
imagery results in a decrease in spatial resolution [28].

The increased number of bands provides enhanced spectral information in multispectral
imagery [29]. For instance, Near-infrared (NIR) bands have been used to compute Normalized
Difference Vegetation Index (NDVI), whose results indicate the health condition of vegetation
[30]. Combined usage of Short-wave Infrared (SWIR), NIR, and red band shows the
vegetation density [31]. SWIR, NIR, and the blue band can be used to monitor crop health
[32]. Moreover, Long-wave Infrared (LWIR), also named as Thermal Infrared (TIR), has
been applied to observe object temperatures. In this case the measured radiation is related to
heat emitted from the targets instead of backscattered solar radiation. Typical applications
are smoke monitoring, forest fire mapping, and sea surface temperature estimation [33].

A specific category of multispectral imagery is named RGB [28]. The RGB data consist of
three spectral bands that represent the ranges to which the human eye is sensitive, i.e., red,
green, and blue, whose central wavelengths are typically around 640 nm, 510 nm, and 470 nm.
RGB can thus be easily interpreted by humans and has been widely used in computer vision
and remote sensing.
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(a) Panchromatic imagery

(b) RGB imagery

(c) Multispectral imagery

(d) Hyperspectral imagery

Figure 2.2: An illustration of spectral information at one pixel in (a) panchromatic imagery, (b)
RGB imagery, (c) multispectral imagery, and (d) hyperspectral imagery.
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2.1.3 Hyperspectral

Hyperspectral imagery, also referred to as imaging spectrometer data, captures the radiation
from the Earth’s surface across the electromagnetic spectrum using typically hundreds of
spectral bands [34–36]. The spectral resolution of hyperspectral data can range from 2 nm
to 2000 nm, whose typical values are below 20 nm. Hence, hyperspectral imagery captures
radiation at higher spectral resolution and can collect more spectral features of ground objects
compared to multispectral images. The higher spectral resolution allows for distinguishing
materials using narrow bands, which may not be possible using multispectral data [37].

Hyperspectral sensors have been mounted on different platforms. Representative airborne hy-
perspectral sensors are Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Compact
Airborne Spectrographic Imager (CASI) and Hyperspectral Mapper (HyMap), while repre-
sentative spaceborne hyperspectral sensors are Hyperion, Compact High Resolution Imag-
ing Spectrometer (CHRIS), Moderate Resolution Imaging Spectroradiometer (MODIS),
Deutsches Zentrum für Luft- und Raumfahrt Earth Sensing Imaging Spectrometer (DESIS),
and Environmental Mapping and Analysis Program (EnMAP).

Previous works have demonstrated the advantages of hyperspectral imagery over multispectral
data in different applications [2–4]. In order to provide a broad overview, we list not only
applications in Earth observation but also in other fields.

• Agriculture: Many works have used hyperspectral images for precision agriculture
to estimate Leaf Area Index (LAI) [38], leaf chlorophyll [39], biomass [40], nitrogen
content [40], water content [41], and to identify types and health status of plants
[41–43].

• Urban and Natural Resources Monitoring: A number of works have demonstrated the
superiority of hyperspectral images in the precise classification of urban regions [44],
change detection [45], water resource management [35], assessment and warning of
flood [46], and mining [47].

• Food Security: Food products require high quality and safety, demanding an objective,
fast, and accurate determination system for quality identification in the food industry.
Hyperspectral images present advantages in measuring, inspecting, sorting, and grading
food products efficiently and effectively [48]. With a hyperspectral imaging system,
one can evaluate meat quality and ripening of fruits [49], identify wheat kernel types
[50], and detect defects [36].

• Medical Diagnosis: Hyperspectral imaging has also proven its advantages in medical
image analysis, such as the diagnosis of tumors and classification of different body
tissues, whose spectral characteristics present strong patterns at specific ranges of
wavelengths [51, 52].

• Waste Sorting and Recycling: As hyperspectral imagery is able to distinguish chemical
constituents of materials, it has also been found helpful in sorting wastes [53, 54], such
as cardboards, glass, metal, and plastics.
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2.2 Physical Quantities in Radiometry

Radiometry is formally defined as the science of characterizing or measuring how much
electric magnetic energy is present at, or associated with, some location or direction in
space [55]. Physical terms are used to describe different radiometric concepts. This section
introduces several physical quantities related to remote sensing imaging.

2.2.1 Radiant Energy

Energy is carried by one or more photons in a ray or beam. Given the frequency index i,
frequency νi, number of photons ni, and reduced Planck’s constant ℏ, the total energy Q
can be written as:

Q = 2π
∑

i

niℏνi [J] (2.1)

2.2.2 Radiant Flux

Typically, it is more convenient to consider a ray in terms of the rate of flow of energy,
resulting in radiant flux Φ:

Φ = dQ
dt

[W] (2.2)

2.2.3 Irradiance

Irradiance is defined as the radiance flux delivered to a surface per unit area:

E = dΦin
dA

[W m−2] (2.3)

where dA is an area element on the surface of interest.

2.2.4 Radiant Exitance

Radiant exitance measures the radiant flux per unit area exiting from a surface:

M = dΦout
dA

[W m−2] (2.4)
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2.2.5 Radiant Intensity

The radiant intensity describes the radiant flux for each element of solid angle from a point
source into a specific direction. The element of solid angle dΩ is defined as the conic angle
encompassing the area element dA on the surface of a sphere (Fig. 2.3).

I = dΦ
dΩ [W sr−1] (2.5)

where the element of solid angle dΩ = sin θdθdϕ, and θ and ϕ are orientation angles in the
spherical coordinate system.

Figure 2.3: Geometric representation of the element of solid angle Ω in the spherical coordinate
system. Unlike elsewhere in this dissertation, please note that (x, y, z) in this figure defines the
spherical coordinate system whose polar angle is noted as θ, the azimuthal angle is noted as ϕ, and
the radius is noted as R. dS and dA are area elements on the surfaces of interest.

2.2.6 Radiance

Radiance L describes the flux for each element of solid angle dΩ in a certain direction θ

concerning the plane of interest at the area element dA.

L = d2Φ
d(A cos θ)dΩ [W m−2 sr−1] (2.6)

2.2.7 Optical Properties of Materials

Three processes can occur when the energy is incident on the surface of a material: reflection,
absorption, and transmission. The fractions of energy reflected, absorbed, and transmitted
by the material are defined respectively as reflectance, absorptance, and transmittance,
indicating the property of the material itself.
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The reflectance r is the unitless ratio of the reflected radiant exitance Mr to the incoming
irradiance E .

r = Mr

E
(2.7)

The absorptance describes the ability of a material to convert irradiance to another form
of energy, such as thermal energy. The absorptance α is defined as the ratio of the flux
converted to another form of energy per unit area Mα to the incoming irradiance E .

α = Mα

E
(2.8)

The transmittance is defined as the ratio of the radiant exitance from the back of a material
Mτ , to the incoming irradiance E .

τ = Mτ

E
(2.9)

Following the conservation of energy, all incident flux needs to be reflected, absorbed, or
transmitted, thus:

r + α + τ = 1 (2.10)

2.2.8 Lambertian and Non-Lambertian Surfaces

When a surface reflects energy, its radiant intensity is angularly distributed into the hemi-
sphere above it. In an ideal case, one can assume that the radiant intensity is proportional to
the cosine of the angle between the reflected radiation and the surface normal (the Lambert’s
cosine law [56]). This ideal surface is referred to as the Lambertian surface (Fig. 2.4).
Following the relationship between radiant intensity and radiance (Eqs. (2.5) and (2.6)), the
reflected radiance from a Lambertian surface will be the same in all directions. The isotropic
feature of the Lambertian surface can significantly simplify the computational process and
has become a reasonable approximation in many practical applications [55]. Nevertheless, the
Lambertian assumption does not hold for some surfaces whose reflected radiation strongly
depends on the reflection angle. These surfaces are referred to as non-Lambertian surfaces,
and can be described by the Bidirectional Reflectance Distribution Function (BRDF) [57].

(a) Lambertian surface (b) Non-Lambertian surface

Figure 2.4: Two surface types: (a) Lambertian surface and (b) non-Lambertian surface.
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2.3 The Shadow Effect in Optical Imaging

Shadows appear due to the occlusion in the light path from the illumination source(s) to the
target object(s). The shadow formation consists of indoor and outdoor scenarios. Figure 2.5
illustrates a classic indoor case generated by image simulation via ray tracing. The scene
comprises a point light source and a cube in a Cornell box [58]. Self-cast shadow occurs
on the part of the object, where the object itself occludes the illumination source. Cast
shadow is projected instead on nearby objects and consists of umbra and penumbra [59]:
umbra, alternatively referred to as fully shadowed region, occurs where the illumination is
completely blocked by the object; penumbra, also known as partly shadowed region, occurs
where the illumination is partly blocked by the object. It is worth noting that, the reflected
light of the illumination source, namely the ambient light, can reach cast shadow regions. As
ambient light contains much less energy than direct illumination, shadowed regions scatter
considerably less radiation to the sensor and appear much darker compared to sunlit areas
[60].

Figure 2.5: Indoor shadow formation illustrated in the ray traced image with point light source,
adapted from [61].

.

The outdoor scenario consists of the solar illumination and occluding objects. Similar to
indoor shadows, outdoor shadows can be categorized into self-cast and cast shadows, together
with umbra and penumbra regions. However, outdoor scenes are typically more complicated.
The shadow formation needs to be explained by the imaging chain containing all optical
interactions associated with the sun, atmosphere, ground objects, and the sensor. According
to the properties of occluding objects, the outdoor shadows can be further divided into object
shadows and cloud shadows (see Fig. 2.6).

Following the radiation propagation theory [55], the solar energy paths describe possible
radiation propagation from the illumination source, namely the sun, to the sensor. The
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Figure 2.6: An illustration of outdoor shadow formation in optical remote sensing imagery.

dominant solar energy path is that the photons originate from the sun, pass through the
atmosphere, interact with the ground surface, and are back-scattered to the sensor via the
atmosphere. These photons reaching the ground surface form an important illumination
source named direct solar radiation (direct sunlight). Specifically, direct solar radiation
can not reach those regions completely blocked by occluding objects in the energy path,
resulting in shadows (umbra). The other essential energy path is that the photons originating
from the sun are scattered in all directions by the atmosphere and interact with the ground
surface before being scattered back to the sensor. These scattered photons form the other
important illumination source named diffuse solar radiation (skylight), which is considerably
smaller than the direct solar radiation. It is worth noticing that the diffuse solar radiation
scattered in all directions in the atmosphere can reach the ground surface, with and without
the object’s occlusion, thus becoming the dominant illumination source in shadowed areas.

In another possible energy path, the photons interact with more than one ground surface
via multiple reflections before being scattered back to the sensor. This effect is considerably
smaller than direct radiation but can also become significant in some situations, such as in
the presence of shadows and vegetation [62]. Moreover, photons initiated from the sun can
also interact with the atmosphere and be scattered back to the sensor without reaching the
ground surface, leading to the path radiance [63].

Furthermore, cloud shadow is a typical scenario in outdoor optical imaging, especially in
airborne and spaceborne remote sensing images. Compared to object shadows, clouds may
not completely occlude but can only attenuate direct solar radiation. Thus, a part of
attenuated direct radiation can transmit through clouds and reach the ground surface [64].
In particular, the impact of clouds on solar radiation depends on cloud types, leading to
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complicated effects by cloud shadows. Moreover, it is worth noticing that diffuse radiation
takes part in cloud shadows.

2.4 Atmospheric Correction

Remote sensing images are typically acquired above the ground surface using aircraft and
satellites. The atmosphere introduces one of the largest impacts on radiation propagation
[63, 65]. The atmosphere alters the spectral values of radiation reaching the sensor, leading
to difficulties in interpreting target characteristics on the ground surface. The atmospheric
correction aims to remove atmospheric effects on the reflectance values of images recorded
by satellite and airborne sensors [63].

Typically, the sensor records the scaled radiance, namely digital number DN . The at-sensor
radiance L can be obtained with the radiometric offset c0 and c1:

L = c0 + c1DN (2.11)

In the range of wavelength spectrum between 0.35 µm and 2.5 µm i, the at-sensor radiance
consists of three components (Fig. 2.7):

L = Lp + Lreflect + Ladj (2.12)

where Lp represents path radiance, in which photons from the sun interact with the atmo-
sphere and are scattered into the sensor’s IFOV without interacting with the ground surface.
Lreflect represents the reflected radiance of a single pixel that receives direct and diffuse solar
radiation. Ladj represents the reflected radiation from the neighborhood of the target pixel,
scattered by the atmosphere into the IFOV of the target pixel.

Note that the ground reflectance value as r, and the ground-to-sensor atmospheric transmit-
tance as τ , and the global irradiance on the ground as Eg, the reflected radiance Lreflect can
be computed as:

Lreflect = rEg
π

(2.13)

where Eg = τdirEdir + τdiffEdiff, Edir represents the direct solar irradiance, and Ediff represents
the diffuse solar irradiance. The transmittances of the direct and diffuse solar radiation are
τdir and τdiff, respectively.

Thus, the atmospherically corrected ground reflectance r̂ can be written as:

r̂ =
π

[
(c0 + c1DN) − Lp

]
τdirEdir + τdiffEdiff

(2.14)

iThe atmospheric correction for thermal spectral ranges follows different processes and is out of the scope of
this thesis.
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Figure 2.7: An illustration of solar radiation components in flat terrain. Please note that the
reflection angles do not strictly correspond to reality, but rather a simplification for the sake of
depiction.

2.5 Spectral Unmixing

In hyperspectral imaging, each single sensor detector captures the signal backscattered from
one ground pixel associated with the sensor’s IFOV. After atmospheric correction (see Section
2.4), each pixel corresponds to a surface reflectance spectrum. Because of limits imposed by
spatial resolution, a pixel can contain one or more object(s) or material(s). Thus, spectral
unmixing has become an essential technique to analyze material composition within a pixel
[23, 62]. Specifically, spectral unmixing is the process to decompose a pixel into a collection
of the spectral signatures of pure materials (i.e., endmembers) and their corresponding
contributions (i.e., abundances) [23, 62, 66]. The unmixing process can be unsupervised
and supervised. Unsupervised spectral unmixing aims at solving both the endmembers
identification and abundances estimation. Typical steps include estimating the number of
endmembers, endmember extraction, and abundance estimation. Representative methods for
computing the number of endmembers are Hyperspectral Signal Identification by Minimum
Error (HySime) [67], Harsanyi–Farrand–Chang (HFC) [68], and termed noise-whitened HFC
[69]. Popular methods for endmemebr extraction are Pure Pixel Index (PPI) [70], Vertex
Component Analysis (VCA) [71], and Simplex Growing Algorithm (SGA) [72]. In supervised
unmixing, endmembers, usually collected in a so-called endmember library, are given in
advance, reducing the unmixing process to abundance estimation.

Spectral unmixing is an inverse problem of spectral mixing, which investigates how materials
contribute to the individual pixel spectrum measured by the sensor [73]. Fig. 2.8 illustrates
the spectral mixing and unmixing processes, where a mixed pixel comprises three different
materials with their corresponding fractions. Developing a good mixing model is one of the
uttermost prior conditions for a successful spectral unmixing process.
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Figure 2.8: An example of the spectral mixing and unmixing processes, where a mixed pixel consists
of three pure materials.

Methods based on radiative transfer model the optical interactions from the illumination
sources to the sensor and can build an accurate mixing model [17, 74]. However, this is a
non-trivial problem. Firstly, this model requires a detailed knowledge of ground geometry and
radiometry data that are typically unavailable or expensive. Besides, this inverse problem is
difficult to solve because of the complexity of the radiative transfer model [66, 75]. Thus, in
the past decades some works have derived simplified physics-based mixing models following
various assumptions. Fig. 2.9 illustrates four typical spectral mixing scenarios: pure pixel,
linear mixing, bilinear mixing, and intimate mixing. A pure pixel consists of one material
(i.e., endmember) with 100% abundance. In practice, most scenarios consist of more than
one endmembers at one pixel, resulting in various mixing types: linear, bilinear, and intimate
mixing models. These models are discussed in details in Sections 2.5.1 and 2.5.2.

For the reader’s convenience, we highlight here essential mathematical notations utilized in
the following sections. Please refer to the List of Symbols for a comprehensive description of
notations used in this dissertation. Denote a hyperspectral image with B spectral bands and
N pixels as X ∈ RB×N , with X = [x1, x2, · · · , xN ], where pixel xj = (xj,1, xj,2, · · · xj,B)T ∈
RB×1. The reconstructed image of X after spectral unmixing is noted as X̂, with X̂ =
[x̂1, x̂2, · · · , x̂N ], where pixel x̂j = (x̂j,1, x̂j,2, · · · x̂j,B)T ∈ RB×1. An endmember library
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(a)

(b) (c) (d) (d)

Figure 2.9: Four typical spectral mixing scenarios in outdoor condition: (a) pure pixel, (b) linear
mixing, (c) bilinear mixing, and (d) intimate mixing.

E ∈ RB×p consists of p endmembers, where the i-th endmember is denoted as ei ∈ RB×1.
Denote an abundance matrix associated with E as A ∈ Rp×N , with A = [a1, a2, · · · , aN ],
where aj ∈ Rp×1. O = [o1, o2, · · · , oN ] ∈ RB×N represents the residual matrix of a spectral
mixing model.

2.5.1 Linear Spectral Unmixing

The Linear Mixing Model (LMM) follows the straightforward assumption that the incoming
solar illumination interacts with a pixel only once before being scattered back to the sensor
[76]. The spectral mixture is then given by the sum of the material spectra, weighted by
their spatial proportion within the pixel. This simple model assumes an ideal scene structure,
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with a flat ground surface and spatially separable ground materials [62, 66].

Following the above assumptions, a mixed pixel xj based on LMM is obtained as:

xj =
p∑

i=1
eiaj,i + oj (2.15)

In practice, we can write Eq. (2.15) to model all pixels X ∈ RB×N of an image in the matrix
form in Eq. (2.16).

X = EA + O (2.16)

Following physical interpretations, different constraints have been applied to spectral unmix-
ing.

• Non-negative Constraint
Endmembers are reflectance values of materials that are positive by definition. Besides,
the abundances represent the proportions of endmembers, and no endmembers can
have negative proportions. Thus, the non-negative constraint on endmembers and
abundances, i.e., Abundance Nonnegative Constraint (ANC), is commonly applied.

E > 0, A > 0 (2.17)

• Abundance Sum-to-one Constraint (ASC)
If an endmember library covers all materials in a scene, a pixel j can be completely
decomposed in endmember contributions. In this case, the summation of abundances
at pixel j follows:

1T aj = 1 (2.18)

• Sparsity Constraints
Typically, one pixel contains one or several materials (i.e., endmembers), considerably
less than the total number of materials in the endmember library. This phenomenon
indicates a naturally sparse property of abundances at each pixel. Hence, sparsity
constraints have been applied to spectral unmixing to promote the robustness of
spectral unmixing [77–79]. A common strategy is embedding different types of reg-
ularization terms, such as the L2-norm ∥A∥2,1, L1-norm ∥A∥1,1, and L0-norm ∥A∥0
[79]. Specifically, the L2-norm computes the Euclidean norm, such as in the Ridge
regression; L1-norm computes the sum of the absolute values, such as in Least Absolute
Shrinkage and Selection Operator (LASSO) [80]; L0-norm considers the number of
non-zero elements, but it is non-convex and can be challenging to solve [81].

• Total Variation (TV) Constraint
The TV constraint accounts for the spatial homogeneity of pixels in a local neighbor-
hood. In particular, it is very likely that two neighboring pixels have similar material
composition [82]. TV measures the norm of the finite differences of pixels in a local
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neighborhood N (j) of pixel j:

N∑
j=1

∑
m∈N (j)

∥aj − am∥1,1 (2.19)

where N (j) denotes the set of pixels belonging to the local neighborhood of pixel j.

In practice, one or several constraints can be applied alone or combined to the LMM, resulting
in several representative spectral unmixing methods. For example, the ANC and ASC are
often applied along with the LMM, resulting in Fully Constrained Least Squares (FCLS)
unmixing [23]. Nevertheless, it may be a strong assumption that an endmember library
covers all materials in a scene. Thus, some later work relaxes ASC, allowing some materials
in a pixel not to be present in the endmember library, resulting in Non-negative Least
Squares (NNLS) unmixing [23]. Sparsity constraint has been jointly used together with
the ANC in Sparse Unmixing via Variable Splitting Augmented Lagrangian (SUnSAL) [83].
Later, TV constraint has been added to SUnSAL, leading to SUnSAL-TV [82]. In addition,
the TV constraint has been considered in the FCLS unmixing framework [84].

2.5.2 Nonlinear Spectral Unmixing

The linear mixing model depends on strict physical assumptions that are often not fulfilled
in practice. In many situations, nonlinear optical interactions are non-negligible [62, 66, 85].
Nonlinear mixtures can occur at both microscopic and macroscopic levels and, depending on
the size of the particles under investigation, different categories of models exist [62].

In the macroscopic scenario, nonlinear optical interactions can occur because of height
differences between ground objects [62, 66]. In order to allow incoming light to interact more
than once before being scattered back to the sensor, some nonlinear models use higher-order
terms through the term-wise product of spectra. Fig. 2.9 (d) illustrates a typical scenario
with second-order optical interactions. Specifically, after an incoming light interacts with
a ground material at a pixel, it can either be scattered back to the sensor or interact with
other materials at the pixel. These optical interactions can continue unlimited times, but
most works regard only up to two interactions, resulting in a group of bilinear models in Eq.
(2.20). Note that we omit the pixel index j in Eq. (2.20) for simplification while highlighting
the fact that x, a, m, and o are pixel-dependent as in LMM.

x =
p∑

i=1
eiai +

p∑
i1=1

p∑
i2=1

mi1,i2ei,1 ⊙ ei,2 + o (2.20)

In addition to the linear interaction and the residual terms, the bilinear model contains
additional terms representing the second order of optical interactions.The double scattering
can be modeled through the element-wise multiplication of endmembers ei,1 and ei,2, where
i1 and i2 represent endmember indices. Moreover, the bilinear models include parameters m,
which can be associated with abundances and may differ according to physical assumptions,
leading to various types of bilinear models, such as Nascimento, Fan, Polynomial Post-
nonlinear Model (PPNM), and Generalized Bilinear Model (GBM) in Table 2.1.
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Table 2.1: Constraints on parameters in bilinear models
Model mi1,i2 in Eq. (2.20) Constraints

Nascimento [86]
∀i1 ≥ i2 : mi1,i2 = 0
∀i1 < i2 : mi1,i2 ≥ 0

∑p
i=1 ai + ∑p−1

i1=1
∑p

i2=i1+1 mi1,i2 = 1
∀i : ai ≥ 0

Fan [87]
∀i1 ≥ i2 : mi1,i2 = 0

∀i1 < i2 : mi1,i2 = ai1ai2

∑p
i=1 ai = 1

∀i : ai ≥ 0

PPNM [88] ∀i1, i2 : mi1,i2 = γai1ai2

∑p
i=1 ai = 1

∀i : ai ≥ 0
γ ∈ R

GBM [89]
∀i1 ≥ i2 : mi1,i2 = 0

∀i1 < i2 : mi1,i2 = γi1,i2ai1ai2

∑p
i=1 ai = 1

∀i : ai ≥ 0
γi1,i2 ∈ [0, 1]

• Nascimento
The Nascimento model [86] regards the bilinear terms as new endmembers whose abun-
dances are denoted as mi1,i2 , indicating that mi1,i2 is decorrelated with ai. Assuming
that a pixel can be fully decomposed into endmembers, the Nascimento model follows
the sum-to-one constraint. In addition, it assumes that the incoming light can not
interact with the same endmember twice, leading to zero values when i1 ≥ i2. Thus,
we write the sum-to-one constraint in Eq. (2.21). Besides, the abundances are assumed
to be positive values, resulting in ai ≥ 0 and mi1,i2 ≥ 0.

p∑
i=1

ai +
p−1∑
i1=1

p∑
i2=i1+1

mi1,i2 = 1 (2.21)

• Fan
The Fan model [87] considers the relationship between abundances of linear terms ai

and nonlinear terms mi1,i2 . Specifically, the model assumes that abundances of bilinear
terms mi1,i2 should be proportional to the abundances of endmembers ai. In addition,
it excludes self-interactions, resulting in:

x =
p∑

i=1
eiai +

p−1∑
i1=1

p∑
i2=i1+1

ai1ai2ei1 ⊙ ei2 + o (2.22)

subject to
p∑

i=1
ai = 1, ∀i : ai ≥ 0 (2.23)

• Polynomial Post-nonlinear Model (PPNM)
Similar to the Fan model, PPNM retains the relationship of abundances between
linear and bilinear terms. In addition, it allows self-interactions of endmembers with a
hyperparameter γ. One can also interpret the PPNM as the nonlinear transformation
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of LMM at the second order.

x =
p∑

i=1
eiai + γ

p∑
i1=1

p∑
i2=1

ai1ai2ei1 ⊙ ei2 + o (2.24)

subject to
p∑

i=1
ai = 1, ∀i : ai ≥ 0, γ ∈ R (2.25)

• Generalized Bilinear Model (GBM)
GBM applies additional free parameters to bilinear terms. Compared to the Fan model,
the GBM contains endmember-dependent parameters γi1,i2 to describe the strength of
nonlinear interactions between endmembers ei1 and ei2 .

x =
p∑

i=1
eiai +

p−1∑
i1=1

p∑
i2=i1+1

γi1,i2ai1ai2ei1 ⊙ ei2 + o (2.26)

subject to
p∑

i=1
ai = 1, ∀i : ai ≥ 0, γi1,i2 ∈ [0, 1] (2.27)

At the microscopic level, intimate mixtures occur, in which the optical interactions with
grains or particles are smaller than the path length followed by the photons [62]. Typical
examples of intimate mixtures are sand and mineral mixtures [90]. Several methods aim to
model the intimate mixtures, such as the Hapke model [91], the Kulbelka-Munk model [92],
and the Shkuratov model [93]. The main idea of these models is to describe the measured
reflectances as a function of parameters intrinsic to the mixtures, such as the mass fractions,
the density and size of the individual particles, and the single-scattering albedo [62]. The
Hapke, a representative model for intimate spectral unmixing, can be written in Eq. (2.28).

x(µe, µi, ω, g) = wµi

4π(µi + µe) [(1 + B(g))p(g) + H(µi)H(µe) − 1] (2.28)

where x represents the wavelength-dependent bidirectional reflectance (see Fig. 2.10).
µi = cos(θi) and µe = cos(θe) represent the cosine of the angles of the incoming radiation and
back-scattered radiation, respectively. g is the angle between the incoming and back-scattered
radiations in the scattering plane, p(g) is the normalized phase function of the material
describing the angular scattering dependence, B(g) is a correction factor for the opposition
effect, w is Single Scattering Albedo (SSA) of the mixture, and H is the Chandrasekhar’s
isotropic scattering function [66].

2.5.3 Evaluation Metrics

Several metrics are available to quantitatively evaluate the performance of abundance
estimation.
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Figure 2.10: An illustration of geometries used in the bidirectional reflectance in Eq. (2.28), adapted
from [66]. Unlike elsewhere in this dissertation, please note that (x, y, z) in this figure defines the
spherical coordinate system whose polar angle is noted as θ and the azimuthal angle is noted as ϕ.

• Mean Reconstruction Error (RE)
The mean reconstruction error RE is computed as the mean value of the Euclidean
distance between input pixels x and its reconstructed pixels x̂.

RE = 1
N

N∑
j=1

√√√√ B∑
b=1

(xj,b − x̂j,b)2 (2.29)

• Mean Abundance Error (AE)
The mean abundance error (AE) is computed as the mean value of the Manhattan
distance between the reference abundances and estimated abundances.

AE = 1
Np

N∑
j=1

p∑
i=1

|aj,i − âj,i| (2.30)

• Spectral Reconstruction Error (SRE)
In order to evaluate the spectral characteristics of the reconstruction errors, the spectral
reconstruction error SRE is computed for each spectral band b, averaged over N pixels:

SRE(b) = 1
N

N∑
i=1

|xi,b − x̂i,b| (2.31)

2.5.4 Optimization Methods for Spectral Unmixing

Supervised spectral unmixing is an ill-posed optimization problem. Typically, abundances
are solved by minimizing the pixel reconstruction error, while taking into account constraints.
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Different strategies have been proposed to solve spectral unmixing robustly and accurately.

2.5.4.1 Least Squares

The least squares is a classic approach to derive unknown variables in regression problems
[94, 95]. This approach consists of two categories: linear least squares and nonlinear least
squares, depending on whether the mixing model contains a linear combination of unknown
variables. Specifically, the linear least squares have a closed form, while the nonlinear least
squares are typically solved iteratively.

Given the LMM in Eq. (2.16), its loss function can be written as:

Loss = 1
2∥EA − X∥F

= 1
2(EA − X)T (EA − X)

(2.32)

where ∥ • ∥F denotes the Frobenius norm.

The closed-form solution of A can be derived by minimizing the loss function. If and only if
A is full rank, the partial derivative of the loss function with respect to A can be written
as:

∂Loss
∂A

= AT ET E − ET X (2.33)

The closed-form solution can be computed by setting ∂Loss
∂A = 0, resulting in:

Â = (ET E)−1ET X (2.34)

Different strategies have been applied in order to account for one or more constraints in this
optimization problem. A typically strategy is to iteratively enforce these constraints given
the results from the least squares estimation, until the convergence condition is met.

2.5.4.2 Gradient Descent

The gradient descent solves the optimization problem in more general scenarios [96]. Given
a general spectral mixing model, which can be either be linear or nonlinear, its loss function
can be written as:

Loss = 1
2∥f(E, ξ) − X∥F (2.35)

where ξ are the unknown variables, i.e., abundances and hyperparameters of a spectral
mixing model.

The concept of Gradient Descent Algorithm (GDA) is to search for the optimal unknown
variables by minimizing the loss function in the gradient direction. GDA firstly initializes
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the unknown variables and then solved them interactively using the update formula (2.36)
until a convergence condition is met.

ξ = ξ − β
∂Loss

∂ξ
(2.36)

The parameter β represents the learning rate. The ANC and ASC can be enforced by setting
the bounding range during the optimization process.

2.5.4.3 Sequential Quadratic Programming (SQP)

Sequential Quadratic Programming (SQP) is a group of methods for general constrained
(nonlinear) optimization problems. The key idea of SQP is solving a sequence of quadratic
programming problems. Each quadratic problem consists of a quadratic objective functions
subject to constraints.

The general nonlinear optimization problem can be written as:

min
z

f(z) subject to
{

c(z) = 0
d(z) ≥ 0

(2.37)

where c(z) and d(z) represent the equality and non-equality constraints on unknown variables
z for the objective function f .

The above-mentioned problem can be written in the quadratic form:

min
ρ

fk + ∇fT
k ρ + 1

2ρT ∇2
zzLkρ (2.38)

subject to
{

∇c(zk)T ρ + c(zk) = 0
∇d(zk)T ρ + d(zk) ≥ 0

(2.39)

where Lk = f(z) − λkc(z) − λ
′
kd(z), λ and λ

′ are Lagrange multipliers, k represents for the
index of the interactive process, ρ denotes the search direction at the iteration of k.

Given initial values of x0, λk, and λ
′
k, the optimization problem computes the search

direction dk at the k − th iteration and updates the variables using [xk+1, λk+1, λ
′
k+1]T =

[xk, λk, λ
′
k]T + dk, for k = 0, 1, 2, · · · , until the convergence condition is met.

2.5.4.4 Alternating Direction Method of Multipliers (ADMM)

The alternating direction method of multipliers (ADMM) aims to solve optimization tasks
by separating a complex problem into smaller sub-problems. It is suitable for optimization
problems whose objective function is separable and subject to multiple constraints and
regularization terms. ADMM can be typically converged to solutions with modest accuracy
within a few tens of iterations [97]. This approach has demonstrated its success in various
regression tasks, such as ridge regression, lasso regression, and regression problems with TV
and low-rank constraints [83, 98, 99].
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The basic form solved by the ADMM can be written as:

min
z∈R

f1(z) + f2(Gz) (2.40)

where G, z ∈ R.

A key step in ADMM is the splitting of variables. For the problem in Eq. (2.40), a new
variable y can be created subject to y = Gz:

min
z∈R,y∈R

f1(z) + f2(y), subject to y = Gz (2.41)

Thus, the ADMM form of the original problem in Eq. (2.40) can be written into:

min
z∈R,y∈R

f1(z) + f2(y) + µ

2 ∥Gz − y∥F (2.42)

where µ > 0 represents the penalty parameter for each updates and can be either a constant
value or updated at each iteration [97].

At the first iteration (t = 0), the primal variables x and y are initialized with x(t) and y(t).
In addition, the dual variable u is initialized with u(t). Afterwards, each variable is updated
alternatively by fixing the others. Specifically, the updating formulas at the t-th iteration
can be written as: 

z(t+1) = arg min
z

f1(z) + f2(y(t)) + µ

2 ∥Gz − y(t)∥F

y(t+1) = arg min
y

f1(z(t)) + f2(y) + µ

2 ∥Gz(t) − y∥F

u(t+1) = u(t) + µ(Gz(t+1) − y(t+1))

(2.43)

The updating process continues until some stopping criterion is satisfied. Typical criterion can
be on the primal residual ∥Gz −y∥F < εprimal, on the dual residual µ∥y(t+1) −y(t)∥F < εdual,
and on the number of iterations t.
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3.1 Shadow Detection and Removal in Optical Image Analysis

Tackling shadow effects in optical image analysis has attracted attention since the 1990s.
Previous shadow-aware methods have been proposed to detect, mitigate, and remove shadow
effects. These methods typically correct specific types of shadows, such as cast shadow,
self-cast shadow, and cloud shadow [100]. For a detailed explanation of shadow categories,
please refer to Section 2.3. In this dissertation we discuss exclusively cast shadows.

Shadow-aware methods have been proposed for specific categories of optical imagery. In
particular, the number and wavelength range of spectral bands play an essential factor in
developing shadow-aware solutions. This chapter discusses state-of-the-art shadow-aware
methods for three categories of optical imagery: panchromatic with one spectral band, RGB
with three spectral bands, and multi- and hyperspectral with more than three spectral bands
[59, 101, 102]. Please refer to Section 2.1 for a detailed description of optical imagery. For
shadow detection tasks, one can apply methods proposed for imagery with fewer spectral
bands to those with more spectral bands. In this case, dimensionality reduction is necessary
as a preprocessing step for the imagery with more spectral bands.
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Figure 3.1: The total number of publications regarding shadow-aware methods in the Web of
Science Core Collection database from 1990 to 2022, grouped into three categories of optical images:
panchromatic, RGB, and multi- and hyperspectral.

Fig. 3.1 illustrates the total number of publications relevant to the shadow topic in the
Web of Science Core Collection database from 1990 to 2022, grouped into three categories of
optical images: panchromatic, RGB, multi- and hyperspectral. Given specified conditions,
queries were executed within the searching fields of “title”, “abstract”, and “keywords”. In
the panchromatic group, the searching conditions include “shadow”, “image”, and “panchro-
matic”, and exclude “RGB”, “multispectral”and “hyperspectral”. In the RGB group, the
searching conditions include “shadow”, “image”, “RGB”, but exclude “multispectral” and
“hyperspectral”. In the multi- and hyperspectral group, the searching conditions include
“shadow”, together with at least one of the words among “multispectral” and “hyperspectral”.
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Compared to other optical imagery, many works deal with shadow issues for RGB imagery.
In contrast, limited studies on shadows exist for multi- and hyperspectral imagery.

Previous approaches typically conduct shadow detection and removal in two successive steps.
Shadow detection is frequently used as a preliminary step before shadow removal, thus
shadow removal can highly depend on shadow detection results. Recently, one-step solutions
are becoming popular to solve both tasks simultaneously.

In the next sections, we discuss shadow detection and removal methods for panchromatic
(Section 3.2), RGB (Section 3.3), and multi- and hyperspectral images (Section 3.4). In
each category of optical imagery, we separately explore shadow detection and removal
approaches. One-step solutions for shadow detection and removal have been categorized into
the subsections of shadow removal.

3.2 Panchromatic

3.2.1 Shadow Detection

3.2.1.1 Thresholding

Since shadowed pixels typically obtain considerably lower values than sunlit areas, one
category of simple but popular approaches detects shadows using thresholding. One can
empirically set a threshold by visual interpretation. However, it requires human supervision
and can be subjective in some cases. Therefore, many works have been proposed to identify
threshold values automatically. The bimodal histogram splitting is a typical method to
compute threshold values automatically [101, 103]. For a panchromatic image with shadowed
regions, a valley region can be observed in the histogram, whose left side represents dark
shadow pixels and the right side indicates sunlit pixels. The threshold value is computed by
searching for a point in the valley region whose gradient is close to zero. Later, authors in
[104] proposed a locally adaptive thresholding method, where it determines the threshold
relative to the average intensity in a local window. Results demonstrate that this adaptive
approach improves the robustness and accuracy of shadow detection. Nevertheless, the
bimodal splitting method generates binary shadow masks while ignoring the penumbra areas.
In order to tackle this problem, authors in [105] took the bimodal splitting method as the
first step, followed by morphological operation and image matting technique to generate soft
shadow masks [106, 107]. This operation can remove noisy pixels but also small shadowed
regions. The thresholding method retains many advantages, including computational speed,
explainability, and simplicity. However, selecting suitable thresholds can be challenging,
especially in complicated scenes [108].

3.2.1.2 Machine Learning

Supervised and unsupervised machine learning methods have been proposed for shadow
detection. Authors in [109] conducted unsupervised clustering and considered shadowed
pixels as one cluster with the lowest intensity values. Later, an object-based shadow
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detection algorithm has been proposed in [110] based on image segmentation and thresholding.
Specifically, the image segmentation extracts homogeneous regions, followed by the progressive
merging of neighboring segments according to some criteria. After that, thresholding is
applied to image segments to generate shadow masks. Later, a shadow detection framework
was proposed by combining image segmentation, thresholding, and classification [111]. Firstly,
the framework sets strict conditions to extract underdetected shadowed regions based on
image segmentation and multiple thresholding steps. Afterwards, it uses these underdetected
shadowed regions as training data and produces the final shadow detection result.

3.2.1.3 Topography

This category of methods detects shadows based on auxiliary information, such as ground
surface topography and the sun’s position [112, 113]. These methods do not require optical
imagery as input and thus have been used for shadow detection regardless of categories of
optical images. DSMs is a typical data source that describes the ground surface topography.
Given the sun’s position and DSMs, shadow masks can be derived using geometric calculations
[112, 113]. Nevertheless, these algorithms depend on the availability of DSMs that are
typically expensive to acquire with high precision [114]. In addition, precise geo-coregistration
between DSMs and optical imagery is challenging, affecting the quality of shadow masks.
Previous work in [114] alleviates this problem. Firstly, it generates shadow masks using
ground surface topography as an initial result. After that, it uses preliminary shadow masks
and input images as training datasets and trains a supervised classifier via Support Vector
Machine (SVM) to improve detection results.

3.2.2 Shadow Removal

To the author’s knowledge, a limited amount of works has been proposed to remove shadows
in panchromatic imagery. Existing works assume that pixel intensities are similar in a
local neighborhood. Thus, they model the relationship of intensities between neighboring
shadowed and sunlit regions, using histogram matching and linear regression. Afterwards,
shadowed pixels are corrected by the derived models [110, 111].

3.3 RGB

3.3.1 Shadow Detection

3.3.1.1 Thresholding

Similar to panchromatic images, thresholding has been applied for detection shadows in
RGB images. One common technique is computing the grayscale imagery by averaging
RGB imagery along the spectral dimension [115, 116]. Afterward, the bimodal histogram
splitting method is applied to the grayscale image to compute the optimal threshold. Besides,
additional thresholding steps can be individually applied to red, green, and blue bands to
improve the detection results [116]. Nevertheless, dark pixels in sunlit regions and bright
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Figure 3.2: An example of histograms of averaged reflectances in a study region with a water body.
(a) The study region shown in the true color composite, (b) histograms of the averaged reflectances in
the full region in blue color and in the water region in orange color. Reflectance values are computed
by averaging four spectral bands: red, green, blue, and NIR.

materials in shadowed areas can be incorrectly detected [117]. For example, water bodies
can be often identified as shadows, and bright objects in the shaded areas may be recognized
as sunlit pixels. Fig. 3.2 (a) presents a scene with a large water body area in the true color
composite. Fig. 3.2 (b) compares two histograms from the averaged reflectance image in
Fig. 3.2 (a). The histogram in blue is computed from all pixels, and its left peak represents
shadows and water regions. The histogram in orange is computed from water pixels, and its
peak overlaps with that of shadowed pixels, indicating the challenges of distinguishing water
from shadows. In order to tackle this issue, authors in [116] and [118] applied water masks
by computing spectral indices before shadow detection.

3.3.1.2 Color Transformations

Shadowed pixels comprise strong color characteristics, such as higher saturation at short
blue-violet bands and increased hue values due to atmospheric scattering [119]. Previous
methods have taken advantage of the color characteristics and detected shadows in converted
feature space after color transformations. Representative color spaces can be Hue-Intensity-
Saturation (HIS), Hue-Saturation-Value (HSV), and Hue-Chroma-Value (HCV) [119, 120].
Authors in [119] used the ratio of hue and intensity for shadow detection. Similarly, authors in
[120, 121] detected shadows in new feature space derived by spectral computation. Specifically,
a new index for shadow detection was proposed in [121], namely Normalized Saturation
Value Difference Index (HSVDI) in HSV color space. Pixels with higher HSVDI values than
the predefined threshold are identified as shadows. Later, a joint usage of different indices,
i.e., spectral index in HIS color space and NDVI, yields more accurate results than using one
index only [122]. In particular, NDVI can eliminate the confusion between dark vegetation
and shadowed pixels.
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3.3.1.3 Machine Learning

In unsupervised methods, authors in [102] applied K-means clustering, considering the
shadow as one cluster with the lowest intensity values. The Gaussian mixture model is
utilized in [123] to detect shadowed regions. In supervised methods, classification has been
applied to separate shadowed from sunlit pixels assisted by training samples [124]. The
performance of machine-learning-based methods depends on the selection of training samples
and models.

3.3.1.4 Deep Learning

Recently, deep-learning-based approaches have attracted attention to detect shadows. To the
best of the author’s knowledge, the first work for shadow detection based on deep learning
has been proposed in [125]. Their work automatically learns the most relevant features of the
objects and along object boundaries in a supervised manner using multiple Convolutional
Neural Networks (ConvNets). The learned features are then fed to a conditional random
field model to generate smooth shadow contours [126] . Deep-learning-based approaches
often require large amounts of training data. In practice, acquiring datasets with shadow
annotation at pixel-level precision is challenging and expensive, and inaccurate training data
can lead to imprecise shadow detection. To alleviate this challenge, the work in [127] allows
the usage of quickly but imperfectly labeled images, followed by the automatic correction of
a part of inaccurate annotations for shadow detection. This process significantly eases the
data annotation and can create a larger training dataset with less human labor. In addition,
this work is built upon ConvNets for shadow detection while incorporating image-level
semantic information. To further ease the requirement of the training dataset, authors
in [128] proposed a framework to generate synthetic shadows by integrating the shadow
illumination model, 3D models, and shadow-free images. The training dataset contains an
arbitrary combination of a shadow-free image, a shadow mask, and shadow attenuation
parameters.

Later, the Generative Adversarial Network (GAN)-based frameworks have become popular
in solving shadow problems in RGB images [129, 130]. To the best of the author’s knowledge,
the first GAN-based framework, namely Shadow Conditional Generative Adversarial Network
(SCGAN), was proposed in [129] for shadow detection. Given an input image, the generator
is trained to output shadow masks, and the discriminator has to decide if a shadow mask
comes from the training data or the generator. Moreover, shadow detection is a binary
classification problem with highly unbalanced classes, where shadowed pixels are much less
than sunlit pixels. Hence, the framework embeds an additional sensitivity parameter to
balance the shadow and sunlit samples. Recently, more deep-learning-based frameworks have
been proposed to solve shadow detection and removal in one step. Please refer to Section
3.3.2.
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3.3.2 Shadow Removal

3.3.2.1 Property-Based Methods

As the color and texture are typically assumed to be consistent in a local neighborhood,
existing approaches aim to recover shadowed pixels using their neighboring sunlit areas at
the pixel or object level. One group of methods operates in the gradient domain and derives
illumination invariant images, i.e., intrinsic images, using the log-chromaticity projection
[8, 131]. Later, it detects shadow edges using input and intrinsic images. Shadows are removed
by nullifying the gradients on shadow edges. Authors in [132] recovered the shadowed pixels
using their sunlit neighborhoods in a two-dimensional manner. Nevertheless, it is challenging
to detect shadow boundaries accurately. For example, boundary regions between two objects
can often be inaccurately detected [131]. Besides, the loss of textural information happens
in shadowed areas.

Moreover, color transformation can help shadow removal. Assuming shadows decrease
the intensity values while retaining color information, it is straightforward to separate the
intensity values from chromaticity information and recover the intensity values exclusively.
This partition can be done by converting RGB images to various color spaces, such as HIS,
HSV, and HCV [119].

Furthermore, local or non-local matching methods have been applied for shadow removal.
In [120], shadowed pixels are corrected based on the relationship of paired sunlit and
shadowed regions using three models (gamma model, linear model, and histogram matching).
In later works, shadow and sunlit areas are matched based on texture similarity before
applying correction models [133]. Recently, approaches include other types of external data.
For instance, depth data aid the non-local matching, assuming that pixels with similar
chromaticity, normals, and spatial locations have similar intensities [134]. Nevertheless, it
proves challenging to correlate regions in large and complex scenes automatically. In addition,
it is difficult to apply a single correction model to an entire image indiscriminately, because
the radiometry of the image can vary in the spatial domain [101].

3.3.2.2 Machine Learning

As in shadow detection, one can also translate shadow removal into a classification task. Ear-
lier works select training samples separately from sunlit and shadowed areas, followed by two
classification procedures [112, 135]. Afterward, they correct shadowed pixels, corresponding
to their sunlit ones in the same class. In addition, morphological filters and interpolations
can be applied to generate natural transitions in the penumbra areas [135].

The shadow removal methods based on classification can conveniently match non-local but
similar ground objects in an image and thus may cope with larger and more complicated
scenes. Nevertheless, acquiring training samples can be expensive and time-consuming, and
training data may not be transferable from one scene to the other. Besides, generating the
training set for shadow removal requires interpreting ground objects in shadowed regions,
which may be challenging in deep shadows.
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3.3.2.3 Deep Learning

Deep learning methods that learn information without hand-crafted features have become
popular. Compared to applications where deep learning has demonstrated its advantage
over classic machine learning approaches, such as classification and semantic segmentation,
limited works based on deep learning have been proposed for shadow removal.

Given a large amount of training data, authors in [9] proposed an automatic and end-to-end
deep neural network (DeshadowNet) based on multi-context ConvNets for simultaneous
shadow detection and removal. By jointly training three networks, this framework can
integrate high-level semantic information, mid-level appearance information, and local image
details in the final prediction. Later GAN-based networks learn an image-to-image mapping
function using an encoder-decoder architecture [130, 136]. To the best of the author’s
knowledge, the first end-to-end approach that simultaneously tackles shadow detection and
removal was proposed in [130]. The proposed framework Stacked Conditional Generative
Adversarial Network (STCGAN), consists of two stacked Conditional Generative Adversarial
Networks (CGANs). The first generator produces a shadow mask, used as input for the
second generator to produce shadow-free images. The stacked adversarial components can
preserve the global scene characteristics hierarchically, resulting in a fine-grained and natural
recovery of shadow-free images. Later, authors in [136] proposed an Attentive Recurrent
Generative Adversarial Network (ARGAN) consisting of a generator and discriminator.
The generator consists of the shadow-aware encoder and decoder. By incorporating an
attention mechanism, the network chooses what it wants to observe and locate shadows of
the input image. In addition, the encoder and decoder generate shadow attention maps
and shadow-reduced maps, respectively. The discriminator classifies the output shadow-free
image as real or fake.

Nevertheless, deep learning-based shadow removal requires a large training dataset to learn
the relationship between shadow and sunlit regions [137–140]. Firstly, the training set must
contain pairs of images with and without shadows that meet strict requirements, such as
identical locations, camera conditions, and near-simultaneous acquisition times. Due to the
changing environment light and camera exposure, a training pair may have inconsistent colors
and luminosity [141]. Thus, one challenge is learning a physically plausible transformation,
regardless of the semantic or illumination inconsistency [142]. Besides, ground-truth binary
shadow masks need to be manually labeled. In order to meet the strict requirements, existing
works investigate scenes taken from ground-based platforms. Pairs of shadow and shadow-free
images have been acquired by setting and removing artificial objects. Consequently, applying
this group of methods to airborne and spaceborne remote sensing imagery is challenging.

In order to relieve the requirement of training data, recently, authors in [142] proposed a
self-supervised shadow removal method based on Cycle GAN [143], which learns image-
to-image translations between two image domains from both paired and unpaired images.
Unpaired images indicate a set of shadow and shadow-free images that are not associated
with each other. Specifically, Cycle GAN contains two pairs of GANs with cycle consistency
constraints: one aims to translate the shadow image to the shadow-free image, and the other
takes the shadow-free image and translates it back to the shadow image.
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3.4 Multispectral and Hyperspectral

3.4.1 Shadow Detection

3.4.1.1 Thresholding

More spectral information in multi- and hyperspectral imagery improves the performance of
the thresholding methods in shadow detection. Specifically, NIR bands have been chosen
over RGB, as they contain lower reflectance values at shadowed pixels but higher values
at dark objects, thus improving separability between dark objects and shadowed regions
[59, 117]. Moreover, some works jointly consider multiple spectral bands to distinguish
shadows from water body. For example, previous works use NIR and green bands, because
water has lower reflectance at NIR but higher reflectance in the green band [59, 144]. In
addition, reflectances at the wavelengths of 0.85 µm and 1.6 µm have been proven helpful
to separate water from shadows. Besides, five different indices are derived through band
computation for shadow detection [116]. Nevertheless, it is challenging to apply thresholding
methods to remote sensing images that typically contain complicated ground scenarios. In
particular, the histogram of input images can be multi-modal; thus, the bimodal splitting
can not be applied.

3.4.1.2 Machine Learning

In the unsupervised scenario, one can convert the hyperspectral data from a Cartesian space
to a hypespherical coordinate system, where one pixel consists of a magnitude value and
spectral angle vector [102]. Then, the K-means clustering is applied to the magnitude values
[145]. The cluster with the lowest average values is determined as shadows. Furthermore,
previous works conduct shadow detection using supervised classification. Authors in [135]
proposed a binary classification framework followed by post-processing. Multispectral imagery
and their extracted features through wavelet transform are used as input of the SVM classifier
[146]. After that, morphological operators are applied for noise reduction and the generation
of penumbra regions, creating a natural transition on shadow boundaries. Inspired by [135],
an object-based supervised classification framework was proposed in [147]. The multispectral
imagery is segmented into appropriate sizes before supervised classification, taking advantage
of spectral and contextual information.

3.4.1.3 Physics-Based Methods

This group of methods considers the formation of shadows based on physical assumptions.
Typically, one assumes that shadowed regions do not receive solar illuminations due to the
occlusion of ground objects. Thus, the observed reflectance of shadowed pixels is assumed
to be zero or a very small value. Earlier works apply a matched filter to detect pixels with
(nearly) zero reflectances [148]. Later, a group of methods detects shadows using spectral
unmixing [148–150]. In brief, spectral unmixing assumes that each pixel is composed of
a mixture of pure material spectra, i.e., endmembers, associated with their corresponding
proportions, i.e., abundances. Given a pixel and endmembers, spectral unmixing estimates
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the abundances. Please refer to Section 2.5 for a detailed explanation of spectral unmixing. In
order to handle shadow effects, one strategy is adding a virtual endmember whose reflectance
values are constantly zeros to represent the shadow spectrum [149]. The abundance of
the virtual endmember corresponds to the shadow fraction in that pixel. As an equivalent
process, authors in [151] introduced a shadow-related parameter, associated with pixelwise
fractional values of cast shadows, into spectral mixing models.

Authors in [150] detected shadows by estimating the order of multiple optical reflections.
Specifically, they assume that incoming light undergoes an infinite number of optical in-
teractions with objects in shadowed pixels and thus will not reflect light to the sensor. A
multilinear spectral mixing model was proposed, where a parameter P indicates the order of
multiple reflections for each pixel. A larger P value implies that a pixel is more likely to be
shaded.

Following the radiative transfer theory, direct and diffuse solar radiations are the main
illumination sources for outdoor scenes, where direct radiation is significantly larger than
diffuse radiation [55]. Fully sunlit pixels receive both of them, while fully shadowed pixels,
i.e., umbra of shadowed areas, receive solely diffuse radiation due to the occlusion by ground
objects. Partly sunlit or shadowed pixels, i.e., penumbra of shadowed areas, receive a part of
direct and diffuse solar radiations. Please refer to Section 2.3 for more details about shadow
formation. Previous works detect shadows by computing the proportion of diffuse radiation
with respect to total radiation in a pixel [152]. In other words, diffuse radiation accounts for
100 % of the total radiation for a fully shadowed pixel, while it consists of a considerably
lower percentage for a fully sunlit pixel.

3.4.2 Shadow Removal

3.4.2.1 Property-Based Methods

This group of methods aims to match shadowed pixels with corresponding sunlit pixels
using spectral similarity measures, among which Spectral Angle Distance (SAD) has been
commonly used due to its shadow insensitivity [153]. Authors in [154] extracted endmembers
separately in sunlit and shadowed regions using VCA, followed by abundance estimation
in the two regions through NNLS. Then, the pairwise similarity of endmembers extracted
from the two regions is computed using SAD. Finally, each shadowed pixel is reconstructed
using abundances and their paired endmembers in sunlit regions. The shadow restoration
result naturally embeds material composites at the sub-pixel level and thus allows for
multiple ground objects in one pixel. Similar work in [147] matches endmembers extracted
in shadowed regions with their corresponding endmembers extracted in sunlit areas using a
different similarity measure. For the same material, the construction of the spectral scatter
plot in shadowed and sunlit regions shares the same shape in a two-dimensional spectral
space but differs in size. Later, authors in [155] introduced a similar framework as in [147]
using spectral unmixing techniques. Additionally, they investigated the impacts of various
nonlinear unmixing approaches. The investigation indicates that the choice of spectral mixing
models is an important factor for the performance of shadow removal. Moreover, shadow
removal based on spectral matching can be combined with classification. The work in [156]



3. State-of-the-Art 39

firstly classifies sunlit regions using SVM and computes the spectral center for each class
[146]. Later, it removes shadows by matching shadowed pixels with one of those spectral
centers. Nevertheless, these methods assume shadow effects to be wavelength-independent.
In practice, shadow effects not only alter the spectra magnitude but also apply a wavelength-
dependent impact on spectra [55, 103]. This spectral distortion caused by shadows can lead
to unsuccessful spectral matching, especially in complicated scenes. In addition, spectral
matching can also confuse different materials with similar spectra. Besides, this group of
methods requires accurate shadow masks as prior knowledge.

3.4.2.2 Machine Learning & Deep Learning

Authors in [157] estimated shadow effects and then generated a series of multi-exposure
images based on the intrinsic decomposition model. After that, they designed a two-stage
image fusion process to generate shadow-removed images. In the first stage, the obtained
over-exposure images are utilized to recover spectral information in shadowed regions. In the
second stage, an interpolation step is employed to generate a natural transition at shadow
boundaries.

Furthermore, existing works train models to learn the feature relationships between sunlit
and shadowed areas. Authors in [158] generated shadow-invariant classification maps based
on Recurrent Neural Network (RNN). This network is trained on a shadow-aware semantic
annotation database. Specifically, 103 image patches with six land-cover classes are labeled
in sunlit and shadowed regions. Nevertheless, acquiring a large amount of training data for
remote-sensing images is challenging. Recently, a shadow removal framework based on Cycle
GAN has been proposed to alleviate the scarcity of training data [143, 159]. Specifically,
Cycle GAN can learn from both paired and unpaired images for shadow removal. The
framework contains two generators and two discriminators. One set of generators and
discriminators maps shadowed pixels to sunlit pixels, while the other set maps sunlit pixels
to shadowed pixels. Original sunlit pixels are preserved in restored images without prior
information via a consistent loss.

3.4.2.3 Physics-Based Spectral Unmixing Methods

Physics-based spectral unmixing methods have demonstrated their advantages in shadow
removal. Compared to machine learning-based approaches, unmixing-based methods often
require no or limited prior knowledge of shadows. In addition, spectral unmixing can analyze
images at the sub-pixel level, making it particularly effective in handling bordering pixels
where material mixtures and partial shadows often occur. This section starts with general
spectral unmixing methods, followed by those specifically proposed for shadow removal.

Classic linear and nonlinear spectral unmixing methods, including LMM [76], Nascimento
[86], Fan [87], PPNM [88], GBM [89], and Hapke [91], have been discussed in the previous
chapter. Interested readers are referred to Section 2.5. Apart from linear and bilinear models,
some works have attempted to consider all orders of interactions using harmonic functions
[160] and polynomial functions [161]. Recently, a Multilinear Mixing (MLM) model [150]
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based on the stochastic process and physical assumptions has been proposed. This model
traces the path of a single light ray and extends the optical interactions to the infinite
order.

Several spectral mixing models account for shadow effects. The main idea is that if the
shadow formation can be modeled with certain parameters, shadow effects can be corrected
by corresponding parameters during pixel reconstruction. Some works conduct spectral
unmixing by including an additional “shade” endmember, whose reflectance values at all
wavelengths are zeros [149, 162, 163]. Their unmixing results at each pixel contain the
abundances of regular endmembers and the abundance of the shade endmember. Then,
shadows are removed through pixel reconstruction, by re-scaling the regular abundances
with the abundance of the shade endmember. This method of shadow removal has been
also applied in [163] as a preprocessing step for the classification of tree species. In practice,
the shadowed regions receive scattered solar illumination, resulting in low but not zero
reflectance. Hence, authors in [162] conducted the endmember extraction and selected the
endmember with the lowest average spectra as the shade endmember [162]. Furthermore,
the shade endmember strategy is equivalent to modeling a shadowed pixel by scaling its
measured spectrum exposed to sunlight using a shadow-related parameter, such as in the
Shadow Multilinear Mixing (SMLM) model [151]. The shadow-removed pixel reconstruction
is conducted using the spectral mixing model by setting the shadow-related parameter to
zero [151].

Recent works argue that shadows can introduce wavelength-dependent distortions. The
spectral distortion requires a more precise spectral mixing model to accurately compute the
ground pixels in the presence of shadow effects. In an early work, shadows have been treated
as a nonlinear effect in a specific scenario, where trees block the direct solar illumination on a
region covered by grass [86]. This work models the shadowed spectrum using the element-wise
product of the tree and grass spectra. The shadowed spectrum is used as an additional
endmember in the unmixing process. Later, a group of methods includes wavelength-
dependent spectral distortion in shadowed regions, allowing illumination conditions to vary
over a scene. Authors in [164] developed a spectral unmixing method using images with
radiance values and DSMs. This work models the optical imaging chain considering direct
and diffuse solar radiations, shadow effects, atmospheric impact, and topography [55]. After
solving unknown variables in the model using optimization techniques, they remove shadows
by correcting shadow-related parameters during pixel reconstruction. Shadow-compensated
Bilinear Mixing Model (SCBMM) was proposed in [165] that solves the abundances and
diffuse solar radiation simultaneously based on Global Particle Swarm Optimization (GPSO)
[166, 167]. Nevertheless, as the complexity of spectral mixing models increases to tackle
shadow effects, spectral unmixing as an inverse process can become an ill-posed problem,
which can not be easily solved accurately and robustly. For example, results can become
noisy, and confusion between similar materials may appear in shadow-removed images.
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3.4.2.4 Incorporating Auxiliary Information in Spectral Unmixing

Incorporating auxiliary information has shown notable potential to improve the performance
of spectral unmixing for shadow removal [168, 169]. Specifically, ground topography is closely
related to shadow formation and provides essential information when modeling radiations
from illumination sources to the ground surface. Among different categories of topographic
data, DSMs captures the height of natural and artificial objects on the ground surface and
thus has been widely used in spectral unmixing. DSMs can be acquired using different
techniques. One approach is using multi-view stereo images acquired by spaceborne sensors,
such as WorldView-2, and airborne sensors, such as in [170]. The other most common
approach is using airborne LiDAR sensors [171]. Generating DSMs from stereo images is less
expensive and can cover larger areas. However, it can suffer from errors in dense matching
and noises due to complicated geometric structures, occlusions, and shadows [172, 173]. On
the other hand, LiDAR data are insensitive to weather and illumination conditions but are
more expensive and challenging to acquire in large regions [172, 173].

Authors in [16] proposed a physics-based spectral mixing method to model at-sensor radiance.
Specifically, the model uses the directions of incident sunlight and ground topography to
compute global solar irradiance and shadow situations in the study regions. In addition,
it considers distances, elevations, and relative angles of different ground objects to model
local environment illumination. Recently, some works embed topographic information in
a simplified manner for shadow removal. Authors in [174] derived a shadow-insensitive
representation using hyperspectral imagery and DSMs. In particular, DSMs aid in modeling
ground surface illumination. For example, this work computes direct solar radiation using
the angle between the direct solar beam and the surface normal. In addition, it computes
the diffuse solar radiation using the sky view factor that indicates the percent of visible sky
hemisphere at a specific location. Despite not learning shadow-free radiance or reflectance,
this shadow-insensitive representation considerably improves segmentation results.

Furthermore, some works incorporate spatial information with spectral unmixing, improving
the accuracy and robustness of unmixing performance. Spatial-spectral unmixing approaches
regard the spatial dependence in local and non-local neighborhoods: in local neighborhoods,
pixels are assumed to be strongly correlated to their neighbors [169, 175], while in non-local
neighborhoods, similar patches in a larger region are assumed to share similar texture
[176, 177].

Earlier works [178] conduct spectral unmixing by iteratively selecting and removing endmem-
bers. The optimization criteria are the minimization of the Root Mean Square (RMS) and
spatial structure of the RMS image, improving the local homogeneity of abundance maps.
Later, a hierarchical Bayesian model incorporates spatial dependencies in local neighborhoods
using Markov random fields for spectral unmixing [179]. The input image is assumed to be
partitioned into classes where the statistical properties of the abundances are homogeneous.
The unmixing problem is then solved by Markov Chain Monte Carlo (MCMC) [180]. Recently,
convolutional operations have been implemented to account for spatial-contextual information
in spectral unmixing [78, 181]. This approach sequentially decomposes the hyperspectral
image from local attention to global aggregation and preserves the approximately continuous
spectral and spatial proprieties.
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Moreover, a group of methods applies various spatial regularizations to spectral mixing
models. A linear spectral unmixing approach has been proposed in [182] by embedding
spatial autocorrelation of abundances in local neighborhoods. A spatial-spectral coherence
is implemented in spatial regularization terms [183]. Later, the spatial regularizers in local
neighborhoods has been demonstrated via the L2-norm [184] and TV [82]. TV regularization
has attracted attention, as it promotes piecewise smooth abundance maps and better
preserves edges [82, 84]. In particular, the SUnSAL-TV incorporates the TV and sparse
regularizations into the LMM method. This optimization problem is challenging, as it
contains nonsmooth terms and high dimensional data. Hence, SUnSAL-TV introduces new
variables per regularizer and convertes the initial problem into a sequence of much simpler
problems using the ADMM method [82, 97]. This work conducts a detailed experiment on
simulated and real datasets at different noise levels, indicating the superiority of TV in
estimating noise-robust abundances.

Despite that TV-based regularization better preserves edges in abundance maps, it may
also introduce shrinkage effects, particularly on the boundary pixels across similar yet
different materials. Some studies consider edge properties as weighting factors for spatial
regularization in spectral unmixing [84, 185, 186]. The weights describe feature similarities
between a target pixel and its neighboring pixel. Given a target pixel, its neighboring
pixels with higher feature similarities will acquire larger weights, thus impacting the target
pixel more. Common similarity measures include spectral distance, principal components,
and abundance distance [185, 186]. In addition, combined weights derived by two or more
similarity measures may further improve the unmixing performance. Authors in [185] compute
two weights associated with spectral and spatial similarities, respectively. These similarity
measures assist in segmenting the homogeneous and transition areas. The segmented image
promotes endmember extraction, assuming that pure pixels are more likely to appear in
the spatially homogeneous areas and less likely to be found in transition areas [187]. In
addition to endmember extraction, segmented results promote pixels in a homogeneous
region to have similar abundances based on a weighted nonnegative matrix factorization
algorithm. Furthermore, similarity measures of elevations have been derived from DSM data
in [84]. Compared to spectral information, elevation data can significantly improve abundance
estimation thanks to its illumination-insensitive property [84]. Generally, the more accurately
the weights describe the ground features, the better the abundance estimation performance.
On the other hand, inaccurate weights may also decrease performance. For instance, height
and spectral similarity measures can be inaccurate in the presence of shadows.

3.5 Contribution of this Dissertation

The objective of this dissertation, as mentioned in Chapter 1, is to develop advanced and
robust algorithms for resolving shadow issues in hyperspectral imagery.

This chapter has provided a comprehensive literature review for shadow detection and
removal in panchromatic, RGB, and multi- and hyperspectral imagery. Shadow-aware
solutions have been mostly proposed for RGB data, and these methods, especially for
shadow removal, can not be applied to hyperspectral images. Recently, shadow-aware
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solutions specifically aiming at hyperspectral images have been proposed. However, notable
research gaps remain to achieve better results. Firstly, most methods detect and remove
shadows in two successive steps, and thus, the results of shadow detection directly impact
the performance of shadow removal. This challenge demands a one-step solution to solve
detection and removal simultaneously. Secondly, supervised learning-based methods typically
require large training datasets. However, this dataset is expensive and difficult to acquire for
shadow detection and removal tasks, especially for airborne and spaceborne images. Hence,
a method requiring no or limited training samples is essential.

Recently, spectral unmixing-based approaches have demonstrated their advantages in partly
solving the above-mentioned problems. Unfortunately, several research gaps still exist
and demand further investigation. Firstly, some previous methods have yet to consider
the physical characteristics of shadows, which can lead to inaccurate results. Some other
methods suggest comprehensive physics-based models to regard shadow effects, making their
models difficult to solve. Consequently, a physics-based model leveraging simplicity and
accuracy is desired. Secondly, some methods have incorporated auxiliary data into spectral
unmixing. However, none of them focused on shadow problems. Hence, further studies are
required to connect shadow effects with data fusion in spectral unmixing.

This dissertation aims to solve the mentioned research gaps. Three solutions have been
proposed in three peer-reviewed articles by the author. These works are presented in detail
in Chapter 5 and are summarized as:

• Contribution 1: To address the Objective 1 in Chapter 1, a one-step approach
for shadow detection and restoration is presented in Section 5.1. This framework
simultaneously models the material mixtures and shadow effects at the sub-pixel level
based on physical assumptions and spectral unmixing. Results contain shadow-removed
images and soft shadow detection masks that follow the natural transition on the
shadow boundaries. In addition, this framework generates material abundance maps
as a valuable by-product, indicating shadow-insensitive material compositions.

• Contribution 2: Modeling optical interactions and shadow effects is typically compli-
cated in outdoor scenes. Linking with the Objective 2 in Chapter 1, Section 5.2, built
upon the first contribution, proposes an improved physics-based spectral mixing model
that accounts for more general ground scenarios in the presence of shadow, nonlinear
optical interactions, and ground mixtures. The improved model yields more physically
interpretable parameters with higher accuracy, and better shadow-removed images.

• Contribution 3: As a typically inverse and ill-posed problem, spectral unmixing
methods often suffer from inaccurate parameter estimation. To address the Objective
3 in Chapter 1, Section 5.3 proposes a novel shadow-aware spectral unmixing method
by incorporating DSMs and spatial information.

Finally, a general discussion is given to further investigate shadow effects using a field study
and to demonstrate state-of-the-art approaches in larger regions.
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but you cannot have information without
data.”
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4.1 HySpex/3K Dataset

This dataset was acquired by two imaging spectrometers, i.e., the HySpex cameras, and an
3K camera system, which were mounted simultaneously on the Deutsches Zentrum für Luft-
und Raumfahrt (DLR) research aircraft D-CFFU, a Dornier 228-212 modified for Earth
observation research [188]. HySpex and 3K cameras collect hyperspectral and RGB imagery,
respectively. The data were acquired at the same time over Oberpfaffenhofen, Bavaria,
Germany, between 8:40 and 9:50 a.m. on June 4th, 2018, according to Central European
Summer Time (CEST) (see Fig. 4.1 (a)). A total of 12 flight lines were recorded at two
different altitudes, namely 1 km and 1.9 km above ground level [188].
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Figure 4.1: An example of the HySpex/3K dataset: (a) study location near the city of Munich; (b)
hyperspectral image in the true color composite; (c) DSM geometrically co-registered with the image
in (b).
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4.1.1 Hyperspectral Imagery

The HySpex system consists of two pushbroom imaging spectrometers manufactured by
the Norwegian company Norsk Elektro Optikk [189]. Table 4.1 presents selected technical
specifications. A visible and NIR camera, i.e., VNIR-1600, covers the wavelength range of
416 nm and 992 nm with a total of 160 spectral bands. A SWIR camera, i.e., SWIR-320m-e,
covers the wavelength range of 968 nm and 2498 nm with a total of 256 spectral bands.
The spatial resolution depends on flight altitude and is thus configurable between 0.3 m
and 3 m. For example, at the flight altitude of 1 km above ground level, the VNIR-1600
produces a spatial resolution between 0.5 m and 1 m along track and between 0.3 m and
0.5 m across-track. The SWIR-320m-e has a spatial resolution between 1.1 m and 1.7 m at
1 km above ground level.

Table 4.1: Selected technical specifications of two HySpex sensors
VNIR-600 SWIR-320m-e

Imaging Pushbroom Pushbroom
Detector Si CCD Array MCT Array

Number of spectral bands 160 256
Spectral range [nm] 416 - 992 968 - 2498

Spectral sampling distance [nm] 3.6 6
IFOV across- /along- track [mrad] 0.18 / 0.36* 0.75 / 0.75*

Mass [kg] 4.6 7.5
Dimensions [mm] 335 × 84 × 138 390 × 140 × 152
Digitization [bit] 12 14

* can be doubled with field expander.
Further characteristics of the sensors can be found on the producer’s webpage (Norsk
Elektro Optikk).

The hyperspectral images have been preprocessed using the software Catena, developed at
DLR [190]. Processing steps include systematic correction [191], co-registration of Visible
and Near-infrared (VNIR) and SWIR data via Binary Robust Invariant Scalable Keypoints
(BRISK) matching [192], orthorectification [193] , and atmospheric correction using the
software Atmospheric and Topographic Correction (ATCOR) [63]. Interested readers are
referred to [188, 190, 194] for a detailed description of the flight campaign, DLR HySpex
system, and preprocessing.

The hyperspectral imagery used in this dissertation was acquired by the visible and NIR
camera, i.e., VNIR-1600 at the flight altitude of 1.6 km above ground and with a spatial
resolution of 0.7 m, and have been processed to surface reflectance. After removing the water
vapor bands, a total of 101 spectral bands were kept for further processing. Fig. 4.1 (b)
shows a subset of hyperspectral data in the true color composite.

4.1.2 RGB Imagery and DSMs

RGB images were acquired by the DLR 3K system, which consists of three 35 mm Canon
EOS cameras [188]. At flight altitude of 1 km above ground level, the ground sampling
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distance of the 3K camera is around 13 cm. The camera was positioned to look sideways, i.e.,
left and right, and nadir. Interested readers are referred to [195] for a detailed description of
the 3K camera system.

Multi-view stereo images acquired with the 3K camera system were employed to generate
DSMs [170], whose values represent surface elevation above the ellipsoid. In addition, elevation
values were normalized between 0 and 1. The DSMs have been geometrically co-registered
and re-sampled so that DSMs and hyperspectral images share the same geo-coordinates and
ground sampling distance (i.e., 0.7 m).

4.2 Extended DLR HyperSpectral Unmixing (HySU) Dataset

4.2.1 DLR HySU

The DLR HySU, as a benchmark dataset for spectral unmixing, contains a hyperspectral
image, endmember library, and ground truth of abundances [188]. The hyperspectral image
is a subset of the hyperspectral data acquired by the VNIR-1600 spectrometer in Section 4.1.
Please refer to Section 4.1 for the detailed description of sensor characteristics, acquisition
conditions, and preprocessing steps. Specifically, the hyperspectral image in the DLR HySU
dataset features a ground sampling distance of 0.7 m. Besides, it comprises 135 spectral
bands ranging from 417 nm to 903 nm, while spectral bands beyond 903 nm were discarded
due to low Signal-to-noise Ratio (SNR). Fig. 4.2 (a) presents an overview of the study region
in the true color composite.

The study area on the ground surface contains artificial and square targets with different
sizes in the range of 0.25 m and 3 m. Each size contains five targets: bitumen, red-painted
metal sheets, blue fabric, red fabric, green fabric, and a background material (grass) [188].
This dissertation considers the square targets with the side lengths of 3 m, and the target
area can be translated in number of pixels in the image, and is going to be used as the
ground truth for the abundances (Table 4.2). The reflectance of six materials has been

Table 4.2: Ground truth of abundances in the HySU dataset
Endmember Target area [pixel]

bitumen 18.429
red-painted metal sheets 18.061

blue fabric 18.245
red fabric 18.798

green fabric 18.521
Total 92.054

extracted from the image, constructing the endmember library for this dataset (Fig. 4.2 (b)).
Reference abundance maps were generated using the endmember library and FCLS [196]. In
addition, the ground target sizes in Table 4.2 was used to evaluate abundance estimation
errors [188]. Results demonstrated that reference abundance maps have an average error of
2.3 % [188], which is low enough to justify their use as ground truth.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Extended DLR HySU dataset. (a) the study region with different sizes of targets,
adapted from [188], (b) reflectance of six materials: bitumen, red metal sheets, blue fabric, red
fabric, green fabric, and grass, (c) hyperspectral image of 3 m targets in true color composite, (d)
hyperspectral image with simulated shadows, (e) hyperspectral image with simulated shadows and
additional random noise (SNR = 30), (f) an example of simulated DSM, normalized between 0 and 1.
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4.2.2 Simulated Shadows and DSMs

In order to validate shadow-aware spectral unmixing methods on the DLR HySU dataset,
we simulate shadows partially covering the shadow-free image in Fig. 4.2 (c). Firstly, a
shadowed region is manually drawn in the center of the shadow-free image to shade a part of
all targets, resulting in a binary shadow mask. Then, a 3-by-3 Gaussian filter is applied to
the shadow mask and generates a soft shadow mask Q. Given a pixel yj in the shadow-free
image, we simulate the shadow-included image in Fig. 4.2 (d) using Eq. (4.1).

xj = (1 − Qj)yj + QjT (s0diff)yj (4.1)

where

T (s0diff) = Fj · (k1λ−k2 + k3)
1 + Fj · (k1λ−k2 + k3)

(4.2)

with Fj = 1, and k1, k2, k3 are set as in the individual contribution (Sections 5.2 and 5.3) in
Chapter 5.

It is worth noticing that Eq. (4.1) implicitly embeds nonlinear effects contained in pixel yj ,
so we do not add additional nonlinear effects in this image. However, since the study area is
located in the middle of a field with flat terrain, and we quantitatively validate solely the
abundances of the ground targets made of synthetic materials, the nonlinear effect plays a
minor role.

In order to validate the noise robustness of the proposed methods, additional random noise
(SNR = 30) is simulated and added to the shadow-included image (Fig. 4.2 (e)). Moreover,
evaluating the third contribution of this dissertation (Section 5.3) requires DSMs together
with hyperspectral images. Since the HySU dataset does not contain a DSM, a synthetic
DSM is simulated through a piecewise homogeneous distribution using the Potts model [179].
Besides, an additional Gaussian filtering with a size of 3 has been applied to the simulated
DSMs for gradual elevation changes at the borders between objects (see Fig. 4.2 (f)).

4.3 Cubert Measurements

This dataset was acquired with the snapshot sensor system Cubert UHD-185 Firefly man-
ufactured by the company Cubert. This imaging system consists of two sensors, i.e., one
spectrometer and one panchromatic sensor, and simultaneously records a full-frame hyper-
spectral image and a panchromatic image. The spectrometer features 138 spectral bands
in the range of 450 nm and 998 nm with a spectral resolution of 4 nm. The acquired hy-
perspectral image consists of 50-by-50 pixels. The panchromatic sensor provides images
with higher spatial resolution. Each panchromatic image consists of 1000-by-1000 pixels. In
addition to hyperspectral and panchromatic images, the processing software provided by
the manufacturer produces pan-sharpened hyperspectral images, whose spatial resolution
is equal to that of the panchromatic images. In this dissertation, the Cubert sensor was
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mounted on the ground-based platform to measure material spectra, while it is possible to
mount the camera system on Unmanned Aerial Vehicles (UAVs) [197].

The experiment was conducted between 11 a.m. and 12:30 a.m. (CEST) on August 16th,
2022. The weather was characterized by clear skies with very few intermittent cumulus
clouds. A dark current image was taken at the beginning of the experiment. A white
Lambertian reflectance panel was measured approximately every 20 minutes for calibration.
The integration times were set according to the illumination conditions of ground targets to
avoid over- and under-exposure. Fig. 4.3 presents an example of the measurements.

(a)

(b)

(c)

Figure 4.3: An example of the Cubert measurement, consisting green, red, and blue targets. (a)
hyperspectral image in true color composite, (b) panchromatic image of (a), (c) reflectance of three
targets in (a), shown in their corresponding colors.
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Linking to the research Questions and Objectives in Chapter 1, this chapter introduces
three novel methods associated with aforementioned three Contributions in Section 3.5,
to resolve shadow issues in hyperspectral image analysis. An overview of the datasets
utilized in this chapter is provided in Chapter 4, such as sensors, preprocessing steps, and
acquisition conditions. For a more in-depth understanding of the datasets employed in each
Contribution, please refer to the corresponding sections, namely Sections 5.1, 5.2, 5.3. In
summary:

• Contribution 1:
This work addresses Objective 1, thus answering Questions 1.
[198] Guichen Zhang, Daniele Cerra, and Rupert Müller. Shadow detection and
restoration for hyperspectral images based on nonlinear spectral unmixing. Remote
Sensing, 12(23):3985, 2020

• Contribution 2:
This work addresses Objective 2, thus answering Questions 1.
[199] Guichen Zhang, Paul Scheunders, Daniele Cerra, and Rupert Müller. Shadow-
aware nonlinear spectral unmixing for hyperspectral imagery. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 15:5514–5533, 2022

• Contribution 3:
This work addresses Objective 3, thus answering Questions 2 and 3.
[200] Guichen Zhang, Paul Scheunders, and Daniele Cerra. Shadow-aware nonlinear
spectral unmixing with spatial regularization. IEEE Transactions on Geoscience and
Remote Sensing, 61:1–16, 2023

• General Discussion: This section gives additional discussion, which has not been pub-
lished elsewhere, offering valuable additional insights to supplement the contributions
above.
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5.1 Shadow Detection and Restoration for Hyper-
spectral Images

Shadows are frequently observed in high-resolution images, raising challenges in image
interpretation, such as classification and object detection. This work presents a novel
framework for shadow detection and restoration of atmospherically corrected hyperspectral
images based on nonlinear spectral unmixing. The mixing model is applied pixelwise as a
nonlinear combination of endmembers related to both pure sunlit and shadowed spectra, where
the former are manually selected from scenes and the latter are derived from sunlit spectra
following physical assumptions. Shadowed pixels are restored by simulating their exposure to
sunlight using sunlit endmembers weighted by abundance values. The proposed framework
is demonstrated on real airborne hyperspectral images. A comprehensive assessment of
is carried out both visually and quantitatively. With respect to binary shadow masks,
our framework can produce soft shadow detection results, keeping the natural transition
of illumination conditions on shadow boundaries. Results show that the framework can
effectively detect shadows and restore information in shadowed regions.

5.1.1 Introduction

In images with high spatial resolution, shadows are frequently visible [108]. When an object
occludes the direct solar illumination outdoors, self-cast shadow occurs on the part of the
object with no direct solar illumination. Cast shadow, which this work considers, is projected
instead on nearby objects, and consist of umbra and penumbra [59]. Interested readers are
referred to Section 2.3 for more details about shadow formation.

Previous works studying shadow detection or shadow removal from optical images use
optical earth observation data, including RGB, multispectral, and hyperspectral images
[59, 101, 102]. In particular, imaging spectrometer data, also referred to as hyperspectrali,
provide spectral measurements with near-continuous acquisition wavelengths. These data
convey rich spectral information related to the physical properties of ground materials and
their chemical composition, compared with RGB and multispectral images, and are extremely
valuable for different remote sensing applications [201]. Nevertheless, most shadow detection
and removal methods are proposed for RGB data. These methods typically cannot be
adapted to hyperspectral images.

This work aims to mitigate the following open problems regarding shadow detection and
removal in hyperspectral images.

• Shadow detection is commonly required before shadow removal, and strongly influences
shadow removal results. Therefore, it is important to acquire a reliable shadow mask
before the shadow removal process [108, 156].

iWe are aware that the terms “imaging spectroscopy” and “imaging spectrometer data” are more exact
than “hyperspectral imaging” and “hyperspectral data” respectively, and therefore should be preferred.
Nevertheless, in this work we also use the term “hyperspectral” for sake of briefness [34].
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• Most shadow detection methods generate binary shadow detection results, where one
pixel is either sunlit or shadowed [9, 118]. In fact, pixels located on shadow boundaries
are neither completely sunlit nor shadowed [202, 203]. A natural transition on shadow
boundaries should be considered.

• Despite numerous methods proposed for shadow detection or removal, there have been
only few attempts at recovering full spectra from hyperspectral data [147, 149, 153, 154].

• Some methods require a large number of training samples as input, which are difficult
and time-consuming to acquire [9, 127, 131].

• Shadow restoration may introduce spectral distortion in sunlit pixels.

• Precise 3D data may be effective at assisting shadow detection and removal, but their
availability is usually limited and their cost high [112, 117].

• Most of the experiments have been carried out on simple scenes, usually consisting of
a single shadowed area with limited materials [9, 120]. In reality, airborne or satellite
images present more complicated scenarios.

The proposed framework can contribute to some extent to the reported open problems. As
an extension of our previous work [204, 205], we propose a shadow detection and restoration
method for high-resolution hyperspectral reflectance images based on nonlinear unmixing,
considering both umbra and penumbra. Our proposed framework restores reflectance data
in shadowed regions without the requirement of shadow detection results as an additional
input. In addition to the restored images, the framework computes soft shadow detection
maps ranging from 0 to 1 which, unlike binary masks, yield a natural restoration on the
shadow boundaries. As an optional step, our method iteratively refines the initial spectral
library by automatically including undetected materials. We tested the proposed framework
on airborne data acquired by an imaging spectrometer in the VNIR spectral ranges.

The remainder of this section is organized as follows. Section 5.1.2 proposes a shadow
detection and restoration method based on radiative transfer and a nonlinear unmixing
model. Section 5.1.3 introduces the test data acquired by an imaging spectrometer and
Section 5.1.4 analyzes experimental results, followed by detailed discussions in Section
5.1.5. Finally, Section 5.1.6 summarizes this work and gives directions for possible future
extensions.

5.1.2 Methodology

The proposed framework for simultaneous shadow detection and removal is reported in Fig.
5.1. The input contains a hyperspectral image and a spectral library consisting of pure
spectra from sunlit regions, i.e. sunlit endmembers. In particular, the spectral library should
only include endmembers selected from fully sunlit areas, while it should not include any
endmember from shadows or penumbra regions. In order to fully satisfy these requirements,
we manually select endmembers from sunlit regions in this work. The output of the framework
consists of a sunlit factor map and a restored shadow-free hyperspectral image.
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Direct and diffuse solar radiations are the main illumination sources for outdoor scenes [55].
Sunlit regions receive both of them, while the umbra in shadowed regions receives mainly the
diffuse solar irradiance due to occlusion. Despite different illumination conditions between
sunlit and shadowed regions, reflectance as a physical property should remain theoretically
unchanged for a material. In reality, though, reflectances derived by atmospheric correction
in shadowed regions are much lower than those in sunlit regions for the same material. The
reason is, atmospheric correction incorrectly assumes that both sunlit and shadowed areas
receive direct and diffuse solar radiations.

In the proposed framework, we model the reflectance of a shadowed material given the
reflectance of the same material under sunlight, following the assumptions in atmospheric
correction (Section 5.1.2.1). Subsequently, we regard both sunlit and shadowed spectra as
endmembers and present a nonlinear spectral unmixing approach (Section 5.1.2.2). Finally,
sunlit spectra and abundances are used to restore the shadow-free image (Section 5.1.2.2).
The proposed framework generates as an additional output a soft shadow mask, i.e. sunlit
factor map, by residual analysis of the mixing models (Section 5.1.2.3). The sunlit factor
map can locate sunlit pixels, where values of the restored image are then replaced by their
input pixels.

5.1.2.1 Shadowed Spectra Model

Assuming the ground surface to be Lambertian, the reflectance of a sunlit pixel can be
computed as:

r̂(λ) = πLl(λ)
El(λ) + Es(λ) (5.1)

where Ll(λ) = (El(λ)+Es(λ))r(λ)
π is the radiance of the sunlit pixel at wavelength λ, El is the

direct solar irradiance at the sunlit pixel at wavelength λ, and Es is the diffuse solar irradiance
at the sunlit pixel at wavelength λ.

Following the atmospheric correction, the observed reflectance for a shadow pixel r̂s can be
written in Eq. (5.2). We use the term “observed” as Eq. (5.2) follows the computation of
the atmospheric correction step. Nevertheless, such observed reflectance is incorrect in terms
of physics.

r̂s(λ) = πLs(λ)
El(λ) + Es(λ) + πL′s(λ)

El(λ) + Es(λ) (5.2)

where Ls(λ) = Es(λ)r(λ)
π is the radiance of the shadowed pixel contributed at wavelength λ by

the linear part, i.e. diffuse solar irradiance, while L′s(λ) is the radiance of the shadowed pixel
at wavelength λ contributed by the nonlinear part, i.e. multiple reflections of direct solar
irradiance caused by surrounding objects.

Modeling nonlinear effects for spectral unmixing has been explored for decades. In this
section, we compute L′s(λ) using the Fan model [87], which forms nonlinear interactions
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Figure 5.1: The proposed framework. The inputs are a hyperspectral image, the physical parameters
k1, k2, and k3, and a spectral library containing manually selected endmembers in sunlit regions, i.e.
sunlit endmembers. After the unmixing process, the restored image is reconstructed by a nonlinear
combination of the sunlit endmembers, using the abundances of the same materials in the shadow.
The framework outputs the sunlit factor map, computed by spectral Euclidean distances of the
reconstruction results. Finally, in order to avoid introducing spectral distortions, sunlit pixels in the
restored image are replaced by their original values.
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through the multiplication of reflectances using abundances as coefficients:

L′s(λ) =(Es(λ) + (El(λ))
∑p−1

i1=1
∑p

i2=i1+1 ai1ai2 r̂i1(λ)r̂i2(λ)
π

(5.3)

where p is the number of materials (endmembers) in one pixel, r̂i(λ) is the reflectance of the
i-th sunlit material (endmember) at wavelength λ, and ai is the i-th abundance corresponding
to r̂i.

After combining Eqs. (5.1), (5.2), and (5.3), r̂s can be written as:

r̂s(λ) = Es(λ)
El(λ) + Es(λ) r̂(λ) +

p−1∑
i1=1

p∑
i2=i1+1

ai1ai2 r̂i1(λ)r̂i2(λ) (5.4)

The ratio Es(λ)
El(λ) indicates the proportion of the diffuse solar irradiance to the direct solar

irradiance on the ground surface. For the same time and location, this ratio becomes smaller
at longer wavelengths. Besides, this ratio depends on atmospheric conditions such as aerosol,
humidity, and dust content [206]. Consequently, we model the ratio Es(λ)

El(λ) as a power function
k1λ−k2 + k3. By assuming atmospheric conditions to be constant across a single airborne
image, all parameters k1, k2, and k3 are constants. Another free parameter F , representing
how much diffuse irradiance a pixel receives out of a certain direct solar irradiance, is
estimated pixelwise. The described ratio is then computed as:

Es(λ)
El(λ) = F (k1λ−k2 + k3) (5.5)

where λ is a wavelength, k1, k2, k3 are positive quantities, and F ranges from 0 to 1.

By combining Eqs. (5.4) and (5.5), we have:

r̂s(λ) = F (k1λ−k2 + k3)
F (k1λ−k2 + k3) + 1 r̂(λ) +

p−1∑
i1=1

p∑
i2=i1+1

ai1ai2 r̂i1(λ)r̂i2(λ) (5.6)

The parameters k1, k2, and k3 in Eq. (5.6) can be solved by using manually selected pairs
of sunlit spectra r̂(λ) and shadowed spectra r̂s(λ) for selected materials in the scene. In
high-resolution images, shadow boundaries appear between sunlit and shadowed regions and
may span more than one pixel. As an example in Fig. 5.2, the selected pixels in each pair
should therefore be located close to but not directly on the shadow boundary.

5.1.2.2 Nonlinear Mixing Model

We write Eq. (5.6) in vector form, in order to solve for all wavelengths simultaneously and
construct a nonlinear mixing model to allow more materials to be present in one pixel. Note
that ei is the i-th sunlit endmember, esi is the i-th shadowed endmember, where i = 1, 2, ...p,
with p the total number of endmembers, ai is the i-th abundance corresponding to ei, and asi

is the i-th abundance corresponding to esi . Given ei, a corresponding shadowed endmember
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Figure 5.2: An example of selecting pure sunlit (with blue marker) and shadowed pixels (with red
marker) for the same material.

esi can be written as:

esi = F (k1λ−k2 + k3)
F (k1λ−k2 + k3) + 1

ei +
p−1∑
i1=1

p∑
i2=i1+1

ai1ai2ei1ei2 (5.7)

Considering both ei and esi , a pixel x can be written in Eq. (5.8):

x =
p∑

i=1
aiei +

p∑
i=1

F (k1λ−k2 + k3)
F (k1λ−k2 + k3) + 1

asiei +
p−1∑
i1=1

p∑
i2=i1+1

ai1ai2ei1ei2 (5.8)

where ∑p
i=1(ai +asi) = 1, ai ≥ 0, and asi ≥ 0. In order to account for physical considerations,

abundances are positive values. In addition, we apply the sum-to-one constraint by assuming
that all endmembers are recognized for each pixel. Since spectral values of shadowed pixels
are much lower than those of sunlit pixels, the sum-to-one constraint assures that shadowed
pixels yield large abundances of shadowed endmembers, instead of small abundances of
sunlit endmembers. Moreover, when solving this equation, we additionally apply a Total
Generalized Variation (TGV) algorithm to the parameter F for spatial smoothness in an
iterative manner [207]. In the first iteration, we solve all unknown parameters in Eq. (5.8).
After that, F is spatially filtered through the TGV algorithm, and then used as a known
parameter in the second iteration.

With asi and ai representing respectively the abundance of shadowed and sunlit endmember
for the same material, the shadow-restored pixel xrestore is computed as:

xrestore =
p∑

i=1
(ai + asi)ei +

p−1∑
i1=1

p∑
i2=i1+1

ai1ai2ei1ei2 (5.9)
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5.1.2.3 Sunlit Factor Map

From Section 5.1.2.1 and 5.1.2.2, endmembers can be either sunlit ei or shadowed esi . We
decompose Eq. (5.8) into two equations by separating the ei and esi terms, resulting in Eqs.
(5.10) and (5.11).

x =
p∑

i=1
asiesi (5.10)

x =
p∑

i=1
aiei +

p−1∑
i1=1

p∑
i2=i1+1

ai1ai2ei1ei2 (5.11)

After spectral unmixing, the reconstructed pixels using Eqs. (5.8), (5.10), and (5.11) are
noted as x̂, x̂s, and x̂l, respectively. Both sunlit and shadowed pixels can be reconstructed
with small reconstruction errors using Eq. (5.8). Shadowed pixels can be reconstructed
using Eq. (5.10), while sunlit pixels can be reconstructed using Eq. (5.11) with small
reconstruction errors. Therefore, in a B-dimensional space spanned by B spectral bands, the
Euclidean distance Ds between x̂ and x̂s is small in shadowed pixels and large in sunlit pixels.
On the other hand, the Euclidean distance Dl between x̂ and x̂l is large in shadowed pixels
and small in sunlit pixels. We therefore compute a sunlit factor map pixel by pixel according
to equation Ds

Dl+Ds
. The sunlit factor map ranges from 0 to 1. In this experiment, we use two

fixed thresholds set as thre1 = 0.1 and thre2 = 0.9, respectively. When sunlit factor values
are smaller than thre1, pixels are assumed to be fully shadowed pixels (umbra). When sunlit
factor values are larger than thre2, pixels are assumed to be fully sunlit pixels.

5.1.3 Dataset

The proposed method was validated on six subsets (see Figs. 5.3 and 5.4) from hyperspectral
images in the HySpex/3K dataset (Section 4.1, Chapter 4). Six subsets consist of common
ground objects, such as buildings, grass, and trees. The workflow for all six subsets is kept
unaltered, including the fourth containing a large pond of water, for which no additional
water mask was used. Such targets are usually challenging for this kind of application, as
water can be confused with shadows due to its low albedo. A spectral library is given as
an input by manually selecting pure pixels of relevant materials in sunlit regions for each
subset (second row in Fig. 5.4). In addition, ten pairs of pixels have been selected in the
experiment to compute parameters k1, k2, and k3 in Eq. (5.6). We solve the parameters
k1 = 1.296, k2 = 6.068, and k3 = 0.442 according to Eq. (5.6) as described in Section 5.1.2.1,
and these parameters are assumed to be constant for all the processed subsets.

5.1.4 Results

5.1.4.1 Reconstruction Error

We compare the proposed mixing model in Eq. (5.8) with two well-known models, i.e.
LMM[76] and the Fan model [87]. The mean reconstruction errors REs are computed for
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Figure 5.3: Six subsets selected from hyperspectral images in the HySpex/3K dataset (see Section
4.1, Chapter 4) in the study area of Oberpfaffenhofen, Bavaria, Germany.
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Figure 5.4: Six subsets with manually selected sunlit endmembers.
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Table 5.1: Mean reconstruction errors REs for six subsets
Subset Region LMM Fan Proposed

1
sunlit regions 0.113 0.083 0.077

shadowed regions 0.414 0.421 0.026
both 0.191 0.171 0.064

2
sunlit regions 0.088 0.077 0.071

shadowed regions 0.209 0.210 0.021
both 0.114 0.106 0.060

3
sunlit regions 0.092 0.090 0.081

shadowed regions 0.708 0.738 0.023
both 0.290 0.298 0.062

4
sunlit regions 0.059 0.044 0.039

shadowed regions 0.099 0.100 0.018
both 0.064 0.052 0.037

5
sunlit regions 0.088 0.079 0.063

shadowed regions 0.0685 0.732 0.030
both 0.199 0.200 0.057

6
sunlit regions 0.126 0.108 0.117

shadowed regions 0.156 0.158 0.025
both 0.132 0.118 0.084

each subset. In addition, we individually compute REs for sunlit and shadowed regions.
Please refer to Section 2.5.3 about evaluation metrics for spectral unmixing. Table 5.1 shows
REs in subsets 1 to 6. In sunlit regions, we observe a small change of errors among the
three models, where the difference of errors remains within 0.04. Compared with the Fan
model and the proposed model, the LMM model presents slightly higher errors in sunlit
regions. This indicates that the proposed model shows similar reconstruction results with
other models in sunlit regions. However, our model exhibits significant improvements in
shadowed regions, yielding considerably lower errors with respect to the other two models.
This improvement demonstrates that our method can effectively model shadowed pixels.

5.1.4.2 Spectral Distance

An important criteria of shadow restoration is the spectral distance between sunlit and
shadowed pixels belonging to the same material. Ideally, the reflectance is an intrinsic
property of materials, and should not change between sunlit and shadowed areas. Thus, the
spectral distance between sunlit and shadowed pixels for one material in restored images
should be significantly smaller than in the input images. In this experiment, we compute
the spectral distance using ∥xl − xs∥2 for the input images and ∥x̂l − x̂s∥2 for the restored
images, respectively.
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We select pairs of sun-shade pixels in each subset, as shown in the first row of Fig. 5.5.
For each pair of pixels, the yellow and cyan markers represent sunlit and shadowed pixels,
respectively. Both markers in each pair are close to each other and to the shadow boundary,
so we assume that the selected sunlit and shadowed pixels belong to the same material. The
second row in Fig. 5.5 shows the spectral distance between sunlit and shadowed pixels for
each pair of pixels. The bars in blue and orange represent the spectral distances computed
from the original and restored images, respectively. After shadow restoration, the spectral
distances decrease significantly. One exception is represented by the sixth sample of subset 4,
where the spectral distance increases by 0.1 after shadow restoration. This sample belongs
to water, for which reflectances are small in both sunlit (lower than 0.035) and shadowed
regions (lower than 0.025), as it shows in Fig. 5.6. In addition, the shadowed water pixels
are affected by nonlinear effects known to be relevant in water, and are shadowed also by
trees. This causes the restored pixels to contain a small abundance value of the material
“trees”, in the spectral range known as the red edge (Fig. 5.6).
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Figure 5.5: Comparison of the spectral Euclidean distance between input and restored images. First
row: the six subsets. Second row: spectral distance of up to 10 pairs of samples in each subset (input
and restored images in blue and orange, respectively).

5.1.4.3 Restoration and Classification Results

Fig. 5.7 compares input and restored images, along with their classifications. A total of 6565
training samples are manually selected from sunlit regions, while a total of 5927 test samples
are selected in comparable quantities from both sunlit and shadowed regions. There are
seven classes in six subsets, including tree, grass, impervious, bare soil, tiled roof, objects
painted in red, i.e. red material, and water. As an example, Fig. 5.8 reports a detailed
comparison of pixelwise classifications highlighting improvements after shadow restoration.
The hyperspectral images used in this study were acquired with nearly the same acquisition
time and solar zenith angles. Therefore, we can not validate our restored images with
additional acquisitions with shadows occupying smaller areas. As an alternative, we compare
the results with Google Earth images at same locations with the acquisition date of July
10th, 2016 in Fig. 5.9, with the assumption that most ground objects did not change within
a two years time span.
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(a) (b)

Figure 5.6: Mean reflectance of water regions in subset 4 of Fig. 5.5. The blue and red color
represents mean reflectance of sunlit and shadowed pixels, respectively. Pixels are selected from (a)
the input image and (b) the restored image in subset 4.

The classifications of the input images are inaccurate for most of the shadowed regions.
When the water class is not present in a subset, shadowed impervious surfaces are mostly
classified as vegetation (subset 1, 3, and 5) or tiled roof (subset 2). When water pixels
are included in the training samples (subset 4), most shadowed regions are classified as
water. The tree and grass pixels, both in input and restored images, are mostly classified as
vegetation because the discriminative “red edge” feature typical of vegetation is visible in
shadowed areas. Besides large and homogeneous areas, smaller objects are also recovered
in shadowed regions. For example, subset 3 contains trees in the shadow, with tree crowns
becoming visible in the restored image. A white car on the left side of the “H”-shape building
in subset 3 is an example for other isolated objects being restored. Compared to white and
red cars, dark objects, e.g. black cars, are considered as shadowed pixels in our proposed
framework, as their reflectance values are small and comparable with shadowed pixels. In
subset 3, these are restored as impervious surfaces.

Impervious surfaces shadowed by trees are sometimes classified as vegetation (e.g. on the top
left side in subset 1). When pixels are shadowed by trees, especially in deep shadows, their
spectra contain the “red edge” feature, due to incoming light interactions with the nearby
trees. Thus, the abundance values of vegetation at these impervious surfaces are larger than
zero, resulting in a mixture of impervious and vegetation materials in the reconstruction.

Table 5.2 presents the overall accuracies (OA) and Kappa (K) values of classification results.
Both figures of merit increase by more than 10 % in subsets 2, 4, 5, and 6, and increase by
more than 20 % in subsets 1 and 3. The increase in performance is due to the improved
classification results in shadowed regions.

5.1.4.4 Sunlit Factor Map

Sunlit factor maps in Fig. 5.10 present an additional output of the proposed framework.
The values range from 0 to 1. Instead of a binary mask, Fig. 5.10 shows a smooth transition
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Tree Grass Impervious Bare Soil Tiled Roof Red Materials

Figure 5.7: Rows: Six subsets. First column: input images; second column: restored images; third
column: classification maps of the input images; last column: classification maps of the restored
images.
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(a) Subset 2 (b) Subset 2 (c) Subset 3 (d) Subset 3

(e) Subset 4 (f) Subset 4

Figure 5.8: Comparison of classification results in Table 5.2 for input images (a, c, e) and restored
images (b, d, f) in subsets 2, 3, and 4. Correctly and incorrectly classified areas are marked in cyan
and magenta, respectively.
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Figure 5.9: Comparison between restored subsets and Google Earth images. For each subset, on the
left: input image with two selected regions of interest; rows on the right: regions of interest from
restored image and screenshots from Google Earth data in which shadowed areas are partially sunlit.

between sunlit and shadowed areas, yielding a more realistic representation of shadows. This
work sets two thresholds thre1 = 0.1 and thre2 = 0.9 to identify pure shadowed pixels (value
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Table 5.2: Comparison of classification accuracies using input and restored images
Data Input Restored

Subset 1
OA=73.472%

K=0.552
OA=95.366%

K=0.927

Subset 2
OA=82.203%

K=0.715
OA=93.553%

K=0.883

Subset 3
OA=55.0%
K=0.366

OA=93.939%
K=0.880

Subset 4
OA=84.495%

K=0.799
OA=95.138%

K=0.937

Subset 5
OA=80.340%

K=0.703
OA=90.170%

K=0.852

Subset 6
OA=85.373%

K=0.80
OA=93.284%

K=0.908

< thre1) and pure sunlit pixels (value > thre2). The values between thre1 and thre2 are
regarded as transition areas between sunlit and shadowed pixels, i.e. shadow boundaries.
When an area is shadowed by man-made objects, i.e. buildings, the transition areas are
smaller. When an area is shadowed by vegetation, i.e. trees, the shadow boundaries span
larger regions.

5.1.4.5 The F Parameter

For a pixel on the ground surface, the diffuse solar irradiance come isotropically from the
sky [55]. For a given location and acquisition time, the proportion of diffuse to direct solar
irradiance is constant. However, at a shadowed pixel where the sky is partially occluded, the
diffuse solar irradiance decreases because the pixel can not see the sky from all directions.
The F parameter (Fig. 5.11) represents the scale of the proportion of diffuse to direct solar
irradiance in Eq. (5.5). We set F values at sunlit pixels to zeros, as F is relevant for the
shadowed terms in Eq. (5.8). The F values remain approximately homogeneous within one
shadowed region and slightly increase on the shadow boundaries. Among different shadowed
regions, pixels shadowed by vegetation show moderately larger values with respect to pixels
shadowed by man-made objects.

5.1.5 Discussion

5.1.5.1 Level of Automatism

The framework runs automatically giving as input a hyperspectral image, the selected
endmembers, and the relevant parameters. This implies that our method so far depends
on manually selected endmembers, as the input spectral library is composed by pure pixels
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(a) Subset 1 (b) Subset 2 (c) Subset 3

(d) Subset 4 (e) Subset 5 (f) Subset 6

Figure 5.10: Sunlit factor maps ranging from 0 to 1. Values smaller than thre1 are considered as
pure shadowed pixels. Values larger than thre2 are regarded as pure sunlit pixels. For each subset,
top: sunlit factor map marked with the region of interest; bottom: zoomed-in image of the region of
interest.
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(a) Subset 1 (b) Subset 2 (c) Subset 3

(d) Subset 4 (e) Subset 5 (f) Subset 6

Figure 5.11: The F parameter with the range of values from 0 to 1.

exclusively selected in sunlit regions. However, to the best of our knowledge, existing
endmember extraction methods either do ignore shadowed regions, or regard shadowed
regions as an additional dark endmember. Thus, their extracted endmembers usually contain
pixels in shadowed regions or on the shadow boundaries, which cannot be used in our
framework. In addition, the input spectral library should consider the fact that the observed
values of the same material in hyperspectral images may vary, due to the spectral variability
effect [208], which has been taken into account by manually selecting endmembers.

An endmember extraction method that excludes shadowed regions and shadow boundaries
would not only help our specific framework, but also yield a more consistent physical
representation of a scene, as the reflectance of a specific material should not change according
to illumination conditions. Therefore, we introduce a simple but effective way of extracting
endmembers automatically by taking into account shadows.

A straightforward way of selecting sunlit pixels is thresholding. In our experiment in subset
1, all the pixels having mean reflectance larger than an empirical threshold (set to 0.08 in this
experiment) are selected as candidate sunlit pixels. However, this may include some pixels
located at shadow boundaries. Thus, a Canny edge detector [209] has been applied to detect
and remove all boundary pixels from sunlit pixels candidates. In addition, considering the
endmember variability effect, we apply the method in [210] to extract endmember bundles
based on Vertex Component Analysis (VCA) [71]. By merging similar endmembers, we show
the automatically extracted endmembers in Fig. 5.12 (a). By using endmembers reported
in Fig. 5.12 (a) and our proposed framework, our results are shown in Fig. 5.12 (b, d, e).
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(a) (b) (c)

(d) (e)

Figure 5.12: Shadow detection and restoration using automatically extracted endmembers in subset
1. (a) extracted endmembers, (b) restored image, (c) Euclidean distance between restored images
using manually and automatically extracted endmembers, (d) sunlit factor map, and (e) F parameter.

Both restoration and computed parameters are visually similar to the results obtained by
employing the manually selected endmembers. Fig. 5.12 (c) depicts the Euclidean distance
of the images of subset 1 restored by manual and automatic endmember extraction, having
a maximum value of 0.13. This slight difference is due to the slightly different sets of
endmembers selected.

5.1.5.2 Computational Cost

All algorithms were developed in MATLAB and run on an Intel Core i7 – 8650U CPU,
1.90GHz machine with 4 Cores and 8 Logical Processors. We use the MATLAB function
FMINCON to perform nonlinear optimization. The processing time depends on the number
of input pixels and endmembers. If a shadow map is unknown, the algorithm requires 2445
seconds to restore the subset 1, having a size of 181 × 245 pixels. Otherwise, the algorithm
needs 1031 additional seconds to produce a sunlit factor map. On the other hand, if a shadow
detection map is given, then the algorithm processes only shadowed pixels, requiring 948
seconds for shadow restoration.

5.1.5.3 Benefits and Challenges

The proposed framework shows promising results on detecting shadows and restoring spectral
information in shadowed regions for hyperspectral imagery. Methods proposed for shadow
restoration in RGB and multispectral images are difficult to adapt to hyperspectral images,
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as their characteristics pose specific challenges [135, 211]. For example, shadow removal
methods may use ground images as training and test data, which would not work in the case
of airborne images [202, 211]. Besides, simple scenes are often used as test data, where a
single shadowed region exists in one test image [9]. This assumption often does not hold for
airborne images containing more complicated scenarios. The proposed framework contributes
to the open problems in the following aspects.

As a first aspect, some previous works assume diffuse solar irradiance to have zero [149] or
constant values [153, 212] across all wavelengths. These assumptions simplify real scenarios
and may introduce errors in modeling shadowed spectra. The proposed framework considers
diffuse irradiance and multiple reflections of direct solar irradiance as the illumination
sources in shadowed regions, following physical assumptions. Second, several previous studies
develop shadow detection and restoration methods in two separate frameworks, indicating
that accurate shadow detection results are required to achieve satisfying restoration [154, 213].
Our proposed framework computes shadow detection maps based on the residual analysis
of pixel reconstruction through spectral unmixing, thus it does not require a shadow map
as additional input. Third, a soft shadow detection yields a more realistic representation
of shadows with respect to a binary shadow mas as, from a physical point of view, shadow
boundaries are usually neither pure sunlit nor pure shadowed pixels. In addition, soft shadow
masks allow some flexibility as they can be thresholded by an user to generate conservative or
complete binary masks. Fourth, our framework does not require a large amount of training
data, usually scarcely available and expensive to derive.

The proposed framework still contains several open problems. First, despite the correct
classification results, we observe spectral distortions of shadowed pixels for some impervious
surfaces, if slightly different materials are present in the scenes. An area in subset 2 (Fig.
5.13) shows an impervious surface shadowed by a building. The relative spectra appear
distorted with respect to the neighbouring sunlit pixels belonging to the same material, as
it is assumed that pixels on opposite edges of a shadow boundary usually exhibit similar
reflectance spectra. Thus, we investigate the abundance maps of endmembers dominating
the sunlit regions (in Fig. 5.13 (c)) and shadowed regions (in Fig. 5.13 (d)). In Fig. 5.13
(e), we show the reflectances of the endmembers corresponding to Fig. 5.13 (c) as a solid
line and Fig. 5.13 (d) as a dashed line, respectively. The spectral angle between the two
reflectances in Fig. 5.13 (e) is equal to 0.035, indicating that the related two materials are
highly similar. Besides, the spectral angle assumes a value of 0.032 between two reflectances
in sunlit and shadowed pixels marked with a “+” in the restored image (Fig. 5.13 (f)). This
implies that, when the spectral angle between two spectra is small, the restored results may
not distinguish the related materials.

Second, endmembers used in the framework do not include black objects, such as cars
in subset 3, because spectra of black objects are similar to shadowed pixels. Thus, the
proposed framework regards black objects as shadows, as their sunlit factor values are low
(Fig. 5.10).

Third, although the sunlit factor values of water regions are higher with respect to shadowed
pixels (Fig. 5.10 (d)), water can still be confused with shadows due do its low albedo. Thus,
Dl and Ds for sunlit water pixels are comparable and considerably smaller than 0.1.
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Shadow

Boundary

(a)

+
+

(b) (c)

(d) (e) (f)

Figure 5.13: An example of spectral inconsistency in the neighborhood of a shadow boundary in a
subarea of subset 2: (a) input image; (b) shadow-restored image; (c) abundance map for a material
dominating the sunlit region; (d) abundance map for a material dominating the shadowed region; (e)
endmembers corresponding to the abundance maps of (c) as a solid line and (d) as a dashed line; (f)
reflectance of sunlit (blue) and shadowed (red) pixels in (b).

Fourth, local texture in restored shadowed regions can be lost (Fig. 5.9 (f)), or present a
high level of noise (Fig. 5.9 (b)). These examples of information loss are partly due to the
signal to noise ratio for shadowed pixels being lower with respect to sunlit pixels.

5.1.6 Summary

In this work, motivated by the fact that reflectance values for a given material should be
independent from illumination conditions, we have proposed a novel framework for shadow de-
tection and restoration of hyperspectral images based on nonlinear unmixing. The framework
regards pure sunlit and shadowed spectra as sunlit and shadowed endmembers, respectively.
Pure sunlit spectra are manually selected from the input images, while pure shadowed
spectra are computed from sunlit spectra based on physical assumptions. Subsequently, the
algorithm solves abundances related to sunlit and shadowed endmembers through a nonlinear
mixing model. Then, we reconstruct restored images pixelwise using abundance maps and
only the sunlit endmembers. As a byproduct, the proposed framework can generate sunlit
factor maps that can locate sunlit pixels. Finally, sunlit pixels in the restored images are
replaced by their original values. The proposed framework is validated on real airborne
hyperspectral images using visual analysis and quantitative assessments. Compared with two



74 5. Summary of the Contributions

well-known mixing models, i.e. LMM and Fan, the proposed mixing model can reconstruct
shadowed pixels with significantly lower errors. After restoration, shadowed regions become
visually alike to adjacent sunlit regions, and exhibit similar reflectance values. In addition,
classification results are visually more convincing and accuracies increase by more than 10
% for the investigated subsets after shadow restoration. The derived sunlit factor maps
can produce soft shadow masks, representing natural transitions around shadow boundaries.
We also demonstrate the possibility of detecting and including new materials in the input
endmember library.

The work carried out so far raises open issues which are of interest for further investigation.
Embedding spatial information may decrease the spectral distortion in shadow-removed
pixels. In addition, black objects and water regions require further investigation. Future
works could consider spectral bands that can increase the distinction between shadow and
dark objects. Finally, the nonlinear mixing model in this work allows the interactions of
up to two endmembers. Higher-order nonlinear models could be included to model more
accurately the physical interactions in the scene.
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5.2 Shadow-Aware Spectral Unmixing Method
In hyperspectral imagery, differences in ground surface structures cause a large variation
in the optical scattering in sunlit and (partly) shadowed pixels. The complexity of the
scene demands a general spectral mixing model that can adapt to the different scenarios
of the ground surface. This section proposes a physics-based spectral mixing model, i.e.,
the Extended Shadow Multilinear Mixing (ESMLM) model that accounts for typical ground
scenarios in the presence of shadows and nonlinear optical effects, by considering multiple
illumination sources. Specifically, the diffuse solar illumination alters as the wavelength
changes, requiring a wavelength-dependent modeling of shadows. Moreover, we allow different
types of nonlinear interactions for different illumination conditions. The proposed model is
described in a graph-based representation, which sums up all possible radiation paths initiated
by the illumination sources. Physical assumptions are made to simplify the proposed model,
resulting in material abundances and four physically interpretable parameters. Additionally,
shadow-removed images can be reconstructed. The proposed model is compared with other
state-of-the-art models using one synthetic dataset and two real datasets. Experimental
results show that the ESMLM model performs robustly in various illumination conditions. In
addition, the physically interpretable parameters contain valuable information on the scene
structures and assist in performing shadow removal that outperforms other state-of-the-art
works.

5.2.1 Introduction

Spectral unmixing, as an inverse process of spectral mixing, aims to quantitatively analyze
material composition at the sub-pixel level. An introduction of spectral unmixing is detailed
in Section 2.5. In summary, most existing spectral mixing models, i.e., LMM, Fan, GBM,
MLM, simply ignored the shadow effect and thus typically output inaccurate estimation at
shadowed pixels. Later, shadows have been treated as a wavelength-independent scaling effect
in the Shadow Linear Mixing Model (SLMM) and SMLM, by including another paramter Q,
representing the pixelwise fractional value of cast shadow [151]. However, shadow not only
scales a spectrum, but also causes wavelength dependent distortions [103]. Some works have
paid attention to the spectral distortions caused by shadow, based on nonlinear modeling
and allowing multiple illuminations in a scene (see Section 3.4.2.3).

Although it has been shown that embedding multiple illumination sources in a model improves
unmixing performances in (partly) shadowed pixels, nonlinearity has been modeled similarly
for all pixels, regardless of the illumination conditions [198]. However, the nonlinearity in
shadowed areas can behave quite differently from sunlit areas, due to the light attenuation
caused by occluding objects.

In this work, we present a novel nonlinear mixing model, that is an extension of the SMLM
model [151], and that overcomes the mentioned problems in the following aspects:

• We consider two illumination sources, i.e., direct and diffuse solar illuminations. Fol-
lowing physical assumptions, we allow variable illumination conditions over the scene,
where sunlit regions receive direct as well as diffuse solar illuminations, while shadowed
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regions receive diffuse solar illumination and possibly reflected direct solar illumination.
Specifically, one pixel can be composed of shadowed areas along with fully sunlit
areas, and can therefore be treated as a partly shadowed pixel, resulting in a better
representation of shadow boundaries.

• Our proposed model allows two different types of nonlinear interactions. Besides the
nonlinear optical interactions caused by the direct incoming light from both illumination
sources, a pixel can receive secondary reflections from its neighboring pixels. In this way,
the proposed model can produce reconstructed pixels with spectral values larger than
those obtained through LMM, without losing the physical meaning of the parameter
P , while energy conservation still holds.

• We describe our model using a graphical representation with multiple illumination
sources. The mixing result is computed as the sum of all light contributions, weighted
by their probabilities. In addition to the abundances values, our model generates four
pixelwise physically interpretable parameters: Q (spatial fraction of shadow in a pixel),
F (sky view factor, which denotes the fraction of the sky hemisphere that is visible
from the ground surface [214]), P (the probability of higher-order interactions of the
incoming light ray), and K (a strength factor of neighbor interactions, denoting the
fraction of the scattered light from the neighborhood that is received by the pixel).

The remainder of this section is organized as follows. In Section 5.2.2, we describe the impact
of shadow on the observed reflectance, based on radiative transfer and atmospheric correction.
Section 5.2.3 introduces several physics-based mixing models using graphical representations,
while Section 5.2.4 describes the proposed mixing model. Section 5.2.5 introduces the
experimental setup, including three datasets for the evaluation of the spectral mixing models,
the unmixing procedure, and the experimental design. Section 5.2.6 demonstrates the
experimental results quantitatively using a synthetic dataset, and section 5.2.7 and 5.2.8
present both quantitative and qualitative results using real datasets. Finally, we conclude
our work and give future prospects in Section 5.2.9.

5.2.2 The Impact of Shadow on Reflectance

This section is built upon the theory of radiation propagation and atmospheric correction.
Interested readers are referred to Sections 2.3 and 2.4 to better understand this section.

Let us assume that the ground targets are located on a flat terrain, and behave as a
Lambertian surface. Then, at each wavelength λ, the at-sensor radiance L(λ) for a ground
pixel with reflectance r(λ) can be written as:

L(λ) = Lp(λ) + δτdir(λ)El(λ)r(λ)
π

+ τdiff(λ)Es(λ)r(λ)
π

(5.12)

where Lp(λ) is the path radiance, El(λ) the direct solar irradiance and Es(λ) the diffuse solar
irradiance on the ground target. The transmittances of the direct and diffuse solar radiation
are τdir(λ) and τdiff(λ), respectively, while δ is a binary value indicating if the ground surface
receives any direct solar irradiance. In traditional atmospheric correction algorithms, δ is
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set to 1 , as the ground surface is usually assumed to be horizontal and unobstructed, i.e.,
it “sees” the entire hemisphere above. Thus, given the at-sensor radiance L, atmospheric
correction is applied and r̂(λ) is derived by inverting Eq. (5.12):

r̂(λ) = π(L(λ) − Lp(λ))
τdir(λ)El(λ) + τdiff(λ)Es(λ) = r(λ) (5.13)

However, a pixel may not or only partly receive direct sunlight, due to occlusion by ground
objects. The at-sensor radiance Ls(λ) of a fully shadowed pixel, containing one material
with reflectance r(λ), is given by Eq. (5.12) with δ = 0:

Ls(λ) = Lp(λ) + τdiff(λ)Es(λ)r(λ)
π

(5.14)

When standard atmospheric correction (Eq. (5.13)) is applied on such a pixel, then the
reflectance r̂s(λ) is computed as:

r̂s(λ) = π(Ls(λ) − Lp(λ))
τdir(λ)El(λ) + τdiff(λ)Es(λ)

= τdiff(λ)Es(λ)r(λ)
τdir(λ)El(λ) + τdiff(λ)Es(λ)

(5.15)

in which Eq. (5.14) is substituted.

As reflectance represents an intrinsic property of a material, and should not change according
to illumination conditions, we expect that r̂s(λ) = r̂(λ) = r(λ). However, during atmospheric
correction, the direct solar irradiance is incorrectly assumed to be an illumination source
in shadowed regions. As a consequence, the computed reflectance values in these areas are
much smaller than their correct values, and a wavelength-dependent deviation exists between
r̂s(λ) and r(λ).

If no occlusion occurs on a ground pixel, the diffuse radiation comes from all directions of
the sky dome. Otherwise, the diffuse irradiance decreases by the sky view factor F ∈ [0, 1],
representing the fraction of sky that a ground pixel can “see”. Following previous works, we
model the decrease of the diffuse-to-direct solar irradiance as the wavelength goes up through
a power function, which describes stronger atmospheric scattering at short wavelengths
[55, 198, 215, 216]:

τdiff(λ)Es(λ)
τdir(λ)El(λ) = F (k1λ−k2 + k3) (5.16)

with k1, k2, k3 > 0.

Combining equations (5.15) and (5.16), we derived an expression for the reflectance of a
ground material in fully shadowed regions with respect to the reflectance of the same material
exposed to direct sunlight as:

r̂s(λ) = F (k1λ−k2 + k3)
1 + F (k1λ−k2 + k3) r̂(λ) (5.17)
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The derived relationship between the reflectances of the same material in different illumination
conditions is only valid in the following simplified scenario. First, each ground pixel contains
only one material. Second, illumination interacts only once with a ground pixel before being
scattered back to the sensor. Third, a ground pixel can only be either fully sunlit or fully
shadowed. In reality, a ground pixel can be composed of multiple materials, and illumination
sources can interact multiple times with ground materials. In addition, pixels may only be
partly shadowed. To include these situations, a shadow-aware nonlinear spectral mixing
model is required.

5.2.3 Mixing Models and their Graph Representations

The mixing models describe the optical interactions to a certain degree of complexity in
the imaging chain [62, 66]. Following the work in [150, 151], we introduce state-of-the-art
spectral mixing models based on a ray-based approximation of light and a graph-based
representation of the optical interactions. Please note that this section is not a repetition
of Section 2.5. Instead, it presents mixing models from a new perspective and serves as the
basis for the proposed model.

The entire process of the incoming light from the illumination sources undergoing optical
interactions, and each sensitive element of the spectrometer recording the back-scattered
light from the corresponding ground pixel can be described as a discrete-time stochastic
process [151]. A light path is defined by the random variable {Ξn}n≥0 with ∀n Ξn ∈ S,
and the discrete set S contains all possible interactions that a light ray can undergo before
reaching the observer. In passive optical imaging, the light path always starts from the
illumination source Ξ0 = s0. States in which the light ray interacts with a ground material
are indicated as {Ξi = si}L

i=1. Since we consider only the scattered light eventually received
by the observer, a light path ends with the observer state ΞL+1 = o. L ∈ [1, ∞] is the path
length, indicating the number of optical interactions that a light ray underwent before being
scattered back to the observer.

The probability of observing a certain path of length L is given by:

P (path) = P (Ξ0 = s0, Ξ1 = s1, · · · , ΞL = sL, ΞL+1 = o) (5.18)

It is assumed that this stochastic process follows the Markov property:

P (Ξn+1|Ξ0, · · · Ξn) = P (Ξn+1|Ξn) (5.19)

At each state, the optical properties of the light ray will be altered. This alteration describes
a relative change in the spectrum of the light ray, according to the reflectance of the object
associated with that state. If T (si) is the operator that acts on the light ray in state si, the
total effect of path ={ Ξ0 = s0, Ξ1 = s1, · · · , ΞL = sL, ΞL+1 = o} on a light ray is given by∏L

i=0 T (si). The operator T (si) is associated with the state si.

• For states {Ξi = si}L
i=1 representing ground materials, T (si) = ei.

• For the state {ΞL+1 = o} presenting the observer, T (o) = 1.
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Table 5.3: Probabilities of light paths and their spectral contributions in different mixing models
Path Probability Contribution Parameters Model

s0 − ei − o ai ei / LMM [76]

s0 − ei − o
s0 − ei − ej − o

ai

γi,jaiaj

ei

ei ⊙ ej

γi,j = 0, if i ≥ j
γi,j = 1, if i < j

Fan [87]

γi,j = b PPNM [88]
γi,j = 0, if i ≥ j

γi,j ∈ [0, 1], if i < j
GBM [89]

s0 − ei − o
s0 − ei − ej − o

s0 − ei − ej − ek − o
· · ·

s0 − ei − ej − ek · · · eR − o

ai(1 − P )
aiaj(1 − P )P

aiajak(1 − P )PP
· · ·

aiajak · · · aR(1 − P )P R−1

ei

ei ⊙ ej

ei ⊙ ej ⊙ ek

· · ·
ei · ej ⊙ ek · · · eR

P ∈ [0, 1] MLM [150]

s0 − ei − o (1 − Q)ai ei / SLMM [151]
s0 − ei − o

s0 − ei − ej − o
s0 − ei − ej − ek − o

· · ·
s0 − ei − ej − ek · · · eR − o

(1 − Q)ai(1 − P )
aiaj(1 − P )P

aiajak(1 − P )PP
· · ·

aiajak · · · aR(1 − P )P R−1

ei

ei ⊙ ej

ei ⊙ ej ⊙ ek

· · ·
ei ⊙ ej ⊙ ek · · · eR

P, Q ∈ [0, 1] SMLM [151]

s0g − ei − o
s0g − ei − ej − o

s0diff − ei − o

(1 − Q)ai

aiaj

Qai

ei

ei ⊙ ej

e′i

/ Fansky [198]

• For the state {Ξ0 = s0} representing the illumination source(s), T (s0) is a constant
vector and corresponds to the illumination source.

Thus, an observed pixel x is described as the weighted average over all possible paths:

x =
∞∑

L=1
(

∑
s0∈S

∑
s1∈S

· · ·
∑

sL∈S

)P (path)
L∏

k=0
T (sk) (5.20)

Table 5.3 shows a summary of light paths, their corresponding probabilities and spectral
contributions for different mixing models. In the next sections, we will describe in more
detail these models and their graph representations.

5.2.3.1 Linear Mixing Model (LMM)

LMM assumes that the incoming light interacts only once with a set of endmembers before
being scattered back to the sensor (L = 1). The probability of an incoming light ray from the
illumination source s that interacts with the ground surface with endmember el, (l = 1, · · · , p)
and is scattered back to the observer o is proportional to the abundance al, (l = 1, · · · , p).
Thus: P (path) = P (Ξ0 = s0, Ξ1 = s1, Ξ2 = o) = al, and ∏L

k=0 T (sk) = T (s0)T (s1), with
T (s0) = 1 and T (s1) = el. According to Eq. (5.20), the LMM is written as:

x =
∑

s0∈S

∑
s1∈S

alT (s0)T (s1) =
p∑

i=1
aiei (5.21)

where ∑p
i=1 ai = 1 and ∀i: ai ≥ 0.
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5.2.3.2 Bilinear Mixing Models

In bilinear models, a light ray from the illumination source can either interact with an
endmember once before being scattered back the sensor, i.e., L = 1, or it can have multiple
interactions with endmembers up to the second order, i.e., L = 2. Thus, we have two
possible light paths, with probabilities: P (path) = P (Ξ0 = s0, Ξ1 = s1, Ξ2 = o) = al and
P (path) = P (Ξ0 = s0, Ξ1 = s1, Ξ2 = s2, Ξ3 = o) = γm,naman. Different bilinear models can
be derived by constraining the free parameter γm,n (Table 5.3). Then:

x =
∑

s0∈S

∑
s1∈S

alT (s0)T (s1) +
∑

s0∈S

∑
s1∈S

∑
s2∈S

γm,namanT (s0)T (s1)T (s2)

=
p∑

i=1
aiei +

∑
i

∑
j

γi,jaiajei ⊙ ej

(5.22)

5.2.3.3 Multilinear Mixing (MLM) Model

Recently, authors in [150] extended bilinear mixing models to the MLM model that regards
all orders of optical interactions. Similar to the case of linear and bilinear models, this
assumes that a light ray incoming from the illumination source will interact with at least one
material. Besides, the MLM model introduces a new parameter P : after each interaction
with a material, the light ray will have a probability P of undergoing further interactions
and a probability (1 − P ) of escaping the scene and reaching the observer. Following these
assumptions, a light ray from the illumination source can interact with ground objects up to
an infinite amount of times before being scattered back to the sensor, i.e., L ∈ [1, ∞]. Given
a light path path = {Ξ0 = s0, Ξ1 = s1, Ξ2 = s2, · · · , ΞL = sL, ΞL+1 = o}, its probability is
given by: P (path) = (1 − P )P L−1ai1ai2 · · · aiL . The spectral contribution of this path is:∏L

k=0 eik
with eik

representing the endmember of the material that the ray interacts with
the kth time, and aik

its abundance. Thus:

x =
∞∑

L=1

 p∑
i1=1

· · ·
p∑

iL=1

 (1 − P )P L−1
L∏

k=1
(aik

eik
)

=(1 − P )
p∑

i=1
aiei + (1 − P )P

p∑
i=1

p∑
j=1

aiajei ⊙ ej + · · ·

=(1 − P ) ∑p
i=1 aiei

1 − P
∑p

i=1 aiei

(5.23)

5.2.3.4 Shadow Linear Mixing (SLMM) Model

The SLMM model extends the endmember library with a “zero-reflectance” spectrum.
Numerically, this technique is equivalent to including a parameter Q ∈ [0, 1], which represents
the spatial fraction of shadow in a pixel [150]. Values of Q = 0 and Q = 1 indicate a fully
sunlit and fully shadowed pixel, respectively, while Q ∈ (0, 1) describes a partly shadowed
pixel. This model can estimate abundances under the shadow by setting Q = 0 during pixel
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reconstruction. Similar to LMM, the light path of the SLMM is P (s0, el, o) = (1 − Q)al with
the spectral contribution of el. Thus:

x =
∑

s0∈S

∑
s1∈S

(1 − Q)alT (s0)T (s1) =
p∑

i=1
(1 − Q)aiei (5.24)

where ∑p
i=1 ai = 1 and ∀i: ai ≥ 0.

5.2.3.5 Shadow Multilinear Mixing (SMLM) model

The SMLM model [151] extends the MLM model from [150] in order to deal with shadows. It
is assumed that shadowed regions do not receive direct sunlight, but only multiple reflections
of direct sunlight. The SMLM model uses the parameter Q to represent the shadow fraction
within a pixel. Thus, the light paths and probabilities of the SMLM model are the same as
those of the MLM model except for the first order, which is rescaled with (1 − Q), hereby
subtracting the shadow fraction from the direct sunlight term in a spectrum. Thus:

x =
1∑

L=1

 p∑
i1=1

· · ·
p∑

iL=1

 (1 − Q)(1 − P )
L∏

k=1
(aik

eik
) +

∞∑
L=2

 p∑
i2=1

· · ·
p∑

iL=1

 (1 − P )P L−1
L∏

k=2
(aik

eik
)

=(1 − Q)(1 − P )
p∑

i=1
aiei + (1 − P )P

p∑
i=1

p∑
j=1

aiajei ⊙ ej + · · ·

=(1 − P ) ∑p
i=1 aiei

1 − P
∑p

i=1 aiei
− Q(1 − P )

p∑
i=1

aiei

(5.25)

5.2.3.6 Mixing Model with Multiple Light Sources

The work in [198] allows different illumination conditions in sunlit and shadowed regions and
regards the shadow effect in a wavelength-dependent manner. In this work, sunlit areas receive
the entire solar radiation, i.e, direct as well as diffuse solar radiation, while the shadowed
regions only receive diffuse radiation. Hence, in the graph representation, two illumination
sources, each with its own state, are considered: global radiation s0g and diffuse radiation
s0diff . Specifically, s0g is equivalent to s0, where only one illumination source is considered.
The model accounts for the light paths from the global radiation up to the second order,
leading to two possible light paths: P (pathg) = P (Ξ0 = s0g , Ξ1 = s1, Ξ2 = o) = (1 − Q)al

for L = 1 and P (pathg) = P (Ξ0 = s0g , Ξ1 = s1, Ξ2 = s2, Ξ3 = o) = aman for L = 2. The
spectral contribution of two light paths is T (s0g) ∏L

k=1 ek, with L = 1 and L = 2, respectively.
Moreover, the model assumes that diffuse solar radiation interacts not more than once with
ground materials, resulting in the light path P (pathdiff) = P (Ξ0 = s0diff , Ξ1 = s1, Ξ2 =
o) = Qal, where L = 1 and Q is the spatial fraction of shadow in a pixel. The spectral
contribution is ∏L

k=0 T (s0diff) ∏L
k=1 el, where L = 1. Since the light paths at the second-order

(L = 2) is equivalent to the Fan model, we refer to this model as the Fansky model. From



82 5. Summary of the Contributions

Eq. (5.16) follows that T (s0diff) = τ diff⊙Ls
τ dir⊙Ll+τ diff⊙Ls

. Then, the mixing model can be written
as the contribution of all possible light paths, initiated from two illumination sources:

x =
2∑

L=1
(

∑
s0g∈S

· · ·
∑

sL∈S

)P (pathg)T (s0g)
L∏

k=1
T (sk)+

1∑
L=1

(
∑

s0diff∈S

· · ·
∑

sL∈S

)P (pathdiff)T (s0diff)
L∏

k=1
T (sk)

=(1 − Q)
p∑

i=1
aiei +

p∑
i=1

p∑
j=i

aiajei ⊙ ej + Q
p∑

i=1
aie
′
i

(5.26)

where e′i = τ diff⊙Ls
τ dir⊙Ll+τ diff⊙Ls

with Ll and Ls are the vector forms of Ll(λ) and Ls(λ), respec-
tively.

5.2.4 Proposed Method

We propose an extended SMLM (ESMLM) model by allowing multiple illumination sources,
i.e., direct and diffuse solar radiation. Moreover, apart from the optical interactions occurring
in a ground pixel determined by its IFOV, a pixel can also receive additional illumination
from its neighboring pixels through secondary reflections. Fig. 5.14 depicts the occurring
optical interactions for five different scenarios that are considered in this model. As the path
radiance is assumed to be removed by atmospheric correction [63], the model describes three
types of light paths, corresponding to three illumination sources: global solar illumination s0g ,
diffuse solar illumination s0diff and neighboring illumination s0N . The light paths together
with their probabilities and spectral contributions for the three illumination sources in the
proposed model are presented in Table 5.4, followed by the physical assumptions and a
detailed explanation for each illumination source in the remaining part of this section. In
brief, the mixing model is computed as the sum of the contributions from all illumination
sources in Eqs. (5.27) and (5.28), and contains four physically explainable parameters:

• P : the probability that a light ray undergoes additional interactions with endmembers,

• Q: the spatial fraction of shadow,

• F : the sky view factor,

• K: a strength factor of neighbor interactions, denoting the fraction of the scattered
light from the neighborhood that is received by the pixel.
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(a) (b) (c)

(d) (e)

Neighboring Illumination

Path Radiance

Direct Solar Illumination

Diffuse Solar Illumination

Figure 5.14: Solar radiation paths when a pixel is: (a) exposed to direct sunlight; (b) fully shadowed;
(c) receiving secondary illumination from neighbors; (d) partly shadowed with sunlit and shadowed
regions spatially separated in a pixel; (e) partly shadowed with sunlit and shadowed regions not
spatially separable in a pixel.

Table 5.4: Probabilities of light paths and their spectral contributions in the proposed model
Path Category Path Probability Contribution parameters

pathg
s0g − ei − o (1 − Q)(1 − P )ai ei

P, Q, K ∈ [0, 1]
s0g − ei − ej − o Paiaj ei ⊙ ej

pathdiff s0diff − ei − o Qai T (s0diff) · ei

pathN s0N − ei − o (1 − Q)(1 − P )ai Kχ ⊙ ei

x =
2∑

L=1
(

∑
s0g∈S

· · ·
∑

sL∈S

)P (pathg)T (s0g)
L∏

k=1
T (sk)+

+
1∑

L=1
(

∑
s0N∈S

· · ·
∑

sL∈S

)P (pathN)T (s0N)
L∏

k=1
T (sk)+

1∑
L=1

(
∑

s0diff∈S

· · ·
∑

sL∈S

)P (pathdiff)T (s0diff)
L∏

k=1
T (sk)

=(1 − Q)(1 − P )
p∑

i=1
aiei + P

p∑
i=1

p∑
j=1

aiajei ⊙ ej+

(1 − Q)(1 − P )K
p∑

i=1
aiei ⊙ χ + QT (s0diff)

p∑
i=1

aiei

(5.27)

In sunlit regions, the global solar illumination s0g is the main illumination source, and the
proposed model retains most of the assumptions for s0g made by the SMLM model. One
difference is that we constrain the parameter P within [0, 1], in order to preserve its physical
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interpretation. Moreover, with the aim of keeping all types of nonlinear interactions up to
the same order, the proposed model limits nonlinear interactions of an incoming light ray up
to the second order. In the specific, the following assumptions for s0g are made:

• An incoming light ray from the global illumination source will interact with at least
one material in a pixel. After each interaction with a material, the ray will have
probabilities P and (1 − P ) of undergoing further interactions within the current pixel
or escaping the current pixel, respectively.

• As the shadowed part of a pixel does not have a direct line of sight to the sun, the
probability that the reflected light escapes a partly shadowed pixel after the first
interaction is re-scaled with (1 − Q), with Q ∈ [0, 1] the fractional value of the shadow
in the pixel. Thus, after the first interaction with a material, the light ray will have
a probability (1 − Q)(1 − P ) of escaping the current pixel. On the other hand, the
shadowed part of a pixel can receive reflected light from s0g , thus the probability of a
secondary reflection remains P without re-scaling with (1 − Q).

These assumptions for the global illumination source lead to two possible light paths:
P (pathg) = P (Ξ0 = s0g , Ξ1 = s1, Ξ2 = o) = (1 − Q)(1 − P )al, (l = 1, · · · , p) for L = 1 and
P (pathg) = P (Ξ0 = s0g , Ξ1 = s1, Ξ2 = s2, X2 = o) = Paman, (m, n = 1, · · · , p)) for L = 2.
The spectral contribution of these two light paths is T (s0,g) ∏L

k=1 ek, with L = 1 and L = 2,
respectively.

In addition to receiving global illumination, the target pixel receives secondary reflections
from its neighborhood. The neighbor illumination source s0N follows the following assump-
tions:

• By keeping all types of nonlinear effects up to the second order, only neighboring
regions having a direct view of the sun can contribute to the target pixel. Thus, the
neighboring effect corresponds to the reflected light of a pixel after receiving the global
illumination s0g .

• Following the Lambertian law, by escaping the pixel, the scattered light ray from s0g

is reflected in all directions, including towards the sensor and neighboring pixels, with
equal probability of (1 − Q)(1 − P ).

• By assuming a homogeneous local neighborhood, the probability that a pixel scatters
light to its neighboring pixels is equal to the probability that the neighboring pixels
scatter light to the pixel, and is given by (1 − Q)(1 − P ).

• We define an additional parameter K ∈ [0, 1], i.e., a strength factor of neighbor
interactions, denoting the fraction of the scattered light from the neighborhood that is
received by the pixel.

Thus, the probability of the light paths, corresponding to the neighbor illumination source
are: P (pathN) = P (Ξ0 = s0N , Ξ1 = s1, Ξ2 = o) = (1 − Q)(1 − P )al, (l = 1, · · · , p) for L = 1.
The spectral contribution is T (s0N) ∏L

k=1 ek where T (s0N) = χ. The neighborhood is defined
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by a radius R. The neighborhood spectrum χ(i, j) of target pixel x(i, j) is computed as the
average spectrum of its neighboring pixels, weighted by their inverse distance to the target:

χ(i, j) =
∑R

s=−R

∑R
t=−R χ(i + s, j + t)ω(s, t)∑R

s=−R

∑R
t=−R ω(s, t)

(5.28)

where ω(s, t) = δ
D((i,j),(i+s,j+t)) and D denotes the Euclidean distance between two pixels

in the spatial domain. Since only neighboring regions having a direct view of the sun can
contribute to the target pixel, we exclude (partly) shadowed pixels when computing χ, by
using the δ symbol, where δ = 1 in full sunlit pixels with Q < 0.1, and δ = 0 otherwise.

Last but not least, the diffuse solar illumination s0diff plays an important role in shadowed
regions. The diffuse solar illumination is the scattered light by the atmosphere in all directions.
Since we aim to keep all types of nonlinear interactions up to the same order, i.e., the second
order, we regard only the linear interactions for s0diff . In the proposed model, the following
assumptions hold for s0diff :

• A light ray from the diffuse solar illumination source will interact with at least one
material. After the first interaction, the light ray will escaping the pixel with a fraction
of Q and reaching the observer.

Hence, the light path corresponding to the diffuse solar illumination source is: P (pathdiff) =
P (Ξ0 = s0diff , Ξ1 = s1, Ξ2 = o) = Qal, (l = 1, · · · , p) with the spectral contribution for L = 1.
The spectral contribution is T (s0diff) ∏L

k=1 ei where T (s0diff) = τ diff⊙Ls
τ dir⊙Ll+τ diff⊙Ls

.

5.2.5 Experimental Setup

One difficulty for the quantitative evaluation of the shadow-aware unmixing methods is that
the ground truth of abundances and shadow fractions is not available, and very difficult to
acquire in the case of shadows. Thus, we first validate our method on a simulated dataset
with known abundances and parameters for a quantitative evaluation of the performance
of the mixing models. Furthermore, we compare the unmixing methods on a real image
with simulated shadowed pixels. Finally, we show experimental results on real airborne
hyperspectral imagery without ground truth data, both quantitatively and qualitatively.

5.2.5.1 Datasets

• Synthetic Dataset
Considering that a validation dataset with (partly) shadows is not available and very
difficult to acquire, we validate our method on a simulated dataset to evaluate the
RE and AE quantitatively. We randomly select 10 endmembers from the United
States Geological Survey (USGS) spectral library of minerals ii, where each material
comprises 224 spectral bands ranging from 383 nm to 2508 nm. Abundances are then
randomly generated following the Dirichlet distribution that automatically enforces

iihttps://speclab.cr.usgs.gov/spectral-lib.html
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ANC and ASC. Then, hyperspectral data are generated following each of the considered
mixing models, i.e., LMM, Fan, SLMM, SMLM, Fansky and the proposed ESMLM.
Parameters P are randomly generated based on the half-normal distribution with
σ = 0.3. Values larger than one are set to zero, following the work in [150]. Other
parameters including Q ∈ [0, 1], F ∈ [0, 1], K ∈ [0, 1], γ ∈ [0, 1], b ∈ [−1, 1] are
generated following the uniform distribution. k1, k2, k3 are chosen the same as the ones
used for the real hyperspectral imagery in Section 5.2.5.2. Furthermore, we add white
noise with signal-to-noise ratios SNR = [50, 100] to the simulated dataset to assess
the noise impact on different unmixing methods.

• Real Dataset: Extended DLR HySU
The proposed method was validated on the extended DLR HySU dataset described
in Section 4.2, Chapter 4. In this experiment, we use the hyperspectral image with
simulated shadows but without random noise.

• Real Dataset: HySpex/3K
A subscene (see Fig. 5.15 (a)) is selected from the hyperspectral images in the
HySpex/3K dataset. Please refer to Section 4.1 in Chapter 4 for a detailed description
of this dataset. A spectral library of endmembers is generated by manually selecting
pure pixels of relevant materials in fully sunlit pixels of the image (Fig. 5.15 (b)). We
select endmembers manually, as the endmembers should be extracted from fully sunlit
pixels. In other words, to be able to use an automatic endmember extraction method,
one would have to find an shadow detection method that can distinguish fully sunlit
pixels from other pixels with ideally 100% accuracy, which is not easy to achieve in
reality. For validation and comparison of the proposed model, we selected two subsets
from the subscene (Fig. 5.15 (c) and (d)), which are dominated by shadow effects and
cover three different shadow types, described in Fig. 5.14 (b), (d), (e).

5.2.5.2 Unmixing Procedure

We compare the proposed model (ESMLM) with the following state of the art models: LMM
[76], Fan [87], SLMM [151], SMLM [151], and Fansky [198]. All algorithms were developed
in MATLAB and run on an Intel Core i7 −8650 U CPU, 1.90 GHz machine with 4 Cores and
8 Logical Processors. We use the MATLAB function FMINCON to perform the nonlinear
optimization. The processing time depends on the number of input pixels and endmembers.
Table 5.5 shows the running time of the compared models in the two subsets of the real
airborne hyperspectral imagery. The function and constraint tolerance are set to 10−10 and
10−8, respectively. The initial values of the abundances are set to 1

p and the initial values of
the unknown parameters F , Q, P , K are set to [1, 1, 0, 0].

For the methods considering skylight, i.e., the Fansky and ESMLM model, ten pairs of pixels
have been selected in the scene to compute the parameters k1, k2, and k3 by using Eq. (5.17).
Specifically, we select fully sunlit and shadowed pixels of the same pure material on the
high-resolution hyperspectral image, assuming that two pixels near a shadow boundary are
composed of the same material. Besides, we avoid vegetation materials during the pixel
selection to avoid nonlinear effects. Fig. 5.16 (a) shows an example of selecting one pair
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(a) (b)

(c) (d)

Figure 5.15: A subscene selected from the HySpex/3K dataset: (a) hyperspectral image as a true
color composite acquired by the HySpex sensor in the study area of Oberpfaffenhofen, Bavaria,
Germany; (b) endmember library, manually selected from (a); (c) and (d) true color composites of
subsets selected from image (a).

Table 5.5: Running time of compared models in the two subsets

Model Running time (s)
Subset1 (3135 pixels) Subset 2 (3328 pixels)

LMM 26.04 20.71
Fan 55.89 41.99

SLMM 34.23 24.50
SMLM 57.47 45.31
Fansky 522.28 381.49

ESMLM 203.72 204.83

of pixels. Fig. 5.16 (b) presents the ratios computed by 10 pairs of fully sunlit and fully
shadowed pixels. Assuming that the atmospheric conditions are constant in the entire region,
these parameters are assumed to be constant, and were set as: k1 = 1.296; k2 = 6.068;
k3 = 0.442.
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(a) (b)

Figure 5.16: Selection of 10 pairs of sunlit and shadowed pixels. (a) an example of the pixel selection
for computing parameters k1, k2, and k3 and (b) ratios computed from 10 pairs of pixels.

5.2.5.3 Experimental Design

Experimental results are shown in the following sections. In section 5.2.6 we perform a
quantitative analysis of the mean reconstruction error (RE) and mean abundance error (AE)
on the synthetic dataset simulated by the USGS spectral library. Quantitative evaluation
metrics are introduced in Section 2.5.3. In Section 5.2.7, we evaluate the unmixing results
on the extend DLR HySU dataset [188]. Specifically, the five ground targets are used to
validate abundance errors. Section 5.2.8 evaluates the spectral mixing models on the real
hyperspectral imagery without ground truth data, quantitatively and qualitatively. In
Section 5.2.8.1, we perform a quantitative analysis of the spatial and spectral reconstruction
errors. Moreover, we generate shadow-removed images in Section 5.2.8.2. This can be
achieved by “lightening up” the shadow fraction in a mixing model, if applicable. Some of
the unmixing methods output physically interpretable parameters, which provide valuable
information about the observed surface. We discuss qualitative results of output parameters
and abundances in 5.2.8.3 and 5.2.8.4. In section 5.2.8.5, we conduct an ablation study of
the proposed model and analyze the impact of each parameter on the experimental results.
Section 5.2.8.6 discusses the impact of endmember extraction methods on the unmixing
results. Finally, we demonstrate our proposed model on the entire test image in section
5.2.8.7.

5.2.6 Synthetic Dataset

Table 5.6 and Table 5.7 present RE and AE of mixing models at different noise level
following Eq. (2.29) and (2.30), respectively. The columns represent the spectral mixing
models according to which mixtures are generated, and the rows correspond to the methods
that were used to unmix the data. The last column conveys the mean performance of each
unmixing method for all types of generated mixtures. For each type of mixture, the first and
second best unmixing methods have been highlighted in red and green colors, respectively.
For all mixtures generated by the different models, the proposed unmixing method obtained
the best or second-best RE and AE among all comparing methods, and achieved the best
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results on average. Results indicate that the ESMLM model can tackle different kinds of
mixtures.

Table 5.6: Mean reconstruction error (RE) for the synthetic dataset
Noiselss LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0 0.9134 1.219 1.133 0.731 0.865 0.810
Fan 0.125 0 1.318 1.235 0.721 0.895 0.716

SLMM 0 0.913 0 0.122 0.262 0.248 0.258
SMLM 0 0.913 0.007 0.005 0.232 0.216 0.229
Fansky 0.054 0 0.050 0.052 0 0.060 0.036

ESMLM 0.002 0.050 0 0.013 0.018 0.002 0.014
SNR100 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0 0.915 0.038 0.242 0.723 0.606 0.421
Fan 0.124 0 0.159 0.353 0.043 0.232 0.152

SLMM 0 0.915 0 0.111 0.723 0.589 0.390
SMLM 0 0.915 0 0 0 0.565 0.367
Fansky 0.053 0 0.053 0.048 0 0.129 0.047

ESMLM 0.003 0.045 0.001 0.008 0.034 0.006 0.016
SNR50 LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0.029 0.916 0.043 0.243 0.723 0.607 0.427
Fan 0.128 0.035 0.160 0.353 0.051 0.234 0.160

SLMM 0.029 0.916 0.017 0.114 0.723 0.590 0.398
SMLM 0.029 0.916 0.017 0.016 0.723 0.567 0.378
Fansky 0.061 0.035 0.056 0.052 0.022 0.134 0.060

ESMLM 0.029 0.064 0.017 0.020 0.045 0.029 0.034

5.2.7 Real Dataset: Extended DLR HySU

Fig. 5.17 presents the obtained RE in fully sunlit pixels, (partly) shadowed pixels, and the
entire image, respectively, and Table 5.8 compares the AE of the ground targets made of
synthetic materials.

In fully sunlit pixels, reconstruction errors of linear and nonlinear models are similar,
indicating that the nonlinear effect plays a minor role in the study scene. On the other hand,
RE largely varies in (partly) shadowed pixels. When the shadow effect is taken into account,
RE significantly decreases in (partly) shadowed pixels and the lowest reconstruction errors
are obtained when considering the skylight.

Using the ground truth data from Table 4.2, the total number of pixels for each material is
representative for the total corresponding abundance in the image. Thus, we represent the
abundance estimation error by the absolute difference in number of pixels between ground
truth and estimated values over the five targets (Table 5.8). In addition, we present the total
(absolute and in percentage) estimation error by summing up the errors of all endmembers.
Besides, we compare abundance maps qualitatively for all materials in Fig. 5.18, where the
first column shows the reference abundance maps for easier comparison. Specifically, the
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Table 5.7: Mean abundance error AE for the synthetic dataset
Noiselss LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0 0.138 0.139 0.101 0.115 0.090

SLMM 0 0.082 0 0.031 0.044 0.046 0.034
SMLM 0 0.082 0.010 0.006 0.044 0.046 0.031
Fansky 0.032 0 0.067 0.036 0 0.031 0.028

ESMLM 0.001 0.010 0 0.007 0.013 0 0.005
SNR100 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0 0.137 0.139 0.101 0.115 0.090

SLMM 0 0.082 0 0.031 0.044 0.046 0.034
SMLM 0 0.082 0.010 0.006 0.044 0.046 0.031
Fansky 0.032 0 0.067 0.036 0 0.031 0.028

ESMLM 0 0.010 0 0.007 0.013 0 0.005
SNR50 LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0.001 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0.001 0.137 0.139 0.101 0.115 0.090

SLMM 0.001 0.082 0.004 0.031 0.044 0.046 0.035
SMLM 0.001 0.082 0.014 0.008 0.044 0.046 0.033
Fansky 0.032 0.001 0.067 0.036 0.001 0.031 0.028

ESMLM 0.002 0.010 0.005 0.008 0.014 0.003 0.007

Figure 5.17: Mean reconstruction error RE of fully sunlit pixels (in blue), (partly) shadowed pixels
(in orange), and the entire image (in yellow) in HySU dataset. Fully sunlit and (partly) shadowed
pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively.
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Table 5.8: Abundance error in number of pixels in the HySU dataset
Endmember LMM Fan SLMM SMLM Fansky ESMLM

Bitumen 50.422 53.184 43.019 43.430 9.504 1.366
Red-painted
Metal Sheets 6.529 6.051 2.234 2.286 4.097 0.702

Blue Fabric 12.232 12.299 10.234 10.356 0.837 0.108
Red Fabric 9.111 9.932 7.570 7.628 3.719 0.443

Green Fabric 6.471 6.229 10.020 10.029 1.832 2.614
Total 84.765 87.695 73.076 73.728 19.989 5.233

Total(%) 92.08 95.26 79.38 80.09 21.71 5.68

reference abundance maps are estimated using the shadow-free image through non-negative
least squares.

In sunlit regions, the LMM and the Fan model estimate correct abundances, but show high
abundance estimation errors compared to other methods in (partly) shadowed pixels. Among
all materials, the largest abundance error appears in bitumen, which has a relatively small
reflectance and is therefore easily confused with shadows. Besides, more confusion between
similar materials can be observed. An example appears in shadowed pixels of grass, where
the LMM and Fan models confuse those regions with green fabric.

Compared to the LMM and the Fan model, the SLMM and SMLM model perform slightly
better. In partly shadowed pixels, the SLMM and the SMLM model detect part of the
correct materials. However, some shadowed pixels of red fabric, which have been estimated
as bitumen by the LMM and Fan model, are confused with red metal sheets.

The Fansky and ESMLM models outperform SLMM and SMLM for the abundance estimation
of all ground targets, indicating that the wavelength-dependent skylight information can not
be well represented using a scaling parameter. Most shadowed pixels have been detected as
the correct material, resulting in largely decreased abundance estimation errors. The Fansky
model confuses between materials with similar spectra, such as green fabric and grass, as
well as red fabric and red metal sheets. In addition, it confuses blue materials with bitumen.
Compared to other models, the ESMLM model achieves the best performance and can detect
most ground targets with a total abundance estimation error of 5.233 pixels (corresponding
to 5.68%). Specifically, the ESMLM model can better identify similar materials in shadowed
pixels thanks to the advantageous and flexible modeling of nonlinear effects.

5.2.8 Real Dataset: HySpex/3K

5.2.8.1 Reconstruction Errors

The RE of each of the two subsets for all compared methods is depicted in Fig. 5.19. Separate
results are shown for fully sunlit, (partly) shadowed pixels and the entire image, respectively.
(Partly) shadowed pixels are identified using Q > 0.1, while fully sunlit pixels are identified
using Q ≤ 0.1, where Q values are computed using the proposed model. Results suggest
that reconstruction errors highly depend on if and how the models consider the illumination
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Figure 5.18: Abundance maps from the HySU dataset. Top to bottom: bitumen, red metal sheets,
blue fabric, red fabric, green fabric, and grass. Left to right: reference, LMM, Fan model, SLMM,
SMLM model, Fansky model, and ESMLM model. The reference abundance maps are computed
using the shadow-free image through non-negative least squares.
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(a) (b)

Figure 5.19: Mean reconstruction error (RE) of fully sunlit pixels (in blue), (partly) shadowed
pixels (in orange), and the entire image (in yellow), for subset 1 in (a) and subset 2 in (b). Fully
sunlit and (partly) shadowed pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q
values are computed using the ESMLM model.

conditions and the nonlinearity. In (partly) shadowed pixels, the reconstruction errors largely
decrease when using shadow-aware mixing models, i.e., the SLMM, SMLM, Fansky and
ESMLM models. Among all shadow-aware models, the Fansky and ESMLM models consider
the skylight information, and thus outperform other models. Compared to the Fansky model,
ESMLM obtained the smallest reconstruction errors in (partly) shadowed pixels, especially
when areas are shaded by vegetation, such as in subset 2. Since both models consider
skylight information, this implies that the ESMLM model treats the nonlinearity better than
the Fansky model in (partly) shadowed pixels. In sunlit regions, the reconstruction errors
appear larger in subset 2, where the ground surface is covered mostly by vegetation. The
Fan and Fansky models attained slightly lower errors than the linear models, but yielded
higher errors than the ESMLM model regarding the neighborhood interactions. Overall, the
ESMLM model attained the best pixel reconstruction and, in this respect, it produced a
better representation of the ground mixtures.

Fig. 5.20 shows spectral reconstruction errors SRE(λ) (Eq. (2.31)), which denote how well
a spectral mixing model represent input pixels as a function of wavelength. When a mixing
model obtains a good spectral representation, we expect the SRE values to be constant and
small for all wavelengths. Instead, if SRE largely varies as a function of λ, the spectral
unmixing method is not capable of dealing with specific wavelength-dependent effects. As
both subsets contain large shadowed regions, the LMM and Fan models obtained the largest
errors over the entire wavelength range. The SLMM and SMLM models obtained higher
errors in the lower spectral range of 400−500nm, because these assume the shadow effects to
be wavelength-independent, and ignore the skylight which has the highest impact at shorter
wavelengths. In subset 2, the SREs appear larger at longer wavelengths, and the spectral
behavior of the errors shows vegetation characteristics. Compared to the Fansky model, the
ESMLM model shows less vegetation characteristics, indicating that it provides a better
spectral reconstruction performance for vegetation.



94 5. Summary of the Contributions

(a) (b)

Figure 5.20: Spectral reconstruction errors (SRE) as a function of wavelength for subset 1 in (a)
and subset 2 in (b).

Input SLMM SMLM Fansky ESMLM

Figure 5.21: Shadow-removed reconstructed images (true color composites) of subset 1 (first row)
and subset 2 (second row).

5.2.8.2 Shadow-Removed Pixel Reconstruction

For spectral mixing models containing the shadow-related parameter Q, it is possible to
perform shadow removal through pixel reconstruction. The idea is to “lighten up” the shadow
fraction in a pixel, by replacing the illumination source for shadowed regions with the one
for sunlit regions. In other words, the restoration process simulates that shadowed regions
are exposed to direct solar illumination. Since SLMM and SMLM models do not contain
the diffuse illumination source for shadowed regions, shadow removal can be performed by
setting Q = 0 in the mixing models. For the Fansky and ESMLM models, we generate the
restoration results by replacing T (s0diff) with T (s0g) in the mixing models. Fig. 5.21 shows
the input and shadow-removed images for visual comparison. Since the shadow removal is
performed by replacing the illumination sources in the mixing models, the shadow fraction
Q has been naturally embedded in the restoration process, yielding physical-interpretable
transitions at shadow boundaries in the shadow-removed images. As the values of Q are
fractional in the range [0, 1], a more realistic representation of shadows is provided.

Due to the lack of ground truth of the actual spectral reflectance and thus the actual
pixel composition under the shadows, the shadow-removed images can only be qualitatively
compared. For a more quantitative evaluation of the performance of shadow removal, we
additionally designed an alternative test, by assuming that the region around a shadow
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boundary should contain similar materials (see Fig. 5.22). In each subset we selected 7
regions, each consisting of sunlit pixels (located at the yellow markers) and (partly) shadowed
pixels (located at the cyan markers) around a shadow boundary (Figs. 5.22 (a) and (e)).
Spectra in sunlit pixels are selected from the input image, while spectra in (partly) shadowed
pixels are selected from the restored image. In each region, the spectra of sunlit and (partly)
shadowed pixels are individually averaged, resulting in 7 pairs of spectra, each consisting
of a sunlit and a shadowed spectrum around a shadow boundary. The band-wise absolute
differences between the sunlit and shadowed spectra are averaged over all 7 pairs, and plotted
as the spectral error in Figs. 5.22 (b) and (f). In addition, in subset 1 we individually
consider shadows caused by man-made objects, completely blocking direct sunlight, and
shadows caused by vegetation that can partly block direct sunlight (Figs. 5.22 (c) and (d)).

The visual comparison of Fig. 5.21 can be interpreted, depending on the skylight information
being taken into account or not. When excluding the skylight information (i.e., SLMM and
SMLM models), results show less noise in shadowed restored regions. However, texture
and spectral information can be lost in shadow areas, leading to a non-natural restoration
result, and incorrect spectral information of the pixel composition under the shadow. In
addition, the SMLM model has not removed all shadows, due to an inaccurate estimation of
its parameters (see Section 5.2.8.3).

In contrast, the models that account for skylight show increased noise levels (Fig. 5.21),
but on average perform better in restoring the spectral information in shadowed pixels (Fig.
5.22). The Fansky model behaves inconsistently in different types of shadows. Specifically, it
performs worse than SLMM in the regions shadowed by vegetation (Fig. 5.22 (d) and (f)),
probably due to its specific modeling of the nonlinearities. The proposed ESMLM model
performs consistently better for different types of shadows, indicating the importance of the
nonlinear modeling in shadow-aware mixing models.

5.2.8.3 Model Parameters

Some of the compared spectral mixing models generate physically interpretable pixelwise
parameters providing valuable information. Fig. 5.23 shows the output parameter maps.
All compared mixing models, except LMM and Fan, output Q, representing the fraction
of shadows at sub-pixel level. Depending on the way the shadow effect is modeled, two
categories of Q maps can be differentiated. The SLMM and the SMLM models treat shadow
as a simple scaling effect without including skylight information. Despite Q being the spatial
fraction of shadow in a pixel, it serves two functionalities here. One is to reduce the observed
reflectance by scaling out the shadowed part Q of a pixel. The other is to use the remaining
fractional value 1 − Q to “lighten up” the shadowed regions. From the figure, on can
clearly observe that the Q values from SLMM and SMLM are consistently underestimated
in shadowed pixels, because even in heavily shadowed regions the reflectance, although very
small, is not equal to zero. Compared to the SLMM, the SMLM model can underestimate
Q in (partly) shadowed pixels by overestimating the P values, such as in vegetation shadows
in subset 2 and on the boundaries of the shadowed regions by the building in subset 1. The
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Figure 5.22: Spectral comparison between shadowed pixels in shadow-removed images and their
corresponding sunlit pixels belonging to the same material in local neighborhoods. Subset 1: (a)
locations of selected pairs of pixels, sunlit pixels are marked in yellow and (partly) shadowed pixels are
marked in cyan, (b) spectral error (all regions), (c) spectral error in regions shadowed by man-made
objects, (d) spectral error in regions shadowed by vegetation. Subset 2: (e) location of selected pairs
of pixels, sunlit pixels are marked in yellow and (partly) shadowed pixels are marked in cyan, (f)
spectral error over all regions (all regions are shadowed by vegetation).
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Figure 5.23: Output parameter maps, from top to bottom: F (sky view factor), Q (spatial fraction
of shadows), P (probability that a light ray undergoes additional interactions with endmembers),
K (a strength factor of neighbor interactions, denoting the fraction of the scattered light from the
neighborhood that is received by the pixel). Compared models, from left to right: Fansky, SLMM,
SMLM, ESMLM.

inaccurate estimation of Q greatly decreases the performance for shadow removal (Fig. 5.21).
In contrast, the ESMLM and Fansky models use the skylight to “lighten up” the shadowed
areas, yielding a better estimation for Q. Compared to the Fansky model, the ESMLM
model generates better Q maps, thanks to its superior nonlinear modeling. In subset 2, the
ESMLM model estimates higher values of Q in fully shadowed pixels and can detect partial
shadows in the bottom right area.

Beside shadows, the nonlinear behavior of the mixing models is also an important aspect.
Fig. 5.23 shows the two parameters relevant to the nonlinearity, i.e., P and K, which
describe within- and between-pixel optical interactions at the second order, respectively. The
P parameter in the ESMLM model follows the definition from [151]. Although P can be
negative in the SMLM model, we constrain P ∈ [0, 1] in this work in order to keep its physical
interpretation. The P maps of SMLM and ESMLM follow similar patterns, with increasing
values in vegetated regions. In SMLM, P can have high values in (partly) shadowed pixels
where Q is close to zero. This artifact can be observed on shadow boundaries of the building
in subset 1, and tree-shadowed regions in both subsets. The ESMLM model shows a better
estimation of both P and Q, due to the inclusion of skylight information.

The ESMLM model outputs high values of K, dominantly in (partly) sunlit vegetated areas,
where pixels are expected to receive reflections from their neighborhood. Those regions
show significantly lower reconstruction errors in the ESMLM model than in other models,
indicating the advantage of modeling the neighbor interactions in the ESMLM model.

Finally, models accounting for skylight (ESMLM and Fansky) additionally output the
topographic related parameter F , indicating the sky fraction that a ground pixel can “see”.
It is worth noting that F is only valid in (partly) shadowed pixels, as F is only involved in
the skylight terms of the ESMLM and Fansky models. In this work, we set F = 0 in regions
where Q ≤ 0.1. Compared to the Fansky model, the ESMLM model is superior in estimating
values of F in regions shadowed by vegetation. An example is shown in the upper-left
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corner of subset 2, where the Fansky model obtained zero F , and thus merely reconstructs
shadows by scaling sunlit pixels. Instead, the ESMLM model can balance the values of F by
contributions of P . In regions where Fansky produces F = 0, the reconstruction errors of
the ESMLM model are consistently lower by a value of 0.03 on average.

5.2.8.4 Abundances

Besides parameters, the proposed method outputs abundances that present the material
components at sub-pixel level. Since we do not have ground truth data for this real dataset,
we evaluate abundances qualitatively in this section. Fig. 5.24 and Fig. 5.25 show the
abundance maps for all comparing models in two subsets. For each subset, we present two
aggregate abundance maps of impervious surfaces and vegetation, by grouping materials
with similar spectra.

Abundances in fully sunlit pixels are comparable among all models, while abundance maps
show noticeably different patterns in (partly) shadowed pixels, depending on if and how
the shadow and nonlinear effects are considered. In the LMM and Fan model, vegetation
and impervious surface in the (partly) shadowed pixels are detected indiscriminately as
impervious material. The reason is that the endmember library contains some impervious
materials with low reflectances that are more similar to shadow spectra. Nevertheless, the
LMM and Fan model show large RE values in (partly) shadowed pixels, indicating their
unsatisfactory spectral representation in shadowed areas.

Results largely improve when considering shadow as a scaling effect, as is done by the SLMM
and SMLM model. In the shadowed vegetation areas, SLMM and SMLM perform significantly
better. Nevertheless, a small amount of impervious surface remains in shadowed vegetation
areas, because it is used to compensate for the inaccuracy of the shadow modeling.

The Fansky and ESMLM models, that consider the skylight information, improve the
performance in shadowed vegetation regions while introducing more noise. Compared to the
Fansky model, the ESMLM model presents better results on vegetation shadows, thanks to
the advantageous modeling of the nonlinear effects.

Some open questions remain for the deeply shadowed pixels caused by vegetation. For
example, abundances in the shadowed impervious regions are not as large as expected in
subset 2. One reason can be that the incoming light from the global illumination firstly
interacts with trees before reaching the road, mixing vegetation features in the back-scatted
signal in those regions. On the other hand, the LMM and Fan model estimate those regions
as pure impervious materials, but it doesn’t mean that they perform better, because they
mainly confuse the shadowed pixels with impervious materials in the entire region.

5.2.8.5 Ablation Study

This section shows the results of an ablation study of the ESMLM model and analyzes the
impact of the parameters P , Q, K by setting them to zero one at a time. Similar to the
above experiments, we analyze the results in terms of reconstruction errors (Figs. 5.26 and
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Figure 5.24: Abundance maps of the real hyperspectral imagery without ground truth for subset 1.
First row: abundances of impervious materials; second row: abundances of vegetation.

LMM Fan SLMM SMLM Fansky ESMLM

Figure 5.25: Abundance maps of the real hyperspectral imagery without ground truth for subset 2.
First row: abundances of impervious materials; second row: abundances of vegetation.

5.27), shadow-removed reconstruction (Figs. 5.28 and 5.29), and output parameter maps
(Fig. 5.30). We discuss the effect of each parameter in the following subsections.

• The Role of Q

Q is the key parameter for modeling shadows. When Q = 0, the skylight-related terms
become zero. Shadow removal cannot take place (Fig. 5.28), and mean spectral errors
would become undesirably large in Fig. 5.29. As the shadow-related terms are removed,
RE largely increases in shadowed regions in subset 1. In addition, SRE goes up for all
wavelengths, and a significant increase is observed in the spectral range of 400 nm and
550 nm. This change is caused by the lack of skylight terms, which largely impacts
on shorter wavelengths. In subset 2, RE does not considerably increase in (partly)
shadowed pixels (Fig. 5.26 (b)), while SRE increases at shorter wavelengths in the
spectral range of 400 nm and 500 nm (Fig. 5.27 (b)). The reason is that P replaces the
role of Q to compensate for the reconstruction loss. In Fig. 5.30, it can be observed
that the contribution of P increases. Despite a better reconstruction, this leads to an
incorrect estimation of the parameters. This indicates that reconstruction errors can
not be the only measure to evaluate the performance of mixing models.



100 5. Summary of the Contributions

(a) (b)

Figure 5.26: Mean reconstruction error (RE) in the ablation study for subset 1 in (a) and subset 2
in (b). Blue: fully sunlit pixels; Orange: (partly) shadowed pixels; Yellow: the entire image. Fully
sunlit and (partly) shadowed pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q
values are computed using the full model.

(a) (b)

Figure 5.27: Spectral reconstruction error (SRE) as a function of wavelength in the ablation study
for subset 1 in (a) and subset 2 in (b).

ESMLM ESMLM:P=0 ESMLM:K=0 ESMLM:Q=0

Figure 5.28: Shadow-removed reconstructed images (true color composites) in the ablation study
for subset 1 (first row) and subset 2 (second row).
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Figure 5.29: Ablation study: spectral comparison between shadowed pixels in shadow-removed
images and their corresponding neighboring sunlit pixels, containing the same material. Subset 1:
locations of selected pairs of pixels in (a), spectral errors in all regions in (b), in regions shadowed by
man-made objects in (c), and in regions shadowed by vegetation in (d). Subset 2: location of selected
pairs of pixels in (e), spectral errors in all regions (all regions are shadowed by vegetation) in (f).
The ablated model with Q = 0 is not in the comparison, because it would exclude the shadow effect,
causing undesirably large spectral errors.
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Figure 5.30: Parameter maps in the ablation study. From top to bottom: F (the sky view factor), Q
(the spatial fraction of shadow), P (the probability that a light ray undergoes additional interactions
with endmembers), K (a strength factor of neighbor interactions, denoting the fraction of the scattered
light from the neighborhood that is received by the pixel). From left to right: the ESMLM model,
the ablated ESMLM models, with P = 0, K = 0, and Q = 0 , respectively.

• The Role of P

P is relevant for the within-pixel nonlinear behavior. Removing P does not affect
reconstruction errors (Figs. 5.26 and 5.27), because Q and K compensate for the
reconstruction loss. However, removing P impacts the estimation of other parameters
(Fig. 5.30 (b)). When P = 0, the neighbor effect term (1 − Q)(1 − P )K ∑p

i=1 aiei ⊙ χ

becomes the only second-order reflection term in the model. Thus, the ablated model
will estimate inaccurate values for Q, K, and F in vegetation shadows, where P is
expected to have contributed. In addition, P plays an important role in removing
shadow. When reconstructing the shadow-removed images, the sunlit regions should
remain unchanged. However, we observed that the spectral distance using the L2-norm
between input and restored images in sunlit regions increased consistently by a value
of 0.025 on average in sunlit regions when P = 0, compared to the full model.

• The Role of K

K is related to the between-pixel optical interactions that occur mainly in vegetated
regions. When K = 0, the reconstruction errors largely increase in (partly) sunlit pixels
(Fig. 5.26). In addition, SRE increases at longer wavelengths, which is caused by not
accounting for the multiple interactions of vegetation in the local neighborhood. (Fig.
5.27). At shorter wavelengths, SRE only slightly increases, because the ablated model
contains the key parameter Q for modeling shadows. The performance of shadow
removal decreases when K = 0: shadow-removed images lose textural information (Fig.
5.28), and the mean spectral errors increase in subset 2, where vegetation dominates
(Fig. 5.29 (f)).
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5.2.8.6 Comparison Between Manual and Automatic Endmember Extrac-
tion Methods

In this section, we analyze the impact of endmember extraction methods on the result of
the two subsets of the real hyperspectral image, and compare the unmixing results using
manually extracted endmembers with those using automatically extracted endmembers.
Considering the shadow issue, we designed a simple but effective method to select fully
sunlit pixels before automatic endmember extraction. First, we carefully set an empirical
threshold (set to 0.08 in this work), and then select pixels with mean reflectance larger than
0.08 as candidate sunlit pixels. However, candidate sunlit pixels may include partly sunlit
pixels located at shadow boundaries. Thus, we additionally apply a Canny edge detector
[209] to remove all boundary pixels from sunlit pixels candidates. In addition, considering
endmember variability, we apply the method in [210] to extract endmember bundles based
on Vertex Component Analysis (VCA) [71]. Finally, we merge endmembers with similar
reflectances and show the selected endmembers in Fig. 5.31 (c).

We apply the automatically extracted endmembers to the two subsets of the real airborne
hyperspectral imagery without ground truth. First, we compare the RE for subset 1 and 2
in Fig. 5.31 (f) and (g), respectively. Results depict that RE in (partly) shadowed pixels
is comparable between automatic and manual endmember extraction methods. This is
expected because (partly) shadowed pixels are excluded from the endmember extraction. In
sunlit pixels, reconstruction errors decrease for all unmixing methods while their relative
relationship remains, indicating that a better endmember library can be extracted using
automatic endmember extraction. Moreover, we compare the output parameters (F , Q, P ,
and K) by the histogram of the parameter differences between the manually and automatically
endmembers in Fig. 5.31 (a), (b), (d), (e). The differences between parameters estimated by
two endmember libraries remain small, implying that results are not very sensitive to the
endmember extraction method. We can conclude that manually extracted endmembers can
be applied in our work.

5.2.8.7 Experimental Results and Discussion: the Entire Test Image

Finally, we applied the proposed model to the entire test image, resulting in RE of 0.04
in fully sunlit pixels, 0.03 in (partly) shadowed pixels, and 0.03 in the entire image. The
low variation of RE values between different categories of pixels indicates that the ESMLM
model provides a robust pixel representation over various illumination conditions and local
structures. In addition, the output parameters of the entire image (Fig. 5.32 (b-e)) follow
similar patterns as in the subset images. By interpreting the parameters, one can easily
detect the different illumination conditions and local structures illustrated in Fig. 5.14.
Specifically, (partly) shadowed pixels contain high Q values, while K mainly contributes in
(partly) sunlit vegetated regions, and becomes typically higher when vegetation has larger
height variations, such as trees. Compared to K, P mainly plays a role in (partly) shadowed
pixels occluded by vegetation. Besides indicating the local structures, output parameters
also play an important role in reconstructing the shadow-removed image shown in Fig. 5.32
(a).
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Figure 5.31: Comparison between manual and automatic endmember extraction methods. Auto-
matically extracted endmembers in (c), RE computed by unmixing methods with automatically
extracted endmembers for subset 1 in (f)) and subset 2 in (g), where blue, orange, and yellow colors
represent fully sunlit pixels, (partly) shadowed pixels, and the entire image, respectively. Fully sunlit
and (partly) shadowed pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q values are
computed using the ESMLM model. Histogram of the absolute difference between manually and
automatically extracted endmembers of parameter F in (a), Q in (b), P in (d), and K in (e).

(a) (b) (c)

(d) (e) (f)

Figure 5.32: Results on the entire test image. (a) True composites of original image, (b) shadow-
removed image. Parameter outputs F , Q, P , and K, are depicted in (c), (d), (e) and (f), respectively.
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5.2.9 Summary

This section proposes an extended shadow multilinear (ESMLM) model for hyperspectral
images based on radiative transfer theory, addressing shadow and nonlinear effects. The
proposed model follows a graphical framework, and sums up all possible radiation paths
initiated by the illumination sources. Three illumination sources are considered: direct,
diffuse, and neighboring illuminations. The proposed model considers different shadow
variants, i.e., fully shadowed pixels, partly shadowed and spatially separable pixels, and
partly shadowed but spatially inseparable pixels. Additionally, two types of nonlinear
interactions for different illumination conditions are modelled. Physical assumptions are
made to simplify the ESMLM model, leading to four physically interpretable parameters:
P (the probability that a light ray undergoes additional interactions with endmembers),
Q (the spatial fraction of shadow), F (the sky view factor), and K (a strength factor of
neighbor interactions, denoting the fraction of the scattered light from the neighborhood
that is received by the pixel). Given these physically interpretable parameters as output,
the proposed model characterizes the local structures of the ground surface and allows to
reconstruct a shadow-removed image by simply “lighten up” the shadow-related terms.

The proposed model is compared with state-of-the-art mixing models on both synthetic
dataset and real images with qualitative and quantitative measures. We first analyze re-
construction and abundance errors on simulated data with and without additional noise.
After that, we simulate (partly) shadowed pixels in a real hyperspectral imagery with known
abundance ground truth, and evaluate the performance of different mixing models. Further-
more, we analyze the unmixing models in airborne hyperspectral images with real shadowed
pixels. Specifically, we discuss the reconstruction errors in spatial and spectral domains,
and we compare shadow-removed images and model output parameters. Experimental
results demonstrate that the proposed model performs consistently better in different ground
scenarios with various illumination conditions. Moreover, we conduct an ablation study of
the ESMLM model, in which we study the role and significance of each parameter separately.
Experimental results demonstrate that the full model performs better than the ablated
models.

Several open problems remain. Firstly, when including the skylight information, the shadow-
removed images contain higher levels of noise, caused either by the low signal-to-noise ratio,
or by strong nonlinear effects that take place in (partly) shadowed pixels. In addition,
spectral errors of the proposed model, even though lower than in other models, remain large
in some shadowed regions. Future work concerns including spatial information in the mixing
model to promote spatial correlations among pixels.
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5.3 Spatial-Spectral Shadow-Aware Mixing Model
Current shadow-aware hyperspectral unmixing methods often suffer from noisy abundance
maps and inaccurate abundance estimation of shadowed pixels, as these are characterized
by low reflectance values and signal-to-noise ratio. In order to achieve a shadow-insensitive
abundance estimation, we propose a novel spatial-spectral shadow-aware mixing model
(Spatial-spectral Shadow-aware Mixing (S3AM)). The approach models shadows by consider-
ing diffuse solar illumination and secondary illumination from neighbouring pixels. Besides,
spatial regularization using shadow-aware weighted Total Variation is employed. Specifically,
pixels in the local neighborhood of a target pixel take simultaneously into account spectral
similarity measures derived from the imagery, elevation similarity measures derived from
a Digital Surface Model, and the impact of shadows. The sky view factor F , needed as
input for the model, is also derived from available Digital Surface Models (DSMs). The
proposed approach is extensively validated and compared to state-of-the-art methods on two
datasets. Results demonstrate that S3AM yields superior abundance estimation maps for real
scenarios, by decreasing the noise in the results and achieving more accurate reconstructions
in the presence of shadows.

5.3.1 Introduction

Spectral unmixing is a fundamental hyperspectral image analysis technique analyzing the
composition of an image element at sub-pixel level [62, 66, 217]. A spectral mixing model
describes how an incoming light ray from a given illumination source interacts with the
targets on ground, before it is scattered back to the spectrometer [151]. In the past decades,
numerous spectral mixing models with different physical assumptions have been proposed to
tackle linear and nonlinear optical interactions [76, 86, 87, 89, 150, 161]. An introduction of
spectral unmixing is detailed in Section 2.5.

One challenge for spectral unmixing is posed by shadow effects. Several methods have been
developed to address this issue based on various strategies [149, 151, 162, 164, 165, 198, 199].
Their main idea is modeling spectra using endmembers and hyperparameters that can be
relevant to shadow effects. Later, shadow-related parameters can be solved together with
abundances, which are then used for computing shadow-removed images based on pixel
reconstruction. Reviews on shadow-aware spectral unmixing methods are detailed in Chapter
3.

Nevertheless, several shadow-related challenges remain. Since the contribution from diffuse
illumination is significantly smaller with respect to global illumination, modeling shadows
with diffuse solar illumination terms may lead to over-fitting of the optimization problem.
Moreover, the signal-to-noise ratio in shadowed pixels is much lower with respect to sunlit
pixels. These factors lead to inaccurate abundance estimations and noisy abundance maps
[199].

The above-mentioned problems may be solved by exploiting the spatial information in
shadow-aware spectral unmixing methods. Spatial-spectral unmixing approaches consider
the spatial dependence in local and non-local neighborhoods. On the one hand, in local
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neighborhoods, abundances at a specific pixel are assumed to be strongly correlated to the
ones of neighboring pixels [169, 175]; on the other hand, in non-local neighborhoods, similar
patches in a larger region are assumed to share similar texture [176, 177].

In order to partly resolve the above challenges, we propose a spectral unmixing method with
shadow-aware spatial constraints obtained from a hyperspectral image and a corresponding
DSM generated by multi-view stereo imagery.

• Inspired by our previous work in Section 5.2, the spectral mixing model accounts
for typical ground scenarios in the presence of shadows and nonlinear optical effects
by considering multiple illumination sources: global solar illumination, diffuse solar
illumination, and secondary illumination from neighbouring pixels. Specifically, global
solar radiation is assumed to be the main illumination source for sunlit pixels, while
diffuse solar radiation dominates in shadowed pixels. A ground pixel may receive light
from some or all of the illumination sources, creating flexible spectral modeling for
pixels with different illumination conditions.

• In order to alleviate the impact of shadows on the estimation of abundances, we propose
a weighted TV constraint with shadow-insensitive weighting factors. Weighting factors
are computed from the spectral angle and elevation differences between a target pixel
and its neighboring pixels. In addition, a pre-computed shadow-related parameter
is included in weighting factors in order to decrease the contribution of shadowed
neighboring image elements of the target pixel.

• We inject elevation information from the DSM into the model in two ways. First, the
elevation data provide illumination-insensitive TV weights, beneficial to the abundance
estimation in shadowed pixels. Second, rather than being an additional model param-
eter, the sky view factor (F ), required to calculate the contribution of diffuse solar
illumination, is previously obtained from the elevation data, additionally decreasing
the complexity of the spectral mixing model.

• We extensively validate the proposed method on two real hyperspectral images including
shadows, both quantitatively and qualitatively. The proposed model significantly
decreases the noise level in abundance maps, shows good robustness to shadow effects,
and obtains more homogeneous abundance maps.

The remainder of this section is organized as follows. Section 5.3.2 introduces the proposed
spatial-spectral shadow-aware mixing model with spatial constraints (S3AM). The proposed
model is solved using the algorithm in Section 5.3.3. Section 5.3.4 describes the experimental
setup, including datasets, compared methods, optimal parameter settings, and computational
resources. Section 5.3.5 and Section 5.3.6 report and assess experimental results on two real
datasets. Finally, we summarize our work and give prospects for future developments in
Section 5.3.7.
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5.3.2 Proposed Method

The proposed method is built upon the second contribution of this dissertation, namely
the ESMLM model. We briefly remind the main concepts of the ESMLM model and its
representation reported in Eq. (5.29). For further details, interested readers are referred to
the extensive description in Section 5.2.

Denote a hyperspectral image with B spectral bands and N pixels as X ∈ RB×N , with
X = [x1, x2, · · · , xN ], where pixel xj = (xj,1, xj,2, · · · xj,B)T ∈ RB×1. An endmember library
E ∈ RB×p consists of p endmembers, where the i-th endmember is denoted as ei ∈ RB×1.
The averaged spectrum in the first-order neighborhood of pixel xj is denoted as χj ∈ RB×1.
Denote an abundance matrix related to E as A = [a1, a2, · · · , aN ], with aj ∈ Rp×1. In
addition, four pixelwise parameters at pixel j are denotes as Pj , Qj , Kj , Fj , and their
corresponding vector forms are denoted as P , Q, K, F .

Spectral mixing models can be constructed by a ray-based description of the interaction of the
incoming light with the ground materials [151, 199]. Following some physical assumptions, a
light ray initiated from an illumination source interacts with ground materials with given
probabilities before being scattered back to the sensor. The ESMLM model is based on
ray-based descriptions. In order to account for shadows, the ESMLM model allows various
illumination conditions in an image and accounts for typical scenarios related to the types and
distribution of ground materials. Specifically, the ESMLM model considers three illumination
sources: global solar illumination, diffuse solar illumination, and secondary illumination
from neighbouring pixels. A light ray from each illumination source follows certain physical
assumptions. For a given pixel xj , the ESMLM model sums up contributions of possible
light rays initiated from all three illumination sources, as follows:

xj =(1 − Qj)(1 − Pj)
p∑

i=1
aj,iei + QjT (s0diff) ⊙

p∑
i=1

aj,iei

+ aj,ieiPj

p∑
i1=1

p∑
i2=1

aj,i1aj,i2ei1 ⊙ ei2

+ (1 − Qj)(1 − Pj)Kj

p∑
i=1

aj,iei ⊙ χj

(5.29)

where ∑p
i=1 aj,i = 1, ∀i: aj,i ≥ 0, and Pj , Qj , Kj ∈ [0, 1].

T (s0diff) is computed as:

T (s0diff) = τ diff ⊙ Es
τ dir ⊙ E l + τ diff ⊙ Es

(5.30)

where τdiff(λ)Es(λ)
τdir(λ)El(λ) = F (k1λ−k2 + k3) with k1, k2, k3 > 0.

The ESMLM model provides flexible nonlinear modeling with four parameters (P , Q, K and
F ) and accounts for different illumination conditions in an image element. Such flexibility
brings challenges in solving the reverse problem due to the non-convexity of the objective
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function. In particular, the ESMLM model becomes tri-convex, making it rather challenging
to acquire a satisfying solution through the ADMM approach [97, 218].

In this section, we propose a spatial-spectral shadow-aware mixing (S3AM) model by
embedding of spatial information. In order to make our problem bi-convex for an improved
convergence ([97, 218]) we simplified the ESMLM model in two aspects. First, we set
P = 0, because the inner-pixel second-order optical interactions have been observed to have
minor impact on spectral unmixing results. Besides, we assume that the neighboring pixels
contribute equally to a target pixel regardless of their illumination conditions, so that the
neighbor illumination term is re-scaled solely according to parameter K.

The simplified model at pixel j is given by:

xj =(1 − Qj)yj + Qjyj ⊙ f̃ j + Kjyj ⊙ χj

=(1B − 1BQj) ⊙ yj + 1BQj ⊙ yj ⊙ f̃ j

+ 1BKjyj ⊙ χj

=E ⊙ (1B − 1BQj + 1BQj ⊙ f̃ j + 1BKj ⊙ χj)1T
p aj

=Ẽjaj

(5.31)

where
f̃ j = Fj · (k1λ−k2 + k3)

1 + Fj · (k1λ−k2 + k3)
(5.32)

yj = Eaj =
p∑

i=1
aj,iei (5.33)

Ẽj = E ⊙ ((1B − 1BQj + f̃ jQj + χjKj)1T
p ) (5.34)

We construct the optimization problem in vector form as:

min
aj ,Qj ,Kj

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F (5.35)

The Abundance Non-negativity Constraint (ANC) and Abundance Sum-to-one Constraint
(ASC) are applied on the abundances aj [151, 199]. Additionally, we assume Q and K

∈ [0, 1], in order to maintain their physical meanings:

aj ≥ 0,
p∑

i=1
aj,i = 1, Q, K ∈ [0, 1] (5.36)

Inspired by existing works on weighted total variation constraints for spectral unmixing
([84, 185]), the following spatial constraint on the abundances is proposed:

N∑
j=1

∑
m∈N (j)

Rj,m∥aj − am∥1,1 (5.37)

where N (j) denotes the first order neighborhood of the target pixel j. Rj,m represents a
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weighting factor describing the similarity between pixel j and m:

Rj,m = 1
Zj

(
Rhj,m

+ Rxj,m

)
(5.38)

where Rhj,m
and Rxj,m represent weighting factors related to height and spectral information,

respectively. Zj is the normalizing constant value and constraints the summation of weighting
factors at pixel j to 1.

Rhj,m
is defined as:

Rhj,m
= exp

[
− 1

σ2
h

(1 + ηQ′j,m)Thj,m

]
, (5.39)

where σ2
h is a constant parameter controlling the weight range, and η reduces the influence

of shadowed neighboring pixels on a target pixel using Q′j,m, the shadow fraction at the
neighboring pixel m for the target pixel j. Q′j,m is pre-calculated using the SLMM method
[151]. Finally, Thj,m

is a height similarity measure, given by the normalized height difference
between pixels j and m:

Thj,m
= (hj − hm)2

(hj + hm)2 (5.40)

Normalized surface height above the ellipsoid h is provided by the DSM, which is illumination-
insensitive and therefore robust to shadow effects. Thus, neighboring pixels with larger
height similarities will have larger impact on the target pixel.

The weighting factor Rxj,m corresponds to spectral information:

Rxj,m = exp

[
− 1

σ2
x

(1 + ηQ′j,m)Txj,m

]
, (5.41)

where σ2
x is a constant parameter controlling the weight range, the shadow-related parameters

η and Q′j,m are the same as in Eq. (5.39), and the spectral similarity measure Txj,m is defined
by the spectral angle [147, 153]:

Txj,m = max(arccos xj · xm

∥xj∥∥xm∥
− 0.1, 0) (5.42)

Since shadow effects introduce spectral distortions [55, 103], the spectral angle between sunlit
and shadowed pixels of the same material can be significantly larger than 0. We found this
difference empirically to be around 0.1. In order to mitigate the impact of distortion in the
spectral similarity measure, a value of 0.1 is then subtracted from the spectral angle in (5.42)
up to a minimum value of 0.

Furthermore, as nonlinear effects typically do not depend on spectral, height, and shadow
conditions, we apply a non-weighed total variation constraint on K:

N∑
j=1

∑
m∈N (j)

∥Kj − Km∥1,1 (5.43)
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Hence, we define the optimization problem with spectral and spatial constraints as:

min
A,Q,K

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + λreg∥AW 1∥1,1 + ℓC(A)+

ℓS(A) + ℓM(Q) + λreg∥KW 2∥1,1 + ℓM(K)
(5.44)

where ℓC(A) = {A|A ≥ 0p×N }, ℓS(A) = {A|1T
p A = 1T

N }, ℓM(Q) = {Q|Q ≥ 01×N , Q ≤
11×N } and ℓM(K) = {K|K ≥ 01×N , K ≤ 11×N }. The sparse matrix W 2 = [W ↑

2W ↓
2

W←
2 W→

2 ] ∈ RN×4N , where each element belongs to the set {−1, 0, 1}, consists of differential
operators in four directions, i.e., up, down, left, and right. KW 2 computes the difference
in K in each direction in the first-order neighborhood of each pixel. For instance, the
difference in K in the upward direction at pixel j can be written as Km↑ − Kj , where m↑

denotes the index of the neighboring pixel in the upward direction of pixel j. Similarly, the
sparse matrix W 1 = [W ↑

1W ↓
1W←

1 W→
1 ] ∈ RN×4N consists of differential operators in four

directions weighted by the factor Rj,m. AW 1 computes the difference in A in each direction
in the first order neighborhood of each pixel for each endmember, weighted by the factor
Rj,m. For instance, the abundance difference in the upward direction at pixel j associated
with endmember i can be written as (am↑,i − aj,i)Rj,m↑ , where m↑ denotes the index of the
neighboring pixel in the upward direction of pixel j.

The above optimization is a bi-convex problem, and it is convex to A and {Q, K}, respectively.
Following [97, 218], we split the unknown variables into two groups and solve two convex
problems sequentially using the ADMM approach. In the ADMM form, the optimization
problem is given by:

min
A,Q,K,G,H

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + λreg∥G2∥1,1+

ℓC(G3) + ℓS(G4) + ℓM(H1) + λreg∥H3∥1,1 + ℓM(H4)

G1 = A

G2 = G1W 1

G3 = A

G4 = A



H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(5.45)

The solution of the optimization problem in Eq. (5.45) is reported in Algorithm 1 in Section
5.3.3.

5.3.3 The Solution of the Optimization Problem

This section presents the solution of the problem in Eq. (5.45) using Algorithm 1. Updating
equations for primal and dual variables are given in the following subsections.
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Algorithm 1: ADMM for the optimization problem in Eq. (5.45)
Input : E, f̃ , X, χ, λ, k1, k2, k3, λreg, µ
Output : A, Q, K
Initialize: t = 0, A(0), Q(0), K(0), G(0), H(0), U (0)

1 while the stopping criterion is not satisfied do
2 Given Q(t), K(t), G(t), U (t), update A(t+1) with (5.48)
3 Given A(t+1), U (t), update G(t+1) with (5.49), (5.50), (5.51), (5.52)
4 Given A(t+1), H(t), U (t), update Q(t+1) and K(t+1) with (5.54), (5.55), (5.56)
5 Given Q(t+1), K(t+1), U (t), update H(t+1) with (5.57), (5.58), (5.59), (5.60)
6 Given U (t), A(t+1), Q(t+1), K(t+1), G(t+1), H(t+1), update U (t+1) with (5.61)
7 t = t + 1
8 end

5.3.3.1 Update A and G

Given Q, K, and H, the optimization problem in Eq. (5.45) can be rewritten as:

min
A,G

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + λreg∥G2∥1,1 + ℓC(G3) + ℓS(G4)

subject to



G1 = A

G2 = G1W 1

G3 = A

G4 = A

(5.46)

whose augmented Lagrangian is:

min
A,G

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + λreg∥G2∥1,1 + ℓC(G3) + ℓS(G4)

+ µ

2 ∥A − G1 − U1∥2
F + µ

2 ∥G1W 1 − G2 − U2∥2
F

+ µ

2 ∥A − G3 − U3∥2
F + µ

2 ∥A − G4 − U4∥2
F

(5.47)

Thus, we can derive the optimizations with respect to a
(t+1)
j :

a
(t+1)
j = (ẼT

j Ẽj + 3µI)−1(ẼT
j xj + µ(J (t)

1j
+ J

(t)
3j

+ J
(t)
4j

) (5.48)

where J
(t)
1j

= G
(t)
1j

+ U
(t)
1j

, J
(t)
3j

= G
(t)
3j

+ U
(t)
3j

, and J
(t)
4j

= G
(t)
4j

+ U
(t)
4j

.

Next, the optimizations with respect to G
(t+1)
1 , G

(t+1)
2 , G

(t+1)
3 , G

(t+1)
4 are written as:

G
(t+1)
1 =

[
A(t+1) − U

(t)
1 + (Gt

2 + U
(t)
2 )W T

1

][
I + W 1W T

1

]−1
(5.49)
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G
(t+1)
2 = soft

(
G

(t)
1 W 1 − U

(t)
2 ,

λreg
µ

)
(5.50)

G
(t+1)
3 = max

(
A(t+1) − U

(t)
3 , 0

)
(5.51)

G
(t+1)
4 =

(
A(t+1) − U

(t)
4

)
+ 1

p

[
1T

N − 1T
p

(
A(t+1) − U

(t)
4

) ]
⊗1p (5.52)

5.3.3.2 Update Q, K, and H

Given A and G, the optimization problem in Eq. (5.45) can be rewritten as:

min
Q,K,H

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + ℓM(H1) + λreg∥H3∥1,1 + ℓM(H4)

subject to



H1 = Q

H2 = K

H3 = H2W 2

H4 = K

(5.53)

whose augmented Lagrangian is:

min
Q,K,H

1
2

N∑
j=1

∥Ẽjaj − xj∥2
F + ℓM(H1) + λreg∥H3∥1,1+

ℓM(H4) + µ

2 ∥Q − H1 − U5∥2
F + µ

2 ∥K1 − H2 − U6∥2
F

+ µ

2 ∥H2W 2 − H3 − U7∥2
F + µ

2 ∥K − H4 − U8∥2
F

The optimizations with respect to Q and K are solved pixelwise. For pixel j, we update
Q

(t+1)
j and K

(t+1)
j using:

Q
(t+1)
j = C3C4 − C2C5

C1C4 − C2
2

(5.54)

K
(t+1)
j = C2C3 − C1C5

C2
2 − C1C4

(5.55)
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where 

C1 =
B∑

i=1
(f̃j,i − 1)2y2

j,i + µ

C2 =
B∑

i=1
(f̃j,i − 1)χj,iy

2
j,i

C3 =
B∑

i=1
(f̃j,i − 1)yj,i(xj,i − yj,i) + µJ

(t)
5j

C4 =
B∑

i=1
χ2

j,iy
2
j,i + 2µ

C5 =
B∑

i=1
χj,iyj,i(xj,i − yj,i) + µ

(
J

(t)
6j

+ J
(t)
8j

)

(5.56)

with yj = Eja
(t+1)
j , J

(t)
5j

= H
(t)
1j

+ U
(t)
5j

, J
(t)
6j

= H
(t)
2j

+ U
(t)
6j

, and J
(t)
8j

= H
(t)
4j

+ U
(t)
8j

.

Next, we optimize the objective function with respect to H
(t+1)
1 , H

(t+1)
2 , H

(t+1)
3 , and H

(t+1)
4

using Eqs. (5.57), (5.58), (5.59), (5.60):

H
(t+1)
1 = min

(
max

(
Q(t+1) − U

(t)
5 , 0

)
, 1

)
(5.57)

H
(t+1)
2 =

[
K(t+1) − U

(t)
6 + (Ht

3 + U
(t)
7 )W T

2

][
I + W 2W T

2

]−1
(5.58)

H
(t+1)
3 = soft

(
H

(t)
2 W 2 − U

(t)
7 ,

λreg
µ

)
(5.59)

H
(t+1)
4 = min

(
max

(
K(t+1) − U

(t)
8 , 0

)
, 1

)
(5.60)

5.3.3.3 Update U (t+1)



U
(t+1)
1 = U

(t)
1 − A(t+1) + G

(t+1)
1

U
(t+1)
2 = U

(t)
2 − G

(t+1)
1 W1 + G

(t+1)
2

U
(t+1)
3 = U

(t)
3 − A(t+1) + G

(t+1)
3

U
(t+1)
4 = U

(t)
4 − A(t+1) + G

(t+1)
4

U
(t+1)
5 = U

(t)
5 − Q(t+1) + H

(t+1)
1

U
(t+1)
6 = U

(t)
6 − K(t+1) + H

(t+1)
2

U
(t+1)
7 = U

(t)
7 − H

(t+1)
2 W 2 + H

(t+1)
3

U
(t+1)
8 = U

(t)
8 − K(t+1) + H

(t+1)
4

(5.61)
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5.3.4 Experimental Setup

5.3.4.1 Datasets

We validate the proposed method on the extended DLR HySU and HySpex/3K datasets. A
detailed description of these datasets are presented in Chapter 4.

• Extended DLR HySU
This experiment uses the hyperspectral images with simulated shadows, both with and
without additional random noise (SNR = 30). In addition, the DSM is used as input
for the proposed method and is also used to compute the sky view factor F based on
[219].

• HySpex/3K
A subregion is selected from the HySpex/3K dataset (Fig. 5.33). An airborne hyper-
spectral image is shown in Fig. 5.33 (a). Endmembers E have been extracted from
the fully sunlit pixels using the method in [199, 210] (see Fig. 5.33 (b)). Moreover,
multi-view stereo imagery acquired with the 3K camera system was employed to
generate the DSM [170] in Fig. 5.33 (c), whose values represent surface height above
the ellipsoid. In addition, height values were normalized within [0, 1] to retain the
relative height of the ground surface. After geometrical co-registration and re-sampling,
the DSM and images share the same geo-coordinates and spatial resolution (i.e., 0.7
m). Given the height data, the sky view factor F was computed using the software
System for Automated Geoscientific Analyses (SAGA) [219] (see Fig. 5.33 (d)).

5.3.4.2 Methods in Comparison

We compare the S3AM method to the following state-of-the-art spectral mixing models. A
review of these methods can be found in Chapter 3.

• LMM [76]: a linear mixing model that does not take shadows into account.

• SLMM [149]: a linear mixing model accounting for shadows using a scaling factor while
ignoring diffuse solar illumination.

• SMLM [151]: a nonlinear mixing model accounting for shadows using a scaling factor
as in SLMM, along with nonlinear interactions using the multilinear mixing model
[150].

• Shadow Removal Method based on Nonlinear Unmixing and Endmember Matching
(NUEM) [155]: a shadow removal method based on nonlinear unmixing and endmember
matching. This method requires a shadow mask as input, which has been computed
by S3AM in the experiment.

• Fansky [198]: a nonlinear mixing model considering shadows based on both direct and
diffuse solar illumination, along with nonlinear interactions using the Fan model [87].

• ESMLM [199]: an extended SMLM model incorporating direct and diffuse solar illumi-
nation as well as nonlinear interactions.
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(a) (b)

(c) (d)

Figure 5.33: A subscene selected from the HySpex/3K dataset: (a) hyperspectral image as a true
color composite acquired by the HySpex sensor in the study area of Oberpfaffenhofen, Bavaria,
Germany; (b) endmember library, automatically extracted from (a); (c) normalized DSM; (d) sky
view factor map derived from the DSM in (c).

• SCBMM [165]: a nonlinear mixing model considering shadows using both direct and
diffuse solar illumination and nonlinear interactions using the bilinear mixing model
[86].

Moreover, we investigate the impact of different variations of the spatial TV regularization
in an ablation study.

5.3.4.3 Parameter Settings

• k1, k2, k3
Following our previous work in [199], k1, k2, k3 are the parameters of a power function
that models the ratio of diffuse to global solar irradiance on the ground surface. We
assume that atmospheric conditions are consistent in the entire image region, so these
parameters are constant in our experiments. In practice, we compute these parameters
using ten pairs of pixels that are selected in the scene. Specifically, a pair of pixels
contain a sunlit pixel and a fully shadowed pixel near a shadow boundary, assumed to
consist of the same material. We avoid including vegetation during the selection in



5. Summary of the Contributions 117

Figure 5.34: AE as a function of λreg and η for the DLR HySU dataset, where λreg ∈ {10−5, 5 ·10−5,
10−4, 5 · 10−4, 10−3, 5 · 10−3, 0.01, 0.05, 0.1, 1} and η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500,
1000}.

order to avoid dealing with complex nonlinear effects. Then, k1, k2 and k3 are solved
by Eq. (5.31), with Kj = 0, Qj = 1 and p = 1. The obtained values are: k1 = 0.579;
k2 = 6.974; and k3 = 0.206.

• λreg and η

Fig. 5.34 presents AE as a function of λreg and η for the DLR HySU dataset. We calcu-
late optimal values of these parameters from the values λreg ∈ {10−5, 5 · 10−5, 10−4, 5 ·
10−4, 10−3, 5·10−3, 0.01, 0.05, 0.1, 1} and η ∈ {10−5, 10−4, 10−3, 0.01, 0.1, 1, 10, 100, 500, 1000}
by minimizing AE, resulting in λreg = 10−3 and η = 10 for S3AM. As ground truth
abundances are not available for the HySpex dataset, we empirically determine λreg
and η to be the same as for the DLR HySU dataset. Additionally, we analyze the
impact of different values of λreg on the abundance maps in Section 5.3.6.

• σ2
x and σ2

h

These parameters represent the weight range in the exponential functions of the height-
related (Eq. (5.39)) and spectral (Eq. (5.41)) weighting factors, respectively. In
principle, one can optimize the values of σ2

x and σ2
h in a similar way as λreg and η, by

minimizing the optimization error. However, too many free parameters can lead to
over-fitting. In practice, more than 99.9% of Tx and Th was found to lie within the
range [0, 0.5]. Hence, we set the weighting ranges within the same span, and choose
empirical values σ2

x = σ2
h = 0.1.

• µ

The penalty parameter µ of the augmented Lagrangian (see Eq. (5.47)) was determined
as in [82]. The initial value is set to µ = 0.001, and is then updated iteratively by
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keeping the ratio between primal and dual residual norms within a positive value of 10,
as suggested in [97].

• Initialization and Stopping Criteria
A fully constrained spectral unmixing method [196] based on the SLMM model has
been applied to initialize A and Q, while K and U are initialized to zero. In addition,
the algorithm stops when the primal residual is less than 5 · 10−4 or the maximum
number of iterations, set as 100, is reached.

5.3.4.4 Computational Resources

All algorithms were developed in a MATLAB environment and run on an Intel Core i7 −8650
U CPU, 1.90 GHz machine with 4 Cores and 8 Logical Processors. We apply the MATLAB
function FMINCON using the Sequential Quadratic Programming algorithm to perform
the (non)linear optimization for LMM, SLMM, SMLM, NUEM, Fansky, and ESMLM. The
function and constraint tolerance are set to 10−6 and 10−5, respectively. In addition, for-loop
iterations over all pixels were running in parallel on workers in a parallel pool.

The Fansky and SCBMM have the highest computational cost, depending on the number
of pixels in the subset. Besides, the nonlinear optimization implemented by FMINCON in
ESMLM, SMLM and SLMM requires more computational resources with respect to the linear
optimization in LMM. The S3AM, solved by the ADMM approach has a short computation
time, as MATLAB efficiently computes closed-form updates for this method.

Table 5.9: Running time of compared methods

Method Running time (s)
HySU (208 pixel) subset1 (1148 pixel) subset 2 (1085 pixel)

LMM 0.47 2.56 2.27
SLMM 0.61 5.80 5.38
SMLM 0.70 9.42 8.33
NUEM 0.63 6.01 4.65
Fansky 7.42 112.75 109.20

ESMLM 2.59 26.66 25.47
SCBMM 11.43 42.25 40.43
S3AM 0.55 2.80 2.71

5.3.5 Results: DLR HySU

5.3.5.1 Pixel Reconstruction and Abundance Estimation

Fig. 5.35 shows the obtained AE and RE for all methods, from sunlit, (partly) shadowed
and all pixels, respectively. The AE was obtained without taking grass into account. The
reason for this is that reference abundance values were derived by LMM. In grass areas,
nonlinear effects may be present, and this class contains non-negligible intraclass variations
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(a)

(b)

Figure 5.35: Comparison of mean abundance error AE in (a) and mean reconstruction error RE in
(b) for the DLR HySU dataset. Solid and dashed lines represent results obtained using the input
image with and without additional noise (SNR = 30), respectively. Sunlit and (partly) shadowed
pixels are determined with Q ≤ 0.1 and Q > 0.1, respectively.

with respect to the spectrum selected as endmember. Therefore, reference abundances for
grass may be unreliable. In addition, NUEM is not included in the comparison of RE, as
this method runs two unmixing processes followed by spectral matching. Furthermore, we
show AE and RE on a degraded image with additive noise (SNR = 30), in order to evaluate
the robustness to noise of the compared methods.

All compared methods show satisfactory REs in sunlit regions. In shadowed regions, the
LMM obtains significantly higher RE compared to other methods, indicating the importance
of shadow-aware modeling. Nevertheless, smaller REs do not necessarily imply a satisfactory
abundance estimation. Compared to REs, we observe significantly larger differences of
AEs among compared methods. In general, the better a model accounts for shadows, the
better the abundance estimation. The LMM has the lowest performance, because shadow
effects are simply ignored. The NUEM is also characterized by a large AE. Since shadow
effects cause a wavelength-dependent spectral distortion, it is quite challenging to perform
spectral matching between sunlit and shadowed pixels. Moreover, the SLMM and SMLM
treat shadows as a scaling effect, and perform better at abundance estimation in shadowed
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regions. The performance improves further when including the diffuse solar illumination
as prior knowledge. Fansky, ESMLM, and S3AM select pairs of pixels from the input
image as prior knowledge and estimate the ratio of diffuse and global solar illumination
through a power function. The proposed approach, i.e., S3AM, clearly outperforms others
thanks to the applied spatial constraints. In addition, the ratio of diffuse and global solar
illuminations can be estimated along with abundance values in the unmixing process, i.e.,
SCBMM. Nevertheless, its AE appears higher than other methods. The reason is that
the SCBMM does not assume stronger atmospheric scattering at shorter wavelengths [55].
Hence, its estimated diffuse radiation may not correspond to the spectral characteristics of
shadows in practice. Furthermore, results in Fig. 5.35 show that both REs and AEs increase
considerably as the image is degraded by noise. Despite better abundance estimation, the
Fansky and ESMLM are less robust to noise compared to LMM, SLMM, SMLM, NUEM,
and SCBMM. Since the contribution of diffuse solar radiation is significantly smaller relative
to global radiation, the optimization problem can be over-fitted and may lead to noisy
abundance maps. This sensitivity to noise can be significantly alleviated by the proposed
method S3AM, thanks to the spatial constraints.

A qualitative comparison of the abundance maps is displayed in Fig. 5.36. In order to assess
the location of abundance errors, we overlay the AE map in grayscale as a semi-transparent
layer over the optical image in Fig. 5.37. First of all, it can be observed that abundance
errors are mainly located in shadowed regions. Compared to the LMM, the shadow-aware
unmixing methods therein display improved abundance maps. While SLMM and SMLM
treat shadow as a scaling effect, the SMLM further considers nonlinear reflections. Since
the study region is a flat terrain with artificial materials, multiple reflections appear minor.
Thus, the abundance maps of SLMM and SMLM are very similar. Unlike embedding a
shadow-related parameter in the model, the NUEM matches spectra in shadowed areas with
their corresponding ones in sunlit regions. However, accurate spectral matching is rather
challenging due to spectral distortion caused by shadows. In particular, this dataset contains
some materials with similar spectral information, making spectral matching more difficult.
For example, the NUEM easily confuses red-painted metal sheets and red fabric.

Furthermore, we compare methods that take into account diffuse solar illumination, i.e.,
SCBMM, Fansky, ESMLM, and S3AM. The SCBMM may have the ability to estimate
abundance values in shadowed regions, such as bitumen, while it seems challenging to
estimate diffuse solar illumination without prior knowledge. Fansky, ESMLM, and S3AM,
on the other hand, whose diffuse solar illumination is computed from manually selected
pixels in the input image, perform better in abundance estimation.

However, without applying spatial constraints, abundance maps show higher noise levels
and confusion between similar materials, such as red-painted metal sheets and red fabric.
Such distortions can be alleviated by injecting spatial information into the analysis. By
applying weighted TV constraints, S3AM considerably improves the abundance estimation
step. Firstly, the noise level has been significantly reduced owing to the spatial constraints.
In addition, the abundance estimation at the boundary pixels is significantly improved, due
to the weighting of the spectral and height information in the spatial constraints.
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Figure 5.36: Abundance maps for the HySU dataset. Left to right: bitumen, red metal sheets, blue
fabric, red fabric, green fabric, and grass. Top to bottom: reference, LMM, SLMM, SMLM, NUEM,
Fansky, ESMLM, SCBMM, S3AM. The reference abundance maps are computed by applying fully
constrained least squares unmixing using the library of known endmembers on the shadow-free image.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.37: DLR HySU imagery overlaid with pixelwise mean abundance error maps in grayscale:
(a) LMM, (b) SLMM, (c) SMLM, (d) NUEM, (e) Fansky, (f) ESMLM, (g) SCBMM, (h) S3AM, (i)
reference image.
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Figure 5.38: Comparison of mean abundance error AE of S3AM with ablated spatial constraints
for the DLR HySU dataset. Solid and dashed lines represent results obtained on the input image
with and without additional noise (SNR = 30), respectively.

5.3.5.2 Ablation Study

The S3AM method consists of a weighted TV constraint term, where the weights are
formed by spectral and height features. In the ablation study, we investigate the individual
contribution from each feature.

We refer to the weighted TV (Eq. (5.37)) in the S3AM method as wTVfull, where both
height and spectral features are included and computed by Eqs. (5.39) and (5.41). In the
ablation study, we regard height and spectral features one at a time by setting Rhj,m

= 0
and Rxj,m = 0 in Eq. ((5.38)), respectively, resulting in the ablated TV forms wTVhei and
wTVspec. In addition, we set the weights Rhj,m

= Rxj,m = 1 in Eq. (5.38), resulting in a
classic non-weighted TV, labeled as TV. Moreover, we ablate the spatial constraints entirely
by setting λreg = 0 in Eq. (5.44), reducing the method to only the spectral mixing model,
labeled as “none”.

Fig. 5.38 compares AE of wTVfull, wTVspec, wTVhei, TV, and “none” in the ablation study.
Specifically, we investigate AE in sunlit, (partly) shadowed, and all regions. Compared
to sunlit regions, where the spatial constraints play a minor role, we observe considerable
improvement in shadowed pixels by embedding spatial constraints, with wTVfull achieving
the best abundance estimation, both with and without additional noise.

Figs. 5.39 and 5.40 show respectively abundance and abundance error maps. When no
spatial constraints are applied, i.e., “none”, resulting abundance maps are noisy. The ablation
study shows that differences in abundances mainly appear on boundaries between different
materials. Typically, TV oversmooths the boundaries between different materials, since it
treats neighboring pixels equally. One example is visible at the transition from bitumen
to green fabric. When applying weighted TV, the abundance estimation on the boundary
pixels is largely improved and wTVspec better preserves the shape of the bitumen target
with respect to wTVhei, because spectral information can better separate the two materials
on the boundary between them. Since in our experiment the DSM is randomly generated,
the height information does not fully correspond to the ground objects, leading to inaccurate
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abundance estimations. In practice, spectral or height information alone might not be
sufficient to distinguish ground materials. The configuration denoted as wTVfull, adopted by
the proposed method S3AM, jointly considers spectral and height features and outperforms
single-source weights both quantitatively and qualitatively. Specifically, wTVfull constraints
visibly improve the abundance estimation on the boundary pixels, e.g., at the right border
of bitumen and the bottom side of green fabric.

5.3.5.3 Shadow-Removed Pixel Reconstruction

Spectral mixing models considering shadows allow generating shadow-removed imagery
through pixel reconstruction. Specifically, in SLMM, SMLM, ESMLM, and S3AM, the
parameter Q represents the shadow fraction within a pixel. By setting Q = 0, shadows
are removed during pixel reconstruction [199]. The NUEM, Fansky, and SCBMM methods
compute abundance values separately in sunlit and shadowed groups. Then, shadow-removed
pixels can be reconstructed using summed-up abundance values in the two groups and sunlit
endmember spectra. Obviously, a better abundance estimation leads to better reconstruction
and shadow removal. Fig. 5.41 compares the shadow-removed images computed by the
different models. Despite confusion between bitumen and green fabric, the SLMM achieves
a satisfactory restoration in shadowed areas, which is remarkable considering its simplicity.
The SMLM shows a similar abundance estimation as the SLMM (see Fig. 5.36). However,
some dark pixels appear in the reconstructed image of the SMLM, because of its incorrect
estimation of parameters P and Q [198]. Large areas of red-painted metal sheets appear in the
restored image of NUEM, because of the mismatch between endmembers extracted in sunlit
and shadowed regions. For example, when minimizing the spectral angle, the spectrum of
shadowed red fabric is associated with the red-painted metal sheets. In addition, the spectrum
of shadowed green fabric is associated with bitumen. Moreover, Fansky, ESMLM, and
SCBMM show material confusion between different red materials. The material boundaries
in shadowed areas also appear reddish due to incorrect abundance estimation. Overall, the
proposed method S3AM achieves the best qualitative shadow-removed image, thanks to its
superior abundance estimation and spatial constraints.

5.3.6 Results: HySpex/3K

5.3.6.1 Abundance Estimation

Unlike for the DLR HySU dataset, we do not have ground-truth abundances for the
HySpex/3K dataset. Therefore, in this section, we investigate and compare the meth-
ods qualitatively on two image subsets (Figs. 5.42 and 5.43). Fig. 5.42 compares the
abundances of the roof material. The LMM seems to perform satisfactorily in shadowed
pixels. However, it is worth noticing that LMM easily overestimates impervious surfaces,
as can be observed in subset 2, where many vegetation pixels are incorrectly recognized as
impervious surfaces (Fig. 5.43 (c)). Besides, the SLMM, SMLM, and NUEM show lower
abundances in shadowed pixels on the roof (Fig. 5.42 (d)-(f)). Specifically, they confuse the
spectra of the roof with other impervious materials (see Fig. 5.46), since these two materials
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Figure 5.39: Abundance maps for the HySU dataset using S3AM with ablated spatial constraints.
Left to right: bitumen, red metal sheets, blue fabric, red fabric, green fabric, and grass. Top to
bottom: reference, wTVfull, wTVspec, wTVhei, TV, and “none”. The reference abundance maps are
computed by applying fully constrained least squares using the library of known endmembers on the
shadow-free image.
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(a) (b) (c)

(d) (e) (f)

Figure 5.40: DLR HySU imagery overlaid with pixelwise mean abundance error maps in grayscale
using S3AM with ablated spatial constraints: (a) wTVfull, (b) wTVspec, (c) wTVhei, (d) TV, (e)
“none”, (f) reference image.

contain similar spectral information. Therefore, in order to distinguish between similar
spectra in the presence of shadows, it is essential to consider the diffuse solar radiation (see
Figs. 5.42 (g)-(j)). In contrast, when determining materials with large spectral differences,
such as vegetation and road in subset 2 (Fig. 5.43), SLMM and SMLM can also achieve
satisfactory results. Moreover, by considering the diffuse solar illumination, Fansky, ESMLM,
and SCBMM may achieve better abundance estimation at higher noise levels. In particular,
the SCBMM shows a quite noisy abundance map in subset 1. Similar as in the DLR HySU
dataset, the SCBMM may show decreased performance at some sunlit pixels (Fig. 5.43
(i)). In addition, the Fansky method appears noisier compared to ESMLM, and can only
distinguish a part of the shadowed materials. Compared to Fansky and SCBMM, the ESMLM
performs consistently better in both subsets.

The TV constraint further contributes to the abundance estimation in two aspects. First,
given the large spectral variability in real hyperspectral imagery, the spectral unmixing
methods without the TV constraint can easily confuse similar materials, thus producing con-
siderably noisier abundance maps, while the spatial constraint promotes similar abundances
in local neighborhoods, significantly reducing noise. Second, the abundance estimation is
not as accurate in shadowed regions, where pixels contain a lower signal-to-noise ratio. The
spatial constraint provides additional information to spectral models, thus achieving better
abundance estimations.

An ablation study has been conducted in subset 1, using spatial constraints wTVfull, wTVspec,
wTVhei, TV, and “none” in S3AM (see Fig. 5.44). As in the case of the HySU dataset,
differences in TV constraints mainly affect mixed sunlit/shadowed pixels in the HySpex
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.41: Restored images with removed shadows of the DLR HySU dataset generated by (a)
SLMM, (b) SMLM, (c) NUEM, (d) Fansky, (e) ESMLM, (f) SCBMM, (g) S3AM, (h) reference image.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.42: Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM. Abundance maps
of roof using: (c) LMM, (d) SLMM, (e) SMLM, (f) NUEM, (g) Fansky, (h) ESMLM, (i) SCBMM,
(j) S3AM.

dataset. Specifically, the weighted TV methods, i.e., wTVspec, wTVhei, and wTVfull lead
to sharp edges, while the classic TV method oversmooths transitions in boundary pixels.
Examples can be spotted in the regions between the two roofs in subset 1.

5.3.6.2 The Impact of λreg on Abundance Estimation

Since it is very challenging to select an optimal λreg for the HySpex dataset, due to the lack
of ground truth, the sensitivity of various TV constraints with respect to λreg is evaluated in
Fig. 5.45. In our experiments so far, we used the optimized values of λreg from the DLR
HySU dataset on the HySpex dataset. However, a similar dataset with ground truth may
be not available at all in real-case scenarios. Fig. 5.45 compares abundances of roof in
subset 1 for λreg ∈ {10−5, 10−4, 10−3, 10−2, 10−1}. As expected, the abundance maps become
more homogeneous and less noisy as λreg increases. The abundance maps using λreg = 10−3

present the best qualitative results. As discussed, the use of the weighted TV leads to better
abundance estimation on boundary pixels, where the wTVfull achieves a balance between
height and spectral information. This characteristic becomes more prominent with larger
values of λreg. Specifically, the TV constraint using spectral information only, i.e., wTVspec,
largely decreases the performance when λreg ≥ 10−2, as the computed weights do not match
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.43: Subset 2 of the HySpex dataset: (a) true color composite, (b) DSM. Abundance
maps of vegetation using: (c) LMM, (d) SLMM, (e) SMLM, (f) NUEM, (g) Fansky, (h) ESMLM, (i)
SCBMM, (j) S3AM.

(a) (b) (c) (d) (e) (f) (g)

Figure 5.44: Subset 1 of the HySpex dataset: (a) true color composite, (b) DSM. Abundance maps
of roof for ablation study using spatial constraints: (c) wTVfull, (d) wTVspec, (e) wTVhei, (f) TV,
(g) none.
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Figure 5.45: Abundance maps of roof as a function of λreg for subset 1 of the HySpex dataset using
S3AM with ablated spatial constraints. Top to bottom: TV,wTVspec, wTVhei, wTVfull. Left to
right: λreg = 10−5, 10−4, 10−3, 10−2 and 10−1.

well with the ground materials. Compared to TV and wTVspec, the wTVhei constraint leads
to better results, but it can suffer from height inaccuracies. Despite some boundary pixels
possibly being affected for larger values of λreg, the wTVfull constraint generally reaches a
more robust abundance estimation in a broader range of values of λreg.

5.3.6.3 Shadow-Removed Pixel Reconstruction

Fig. 5.46 shows three examples of shadow removal results for the HySpex dataset. The
restored images appear very bright in shadowed roof pixels when applying the SLMM, SMLM,
and NUEM approaches. This corresponds to the poor abundance estimations in Fig. 5.42
(d)-(f). In addition, some dark pixels appear in the restored image by the SMLM, because of
the incorrect estimation of the parameters P and Q. A similar artifact can be observed in
the DLR HySU dataset (Fig. 5.41 (b)). Furthermore it is worth noticing that, when spectral
angle distance successfully matches sunlit and shadowed pixels in a scene, the NUEM can
achieve good results, such as in the second and third examples. However, this may work
only in simple scenarios. In addition, the NUEM highly depends on the input shadow mask.
Some artifacts appear when shadowed areas are over- or underestimated (see examples 1
and 3 in Fig. 5.46). Approaches considering the diffuse solar illumination achieve in all
cases better shadow-removed images, while the results of SCBMM are much noisier. Despite
the improvement, shadow removal by Fansky and ESMLM in the first example shows some
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Input SLMM SMLM NUEM Fansky ESMLM SCBMM S3AM

Figure 5.46: Three examples of shadow-removed results for the HySpex dataset. Left to right: input
image, SLMM, SMLM, NUEM, Fansky, ESMLM, SCBMM, and S3AM.

spectral distortions. Finally, the reconstructed road computed by ESMLM and SCBMM in
the third example appears noisy, with the line marking resulting almost invisible.

The advantages of S3AM compared to other methods appear evident. First, S3AM improves
the restoration result in shadowed regions and retains spectral homogeneity. The shaded
roof area in the first example of Fig. 5.46 shows that S3AM better reconstructs spectral
features compared to ESMLM. Moreover, S3AM considerably reduces the noise in the
shadow-removed imagery. This noise reduction can be spotted not only in shadowed regions,
such as regions shaded by vegetation in the second example, but also in sunlit pixels, such
as the impervious surface in the third example.

5.3.7 Summary

This section proposes a spatial-spectral shadow-aware mixing (S3AM) model. The spectral
modeling accounts for shadows, following physical assumptions based on radiative transfer
theory. Specifically, a light path initiates from an illumination source and interacts with
endmembers before being scattered back to the observer. The model considers direct, diffuse,
and neighboring illumination sources, where direct solar radiation is the dominant source for
sunlit pixels, and diffuse solar radiation for shadowed pixels. A mixed pixel is then resolved
by summing up the spectral contribution of all possible light paths.

S3AM embeds a DSM generated by multi-view stereo images. The sky view factor F , which
is essential to estimate diffuse solar illumination in S3AM, can be conveniently computed
using the DSM, reducing the model complexity. Moreover, we take into account the spatial
relationship of abundances through weighted TV constraints, derived by spectral information
from the hyperspectral imagery, height information from the DSM, and shadow information.
The obtained optimization problem is bi-convex and is split into two convex problems,
separately solved by the ADMM approach iteratively.

The proposed method has been extensively evaluated using two datasets, both quantitatively
and qualitatively. Experiments demonstrate that the proposed method significantly reduces
the noise level of abundance maps and improves the abundance estimation. Moreover, an
ablation study is performed in which the proposed weighted TV constraint is compared
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to different variations of the spatial TV regularization, or only considering the spectral
information.

Several open questions remain. First of all, in order to quantitatively validate shadow-aware
spectral unmixing methods in real scenarios, there is a lack of real datasets with shadows
for which ground-truth abundances are known. Furthermore, although DSM derived by
multi-view stereo imagery offers shadow-insensitive height information, the performance
of S3AM can be degraded by noise and inaccurate values, especially on boundary regions
with large height variations, causing imprecise TV weights and abundance estimation. In
particular, urban areas represent the ideal application for this kind of analysis, as shadows
are relevant and present across the image. However, DSMs can lead to inconsistencies due to
occlusions, especially if the elevation model is derived by stereo images. Thus, future work
should address spectral unmixing methods robust to inconsistencies and missing data in the
DSM.
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5.4 Discussion

5.4.1 Shadow Effects: a Field Study

This section investigates shadow effects in real scenarios using an imaging system mounted
on a ground-based platform. The experiment measures spectra at sunlit and three typical
shadow scenarios. Compared with airborne images, the primary objective of this field study is
to mitigate atmospheric impacts on the measured spectra. In addition, in order to eliminate
any inferring factors apart from shadow effects during the measurement, this experiment
utilized a white Spectralon panel as target. The measured data can potentially be used to
validate shadow removal approaches quantitatively.

The camera system, i.e., Cubert UHD-185 Firefly, manufactured by the company Cubert, was
mounted on a ground-based platform. Please refer to Section 4.3 for a detailed description
of the imaging system. The relative position between the panel and the sensor remained
unchanged during the experiment. During the experiment the Spectralon panel was placed in
the regions with different illumination conditions. Figs. 5.47 (a) - (d) presents four measured
hyperspectral images as true color composites. Areas receiving direct solar radiation are fully
sunlit (Fig. 5.47 (a)). The occluding objects forming shadows can be buildings and trees.
Buildings are assumed to block direct solar radiation entirely, resulting in fully shadowed
areas (Fig. 5.47 (b)). The imaging spectrometer measures a partly shadowed image when
placing the panel on the border between fully shadowed and fully sunlit areas (5.47 (c)). In
addition, direct solar radiation can transmit through and reflect between the leaves of trees,
resulting in the second type of partly shadowed area (Fig. 5.47 (d)). Corresponding to Figs.
5.47 (a) - (d), Figs. 5.47 (e) and (f) illustrate their averaged reflectance spectra for each
image without and with normalization, respectively. Compared to the reflectance in the fully
sunlit region, shadow effects significantly decrease the spectral magnitude, whose strength
depends on the amount of shadows. In addition, shadow effects demonstrate significant
wavelength-dependent distortion on reflectance values, among which fully shadowed pixels
show stronger distortion than partly shadowed pixels. Besides, pixels shaded by trees present
significant vegetation patterns, namely a sharp red edge increase, especially in normalized
reflectance.

5.4.2 Result Comparison: Investigation in a Larger Region

Three proposed methods in Sections 5.1, 5.2, and 5.3 incrementally improved one after the
other in resolving shadow issues for hyperspectral imagery. In particular, the third work, i.e.,
S3AM, achieves the best performance regarding accuracy, robustness, and computational
speed (Section 5.3). Nevertheless, S3AM was compared with state-of-the-art methods on
small subsets with a total number of pixels between 200 and 1200. Besides, several recent
methods aim to address shadow issues, but they were not included in Sections 5.1, 5.2, and
5.3. Hence, this section compares S3AM with state-of-the-art works in a larger study region
using the HySpex/3K dataset (Section 4.1), which can benefit further development and
deployment. Fig. 5.48 presents the study region with a size of 400-by-400 pixels.
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(a) (b) (c) (d)

(e) (f)

Figure 5.47: Four typical scenarios of spectral measurements using the camera system Cubert
UHD-185 Firefly, placing a white Spectralon panel in regions with different illumination conditions:
(a) fully sunlit area, (b) fully shadowed area formed by buildings, (c) partly shadowed area formed by
buildings, (d) partly shadowed area formed by trees. Averaged reflectance spectra for each scenario
without and with normalization in (e) and with normalization in (f), where the first and second partly
shadowed cases correspond to (c) and (d), respectively.

It is worth noticing that few methods compared in Sections 5.1, 5.2, and 5.3 can be directly
applied to large regions, as a result of their very high computational complexity, such as
Fansky [198], ESMLM [199], and SCBMM [165]. Please refer to Section 5.3.4.4 for comparing
their computational resources in smaller areas. Other methods with better computational
performance in Sections 5.1, 5.2, and 5.3 were selected for comparison, namely SLMM
and NUEM. In addition, ATCOR and Shadow Removal Method based on Multi-exposure
Fusion (MEXPO), which were not included in previous experiments, are compared in this
section. In summary, this section compares the following methods:

• SLMM, named after a shadow detection and removal method based on linear unmixing
[149]. Please refer to Sections 3.4.1.3 and 3.4.2.3 for a review of this method.

• NUEM, named after a shadow removal method based on nonlinear unmixing and
endmember matching [155]. Please refer to Section 3.4.2.1 for a review of this method.

• MEXPO, named after a shadow detection and removal method based on multi-exposure
fusion [157]. Please refer to Section 3.4.2.2 for a review of this method.

• ATCOR, named after a atmospheric correction software that generates shadow detection
result as a byproduct [63, 148]. Please refer to Section 3.4.1.3 for a review of this
method.
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Figure 5.48: A study region selected from the HySpex/3K dataset (Section 4.1). Hyperspectral
imagery shown in true color composite with two zoomed in areas.
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• S3AM, named after spatial-spectral shadow-aware mixing model for shadow com-
pensation [200]. Please refer to the third contribution of this dissertation (Section
5.3).

Fig. 5.49 presents shadow masks and two zoomed-in areas generated by SLMM, MEXPO,
ATCOR, and S3AM. MEXPO generated a binary shadow mask, while SLMM, ATCOR
and S3AM produced non-binary results, i.e., soft shadow masks, where decimal values are
allowed between 0 and 1. MEXPO tends to overdetect shadows compared to the other two
methods, especially in the regions of dark vegetation (see the first example in Fig. 5.49
(b)). In addition, this method can also underdetect some areas, such as shadows occluded
by trees in the second example. Since MEXPO detects shadows based on thresholding and
morphological filters, selecting one threshold suitable for the whole image can be challenging,
leading to over- and under-detection.

Compared to MEXPO, three physics-based methods, i.e., SLMM, ATCOR, and S3AM,
produced significantly better results, indicating the advantages of considering physical
assumptions in shadow detection tasks. Nevertheless, ATCOR can miss some regions,
especially in light-shaded pixels. An example can be observed in shadows occluded by
trees in the two zoomed-in areas (Fig. 5.49 (c)). SLMM and S3AM presents similar result
and can detect most shadowed regions. For example, they successfully detect shadows
occluded by trees in the second zoomed-in area. In addition, shadows occluded by the
building in the second example present a smoother transition on shadow boundaries using
S3AM. Nevertheless, SLMM and S3AM can be sensitive to spectral information. In the first
zoomed-in example, SLMM overdetects some road pixels as shadows, and S3AM preserves
road surface marking patterns in shadowed regions occluded by trees.

Table 5.10: Running time of shadow removal methods in the study region
Method SLMM NUEM MEXPO S3AM

Running Time (s) 31.42 35.72 18.85 813.74

Fig. 5.50 compares shadow removal results, and Table 5.10 compares their computational
speeds. MEXPO removed shadows by fusing over- and under-exposure images. This
approach may recover some partly shaded pixels, such as regions occluded by trees, while it
cannot successfully recover fully shadowed pixels, such as regions occluded by buildings. In
addition, some artifacts aroused by over-exposure images can be observed in the restored
image. NUEM aims to match shadowed pixels with their corresponding sunlit ones by
minimizing the spectral angle. Due to the characteristics of this method, all shadowed
pixels can be “recovered” to some extent because all shadowed pixels will be matched to
sunlit ones. However, the matching error seems large. In other words, many shadowed
pixels have been matched with incorrect sunlit ones since shadow effects introduce large
spectral distortion. Both SLMM and S3AM rely on spectral unmixing but with different
physical assumptions: the former assumes shadows as a wavelength-independent scaling
effect, while the latter regards shadows as wavelength-dependent spectral distortion. In Fig.
5.50 (a), SLMM recovered most shadowed pixels with very bright material, indicating that
the scaling factor can not successfully model shadow effects. S3AM performs better than
SLMM and the other two methods according to a qualitative interpretation. Nevertheless,
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(a) (b)

(c) (d)

Figure 5.49: Comparison of shadow detection results in a study region with a size of 400-by-400
pixels. (a) SLMM, (b) MEXPO, (c) ATCOR, (d) S3AM.
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(a) (b)

(c) (d)

Figure 5.50: Comparison of shadow removal methods using hyperspectral imagery with a size of
400-by-400 pixels shown in true color composite. (a) SLMM (b) NUEM, (c) MEXPO, and (d) S3AM.
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several open questions remain and require further investigation in future work. Specifically,
the shadow-removed image shows the loss of textures, which is caused by two reasons. Firstly,
the TV constraint introduces spatial relationships between pixels. More specifically, it
promotes similar abundances in local neighborhoods, leading to blurred reconstructed images.
Secondly, S3AM is based on spectral unmixing, where limited materials (i.e., endmembers)
are extracted from the input image and involved in shadow restoration.

Finally, it is worth noticing that spectral unmixing-based methods yield not only shadow
detection and removal results but also abundance maps that describe fractions of materials
at each pixel. Fig. 5.51 shows an example of 20 abundance maps derived by S3AM,
corresponding to 20 endmembers extracted using the method in 5.3. Specifically, since
S3AM addresses shadow effects using other hyperparameters, its derived abundances are
shadow-insensitive. These abundance maps can be used as input for other machine learning
frameworks, such as classification and segmentation, and aid in deriving shadow-insensitive
or shadow-invariant results.



140 5. Summary of the Contributions



5. Summary of the Contributions 141



142 5. Summary of the Contributions



5. Summary of the Contributions 143



144 5. Summary of the Contributions

Figure 5.51: Abundance maps derived by S3AM, corresponding to 20 endmembers extracted using
the method in Section 5.3.



6
Conclusion and Outlook

“ If the past could be changed,
it would not exist.
If the future could be stopped,
it would not survive.
If the present could be avoided,
it would not prevail.”

- Matshona Dhliwayo
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6.1 Conclusion
Hyperspectral sensors have increased spectral resolution with respect to other optical imaging
systems, allowing capturing additional information from targets on the ground surface using
narrow spectral bands. Shadow effects caused by occlusion may pose a critical challenge
for accurately analyzing hyperspectral imagery, with the problem not being investigated so
far as for other types of optical images. In particular, the characteristics of hyperspectral
imagery, e.g., high spectral resolution, coupled with other impacts from remote sensing,
e.g., radiative propagation between the sensor and ground surface, and scarcity of training
samples, lead to unique and unsolved challenges.

This dissertation presents three advanced and robust physics-aware algorithms, built on one
another, for resolving shadow issues in hyperspectral imagery. In particular, physics-based
assumptions derived from radiative transfer theory have demonstrated advantages in solving
shadow problems.

The first contribution in Section 5.1 proposes a novel framework to simultaneously detect and
remove shadows based on nonlinear spectral unmixing. This requires an image and several
atmosphere-related parameters as input, and yields shadow-removed images, soft shadow
masks, and shadow-insensitive material abundances. Following several physical assumptions,
this work proposes a spectral mixing model to compute sunlit and (partly) shadowed pixels.
Later, unknown parameters were solved by spectral unmixing and used in pixel reconstruction
for shadow removal. This work demonstrates the advantages of physics-based assumptions
and spectral unmixing in shadow detection and removal but considering only simple ground
scenarios.

The second contribution in Section 5.2 focuses on developing a spectral mixing model that can
adapt to more complicated scenarios. In particular, it considers both shadow and nonlinear
effects and addresses their intrinsic relationship. Besides, several physical assumptions
are utilized to leverage the accuracy and simplicity of the proposed model. Compared to
the first contribution, this framework yields a more generalized model and more accurate
parameter estimation. Then, those estimated parameters were used to generate improved
shadow-removed images.

Nevertheless, solving nonlinear unmixing, which can be regarded as a constrained optimization
problem, is non-trivial. It can often be ill-posed and sensitive to noise. In order to
achieve a more robust estimation, the third contribution of this dissertation embeds spatial
and topographical information into spectral unmixing by incorporating Digital Surface
Models (DSMs) in the analysis. This framework significantly improves the robustness of the
optimization problem, yields more accurate estimations of physical parameters, and results
in better performance on shadow-removed images. In addition, the computational speed of
this method is comparable to linear spectral unmixing, thus making it possible to be applied
to large images.

Referring to Fig. 1.1 in Chapter 1, Fig. 6.1 compares two segmentation results, where the
input is represented by the original hyperspectral image and the shadow-removed image
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derived by the approach described in Section 5.3, respectively. Results demonstrate that
shadow-removed images have a large potential to improve segmentation performance.

(a) (b)

Figure 6.1: Comparison of image segmentation results generated by SAM [7] for the data selected
from the HySpex/3K dataset (Section 4.1), acquired over Oberphaffenhofen, Bavaria, Germany. Input
images: (a) airborne hyperspectral image shown as a true color composite acquired by the HySpex
sensor (VNIR-1600), (b) shadow-removed image derived from (a) derived by S3AM in Section 5.3.

6.2 Outlook

This dissertation opens novel insights into tackling shadow issues in hyperspectral imagery
while leaving several open questions for investigation in the future.

Several spectral mixing models are presented to simulate image pixels based on simplified
radiative transfer theory. In particular, the ground surface is assumed to be Lambertian:
however, radiative propagation is much more complicated in practice. For example, multiple
optical interactions exist between the ground surface and the atmosphere, and the former
is usually not perfectly Lambertian. These complications demand further investigations in
spectral mixing models. Furthermore, it is vital to leverage the simplicity and accuracy of
the models in order to solve spectral unmixing accurately and robustly. Thus, advanced
optimization solvers are desired.

The third contribution has demonstrated that fusing hyperspectral imagery with DSMs
improves the performance of shadow removal. Nevertheless, the inaccuracies in DSMs may
be propagated to the obtained results, especially in some shadowed regions. An inaccurate
DSM can lead to decreased performance in data fusion, demanding improved data fusion
methods robust to the quality of DSMs.

Image time series can also provide valuable information. As the sun’s position changes,
illumination conditions in a region vary over time in a predictable manner. Thus, the fusion
of multi-temporal images can help detect and remove shadows.
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Moreover, physics-aware deep learning may be a research direction to tackle shadow issues
in hyperspectral data. One of the main challenges of applying deep learning frameworks
for shadow detection and removal in hyperspectral imagery is the lack of training datasets.
Incorporating physics-prior can improve the explainable of the model while requiring fewer
training samples.

Besides shadow detection and removal, there may be other solutions to tackle shadow effects in
hyperspectral imagery. Depending on their applications, learning a shadow-invariant feature
presentation from the image or shadow-aware classification and segmentation frameworks
can be sufficient.

Finally, benchmark datasets considering shadows for airborne and spaceborne hyperspec-
tral images are not publicly available. Thus, it is difficult to quantitatively evaluate the
performance of shadow-aware methods in real scenarios. A possible solution for building a
benchmark dataset can be manual labeling based on comprehensive field studies. Another
possible solution is to obtain hyperspectral images with the same imaging system in an exact
location at different acquisition times on the same day.
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