Requirements for Safety Relevant Positioning Applications in Rail Traffic

Dipl.-Ing. Katrin Hartwig
Dipl.-Ing. Matthias Grimm
Dr.-Ing. Michael Meyer zu Hörste

DLR, Institut of Transportation Systems
Braunschweig

IRTC, 21/22 September 2005
Overview

- Data required
- Reliability
- Precision
- Availability
- Economic issues
- GNSS based positioning systems
- Solutions and outlook
You will get

- Information, how to find out what you need

You won‘t get

- Exact values
Data required

Position data
- WGS 84 coordinates
- Distance from certain location

Speed

Direction

Depending on application
- Train Protection
- Route Protection
- Work Gang Warning
- Automatic Train Control
- Dispatching
- Passenger Information
- Waggon/Goods Tracing
- Energy Saving Train Control
Reliability - Railway Environment

Mass Transport Means
High Speed
Short Headways

High frequency of exposure
Limited possibility to control hazards
Severe consequences possible
High probability of hazardous event
Therefore: Safety related positioning applications in railway field require SIL 3 or SIL 4
Depending on application and sensors to be replaced

Safety related applications

- Train Speed Monitoring
- Train Protection
- Route Protection
- Track Vacancy Detection
- Work Gang Warning
- Notification of Accident
- Automatic Train Control
Depending on application and sensors to be replaced

Two directions
- **Across the track**
 Track selectivity is needed
- **Along the track**
 Precision of sensor to be replaced is assumed to be sufficient

Sensors in use
- Wheel detectors
- Balises / Transponders
- IR beacons
- Track circuit
- Odometer
- VSB Radar
- GNSS based systems
Availability

Depending on application and sensors to be replaced

Possible requirements
- Continuously available
- Available when Train is on certain location
- Available upon request
- Available at certain event

Place of data processing
- Trainside
- Trackside
Economic issues

Two types of equipment
- Trackside equipment
- Trainside equipment

To be taken into consideration
- Length of track
- Train frequency
- Communication needs

Life Cycle Costs
- Acquisition and installation
- Operation, incl. communication
- Maintenance
- Removal

EU policy: Funding of trackside equipment only
Problems / challenge

- **Availability of signal**
 - Shadowed signal in tunnels, roofed stations
 - Partially shadowed in forests, cuttings and hilly terrain

- **Accuracy of signal**
 - Multipath propagation and reflection in urban areas, gulches
 - Interference of signal

- **Reliability of calculated position**
 - Constellation of visible satellites
 - Questionable integrity of signal

- **Route Atlas / Digital Map**
- **Operators of GPS and GLONASS are military**
Solutions and perspective

Fusion of data of diverse sensors
- Odometer
- Transponders
- GSM
- Radar
- Inertial Systems
- Eddy-current sensor

New civil European satellite based navigation system GALILEO
- Increased accuracy and availability
- Integrity information