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Abstract—Developing software for avionics systems presents
a multifaceted challenge, both in terms of complexity and
cost. One approach to address these challenges while enabling
customization and minimizing requalification efforts is through
the utilization of the Lua scripting language. Lua empowers
a diverse workforce, allowing for potential customization by
end-users without necessitating full system re-verification,
thereby saving valuable time and resources. Thus, we explore
the use of scripting languages, which have different properties
than compiled languages typically used for avionics systems.
Scripting languages can reduce complexity by increasing the
abstraction layer and supporting software development in
the production environment, leading to faster iteration times.
However, avionics systems have strict requirements for real-time
behavior, memory constraints, and safety-critical certification,
which scripting languages are not designed to fulfill. In this
paper, we discuss the pros and cons of using scripting languages
for safety-critical systems. We present a comparison of different
off-the-shelf scripting engines, based on the following criteria:
real-time performance, memory usage, portability, reliability,
and certifiability to be used in safety-critical systems such
as avionics systems. The result is a recommendation of the
most suitable language to use in the avionics domain based
on different criteria. We recommend Lua as the most suitable
language for use in the avionics domain, as it has the best fit
to the given requirements. We also suggest modifications that
would need to be made to the engine and the scripts to make
them certifiable with respect to the DO-178C standards and the
additional tool qualification supplements. These include changes
to the garbage collector, the type system, and the coding rules
and verification methods.

Index Terms—scripting languages, interpreted languages,
avionics systems, safety-critical systems, real-time requirements,
memory management, software certification, software engineer-
ing, lua scripting language

∗ Former organization German Aerospace Center (DLR)
† Author is currently affiliated with autonomy79.aero

I. INTRODUCTION

Scripting languages are getting increasingly popular for a
multitude of programming tasks. These languages are easy to
learn and powerful, especially for small tasks. One popular
example for scripting languages is the Python language. How-
ever, today even complex programs can be written using these
languages. Scripting languages are the tool of choice for data
science projects, but also artificial intelligence applications,
most specifically machine learning [1]–[3]. A domain where
scripting languages are not typically used is in avionics
systems. These systems have not only real-time requirements,
but are also safety-critical and must therefore comply to strict
regulation and standards of the aviation domain. The rele-
vant standards for the safety-critical development of software
are DO-178C Software Considerations in Airborne Systems
and Equipment Certification [4], as well as DO-332 Object
Oriented Technology and Related Techniques Supplement
[5]. It is a common practice to reduce the features of a
programming language, such as C, to a subset of features
that can be shown to be safe [6], [7]. Therefore the use of
a highly extensible scripting language seems counterintuitive
at first glance. Despite these high requirements, the use of
scripting languages could have multiple benefits, also for the
development of safety-critical systems [8].

Scripting languages are a commonly used tool to create
extensible software. For software which has to be highly cus-
tomizable, using a scripting engine for application-level func-
tionalities can be a big contribution to the cost-optimization
of the development process on the long-run. As scripting
languages usually provide a high level of abstraction customers
can develop their own customizations of the base software
without a heavyweight toolchain and in-depth knowledge of
the complete system, like memory management. The current
development processes for safety-critical software in the avion-
ics area require a huge overhead. Several tools are required



by the end user to fulfill the verification requirements for
the developed software. Costs for development of even small
features or extensions can get very high when such use of pro-
prietary tools and libraries is required. This problem increases
with third party products, such as certified, proprietary real-
time operating systems and libraries.

Another problem is the extensibility of this software due
to the architecture. Usually the software for safety-critical
systems is designed in a monolithic way, which means that
the full source code or at least a part of it is needed to
extend the features. This means everyone who wants to write
even small extensions needs developer access to libraries and
the intellectual property of the vendor. The use of scripting
engines could ease the process of adding new features to the
software as well as restrict the access to the source code of the
core system. The software could provide a public interface to
modify certain functions of the software which is accessible
from the scripting language. A layer between the script and
the core software will execute these scripts and manage the
access to the different interfaces. This way a developer can
write modifications for the base software without the need for
the toolchains and source code of the core software. However,
the requirements of utilizing a scripting language for real-time
avionics systems have to be considered, including aspects of
software verification and certification.

The goal of this paper is to discuss and evaluate different
implementations of scripting languages for the use in safety-
critical system. The paper presents commonly used scripting
languages and selects some of them for a detailed evaluation.
The results show a recommendation on the most suitable
language and necessary modifications to establish a certifiable
scripting language to be used in the presented use case
scenario. The rest of the paper is organized as follows: Section
2 gives an overview of related work. Section 3 presents the
use-case used in this comparison. Section 4 discusses the main
characteristics of scripting languages compared to compiled
ones. Section 5 presents the list of candidate scripting lan-
guages of the evaluation. Section 6 discusses the methodology
used to compare the different languages. Section 7 presents
the results of the comparison. Section 8 discuss the results
and presents possible improvements to make the selected
scripting engine real-time capable. Finally, Section 9 gives the
conclusions and an outlook to future work.

II. RELATED WORK

This section presents related work that describes challenges
and future research for avionics platforms and describes the
need for adopting cutting-edge technology and development
methods. One specific step towards these challenges is the use
of high-level languages, such as domain-specific languages [9].
Although scripting languages are not specifically mentioned,
the motivation of using high-level languages is very similar to
the approach that is presented in this work. A general overview
of the characteristics of scripting languages is given in [10]
and [11]. Scripting languages like Python are used increasingly
in commercial projects. An example of this is a requirement

analysis tool that uses AI to generate traceability links between
requirements of safety-critical software [12]. Python has also
been used for testing safety-critical systems, such as avionics
systems [13]. In addition, there are several examples that
motivates the use of Python to increase the overall productivity
[8]. However, there is no major example in which Python has
been used for safety-critical software.

Writing safety-critical software is a specialized field with
requirements specific for this task. The verification and cer-
tification aspects are the most important factor for choosing
a language. How to choose a programming language for use
in safety-critical systems is detailed in [14]. The recommen-
dations for languages in 1991 included ISO Pascal, Ada,
Modula-2, CORAL 66, structured assembly languages, and C.
However, with C being the only exception, developers would
not typically use these languages. While some work argues
for specific languages, such as Pearl [15], others see three
options: Ada, Java and C/C++ [16]. As mentioned before, there
are specific certification requirements for the avionics domain.
[17] gives an overview of software certification for real-time
safety-critical systems. [18] focus on memory management
of safety-critical hard real-time systems. [19] details on the
requirements of programming languages for safety-critical
systems. As a result, these certification aspects have to be
analyzed for scripting languages.

In practice, the C/C++ programming language plays a huge
role, especially with the guidelines from MISRA [7]. The
reason for this is its easy access to the hardware, low memory
requirements as well as efficient run-time performance as
noted in [20]. C/C++ remain the most popular languages for
developing software in real-time embedded systems since they
are close to the hardware. Also, it must not be underestimated
that these languages are well understood: there is a history of
uses in the safety-critical domains, there exist safe compilers,
etc. A general comparison between scripting languages and
system programming languages is presented in [21]. Although
their big gain in popularity during the last few years [22],
scripting languages still remain a minority in safety-critical
applications. However there are a few examples of them
expanding different domains that use them for these kind of
applications, from robotics to aerospace.

Several examples can be found for Java. In [16] the chal-
lenges of certifying the interpreted language Java are compared
with the challenges for certifying the compiled languages ADA
and C/C++. Several papers have been published on how Java
could be modified to be used for safety-critical systems. In
[23] and [24] the use of Java for safety-critical applications is
described. [25] describes garbage collection for safety-critical
Java. [26] details how validating Java could be implemented
for safety-critical applications. Another example [27] is a
toolkit for testing safety-critical cockpit display systems with
Java. [28] describe the use of a real-time Java VM for robotics.
A real-time Java virtual machine was successfully used for
avionics in the DARPA Program Composition for Embedded
System [29], [30]. Some examples are starting to be found
for other scripting languages. [31] analyse MicroPython to be



used in robotics application. The industry is also following
this trend and in 2019 VxWorks announced support for Python
[32]. Although it does not support real-time requirements, this
could be a first step on seeing more safety-critical applications
run on top of a scripting engine.

If we look at the space industry, some examples can be
found of missions that use scripting engines as part of its
flight software. The first example is found in the James Webb
Space Telescope (JWST) mission [33], which uses JavaScript
to schedule operations on-board. A second example is found
in the Euclid mission [34], which uses MicroPython to also
schedule different control procedures on the satellite itself.
This trend is not only seen in big missions but also in
CubeSats ones where scripting engines are used in the flight
software [35]. Although one may think that in the previous
examples, the scripting engine is used only for control and
sequencing tasks and not for instruments or data handling
(none of the key functionalities run on a virtual machine or
interpeter), it is a first step toward using them also in this
cases. This agrees with the effort lead by the European Space
Agency (ESA) of porting MicroPython to LEON platforms
and starting with some qualifications activities of the VM [36].
Although initially it would only be to used for non-critical
functions. Another interesting field is robotics, where real-
time requirements usually need to be met. An example of a
scripting engine in this field, is ORCOS [37]. This provides
a framework for building real-time robotic applications and it
is based on the Lua scripting language.

Despite the previously presented examples, in the literature,
no related work on language comparison regarding scripting
engines to use in critical systems has been found by the
authors. Although multiple examples can be found of trade
studies for compiled languages for real-time systems [38] or
more general reviews of programming languages for games
[39]. As such, this work is the first systematic analysis and
comparison for the use of scripting languages in safety-critical
context to the best of the authors knowledge.

III. USE-CASES

There are multiple use-cases in which scripting languages
could be used in the avionics domain. This section details
some of them and the motivation for it. The technical context
used in this paper consists of the configuration of cockpit
displays according to the ARINC 661 standard. Additionally,
the scope of the software framework contains the reception
of data from an ARINC 429 data bus, processing of this data
and presentation of it on the cockpit display. The application
programming interfaces (API) to the data bus and the display
are provided by a library which is already available from
the vendor. The scripting will have access to these APIs
through a wrapper and shall connect the data acquisition with
the presentation on the display. In terms of certification and
tooling, the scripts shall be viewed independently from the
rest of the software. The interpreter which executes the scripts
will be part of the main software package and be certified
with it, whereas the scripts will be certified independently. This

enables the development of scripts for the flight system without
the need for the tooling package of the rest of the software.
The targeted platform for the interpreter consists of an RTOS.
The work in this paper has the context of two business use-
cases in which scripting languages could be used.

A. Business Use Case 1 - OEM Updates

When customers buy products from the vendor they usually
get the software pre-installed on that product. Customizing
this software can get complicated for the customer as often
the intellectual property remains at the vendor and modifying
the software needs at least some parts of the source code.
Even if the source code of the software is available, the
customer still needs to certify the modified software and needs
appropriate tools to do this. The use of scripting languages
shall ease the process to modify the software for both sides.
This way, the customer has the possibility to rapidly prototype
customizations without the need for an extensive toolchain.
Therefore the use of the scripting shall need a minimum of
tools for the rapid prototyping.

B. Business Use Case 2 - Small Business & Offset

Many contracts and customers demand a small business
or in-country offset for developing the customizations of the
vendor products. On one hand using a scripting language
can ease the development process itself and avoid costly
toolchains. The use of a scripting language can therefore
support the involvement of these small companies. On the
other hand, when providing a method to develop the scripts
against a public interface, it might not be necessary to provide
access to the source code of the core system. This way,
the intellectual properties of the vendor do not have to be
published to a third party.

IV. CHARACTERISTICS OF SCRIPTING LANGUAGES

The use of scripting languages can bring several advantages
compared to compiled low-level ones, especially in terms of
flexibility and usability. On the other side, these languages can
have some disadvantages with regard to run-time errors and
indeterministic execution time, which may prevent them for
being used in safety-critical systems, such as avionics systems.
Table I presents some of the advantages and disadvantages
in relation to some of the typical characteristics of scripting
languages. As the table shows, an "off-the-shelf" scripting
language may not be used in avionics systems, as the imple-
mentation will not fulfill the requirements for safety-critical
systems. To fulfill the requirements, the implementation of
the scripting engine may have to be changed. Additionally,
changes to the syntax of the language itself, such as dynamic
typing, may also have to be done. Considering this, modifying
an existing language to meet the mentioned requirements may
be complicated and the effort may increase with its complexity.
On the other side, complex languages often contain constructs
that ease the development process by providing convenient
structures and methods. Thus, there is a trade-off between
complexity and adaptability of the language.



Language Feature Advantages Disadvantages

Garbage Collection
No manual memory

management
Indeterministic

Run-time
No pointers needed Higher memory

consumption
Better support for
data structures of

variable size

Program can run out
of memory

Weak Typing System Faster development Additional
programming errors

Automatic intended
type conversions

Automatic unintended
type conversions

Run-time Loading Faster testing and
debugging

Decreased run-time
performance

Higher memory
consumption

TABLE I: Advantages and disadvantages of scripting engines

The concepts of scripting engines diverge significantly
from those of compiled languages. In contrast to scripting
languages, which are designed to be as flexible as possible,
compiled languages are focused on static run-time behavior
and memory consumption. This flexibility is typically achieved
through a high degree of dynamic language elements, whereby
the code is evaluated at run-time instead of compile time.
This section presents two aspects of scripting languages that
differ from the concept of compiled languages and are of
particular importance for the use in safety-critical systems:
This section will examine the interpretation techniques and
memory management employed by scripting languages.

A. Interpretation Techniques

Direct interpretation represents the most basic form of code
interpretation. In this approach, the scripting engine reads the
source code, evaluates the statements, and executes the meth-
ods in accordance with the aforementioned interpretation. This
approach is typically slow due to the necessity of evaluating
each statement before execution, which results in significant
overhead. To address this issue, a method known as just-
in-time (JIT) compilation was developed, which represents a
compromise between the dynamic behavior of an interpreter
and the performance of compiled machine code. Rather than
merely interpreting the source code, the JIT compiler will
translate code segments into machine code at run-time and
store these compiled segments in memory. In the event that
the program is required to execute the same code segment a
second time, the script engine will now utilize the compiled
code segment in lieu of translating it once more. This approach
enables the execution performance to be achieved that is
similar to that of compiled languages for segments that have
already been translated.

In the context of real-time systems, this advantage will
not result in the same performance gain. The rationale for
this discrepancy lies in the substantial divergence between the
worst-case execution time, during which the code segment
must undergo compilation, and the best-case execution time,
during which previously compiled segments will be executed.
In the context of real-time systems, it is imperative to consider

the worst-case execution time, as previously compiled code
may be deleted depending on the caching algorithms. The
worst-case execution time will not differ significantly from
that of a directly interpreted implementation. However, the
JIT compiling technique requires a considerable amount of
memory for the storage of the compiled code, which limits
the advantages of this technique.

A second aspect of the interpretation techniques is the
representation of the scripting language. For the purpose of
writing scripts, a textual representation is the optimal choice,
as it is important for human readability. Many implementations
will directly use the textual representation and parse it in the
interpreter. While it is relatively simple for a human to read the
textual code, the computer must parse the code, which results
in rather slow performance and high memory consumption.
To enhance performance and reduce memory requirements,
modern interpreters typically employ the concept of byte-
code. This is a distinct instruction set that translates all
expressions of the scripting language into a binary represen-
tation that can be readily read by an interpreter. With this
binary representation, the code will exhibit a markedly reduced
memory footprint when loaded into the interpreter and a higher
execution performance compared to a textual parser. However,
this requires an additional compilation step in order to generate
the aforementioned byte code.

B. Memory Management

Scripting languages memory management is primarily influ-
enced by the object management and dynamic typing featured
in most implementations. Scripting languages rely heavily on
dynamic memory allocation, as they are designed to evaluate
the majority of their code at run-time. This implies that the
size of an object is typically unknown until it is created, and
therefore the memory layout cannot be determined at compile-
time. Furthermore, in contrast to static typing, the assignment
of a variable to another variable can result in the creation of
a third variable if the type of the original variable is altered
as a consequence of the assignment.

Because memory is finite and objects must be created and
released frequently, it is necessary for scripting engines to
implement some form of memory management. Typically,
scripting engines provide automatic memory management
methods to streamline the development process. The rationale
behind this approach is that it allows application program-
mers to focus on solving a given problem without having to
worry about low-level details such as allocating and freeing
memory. To achieve this automatic memory management, so-
called garbage collectors are implemented to check if objects
in memory still have references on them and therefore are
reachable by the code. If that is no longer the case, the object
is destroyed and the memory it had occupied freed by the
garbage collector. According to DO-178C, garbage collection
is a preferred method for memory management.

In the context of real-time systems, most implementations of
garbage collectors are not viable due to their non-deterministic
nature with respect to the invocation and duration of a single



collection run. The most common approach to garbage col-
lection is the "tracing garbage collection" algorithm, which
records references to objects within a given data structure and
monitors the traces of references between these objects. During
the collection process, execution of the actual application code
must be paused. This introduces an element of unpredictability
into normal run-time operations, since the garbage collector
is typically invoked when there is insufficient memory to
allocate a new object, or when a certain amount of memory
has been allocated. One possible solution to this problem is to
explicitly reserve a time slice for garbage collection, thereby
linking the execution of the garbage collector to a timed event
rather than depending on the memory situation. This so-called
"incremental" garbage collection can be employed in real-time
systems, where the collection run will be terminated when the
allotted time has elapsed.

Regardless of the method employed (pausing or incremen-
tation), sweeping unreferenced memory will inevitably result
in memory fragmentation. In order to mitigate this, garbage
collectors will implement a "copy-pass," whereby objects will
be relocated to other memory sections in order to densify the
memory usage and create larger consecutive areas of memory
to allocate large objects.

An alternative to garbage collection is the Automatic Ref-
erence Counting (ARC) method. This method is simpler than
garbage collection, as it will add meta information to an object
which counts the currently used references to that object. As
soon as this counter will be set to zero, the object will be
freed. In comparison to the "mark-and-sweep" method, this
method does not need a "mark" run and will directly sweep
objects that are no longer reachable. However, as with the
garbage collection method, this method is also unsuitable for
real-time systems. The sweeping of objects depends on the
program flow, rather than a timed condition, which introduces
unpredictable delays into the code execution. Although these
delays are relatively brief, the algorithm is unable to fulfill the
needs of a real-time system.

The third method of automatic memory management is
the so-called "Variable Storage" implemented in the Espruino
engine. The variables are stored in blocks of fixed size (usually
16 or 32 bytes), which can be linked if an object does not fit
into a single block. These objects are sorted into two lists,
which contain either free or used blocks. As in the ARC
method, the blocks contain a reference counter as metadata,
facilitating the sweeping of unused memory without the need
for reference tracing of the objects. The garbage collector can
then efficiently clean up the unused blocks by iterating over
the used block list and moving blocks with a zero reference
counter to the free list. The significant advantage of this
method is that the sweeping can be called in a timed event,
eliminating the need for indeterministic delays. Furthermore,
as the memory is comprised of identical-sized blocks that can
be linked in an arbitrary manner, this method is not susceptible
to the problem of memory fragmentation.

V. SCRIPTING LANGUAGE CANDIDATES

This section will present a selection of languages that have
been identified for further discussion within the context of
this paper. The languages that are considered in this paper
have been selected according to a set of criteria derived from
the technical and business use cases previously presented. The
first criterion is the popularity of the language. The scripting
language in its standard implementation shall be widely known
to a large community and used for many applications. The
use of a well-known scripting language will facilitate the
entry of new developers into the field, as they will already
be familiar with the syntax and only need to learn about
the specific characteristics of the implementation. In order to
assess popularity, the IEEE Spectrum Programming Language
Ranking 2023 has been used [22]. The second criterion is
the availability of languages for different real-time operating
systems. Therefore, implementations that do not depend on a
specific operating system must be chosen.

A. Candidates

This section will provide an overview of all languages and
their implementations that are under consideration for this
trade study. Three of these candidates will then be selected
for further discussion in detail.

1) Python - CPython: Python is a widespread scripting
language with a rich feature set. The current iteration of
the language and its reference implementation is Python 3.
Python is a scripting language with a strong typesystem
and an extensive standard library which will ease application
development. The CPython implementation is available as a
standalone interpreter for POSIX and Windows Systems and
can be used as a plugin interpreter in other applications.

2) Python - MicroPython: MicroPython is an embedded
implementation of the Python language which maintains a high
grade of compatibility to the Python 3 API. The main focus
of the MicroPython implementation is on the compatibility
to the standard Python implementation while running directly
on a micrcontroller and achieving a small memory footprint.
Many libraries, besides the standard library, that are available
for the Python 3 reference implementation (CPython) will also
work on MicroPython. MicroPython comes with a reference
platform which consists of an ARM Cortex-M microcontroller
and additional ports are available for the ESP8266 and ESP32
microcontrollers.

3) Lua - Reference Implementation: Lua is a very minimal-
istic Scripting language that is designed to be used as a plug-in
scripting language. As a design concept the whole interpreter
consists of a single library which makes it easy to integrate it
into any application. The interpreter is written in ANSI C and
therefore compatible to all platforms that have a compiler for
this platform.

4) Lua - eLua: eLua is a alternative implementation of the
Lua language. It is designed as a stand-alone implementation
without the need for an underlying operating system. Therefore
this engine implements features as file I/O and access to
several microcontroller peripherals. Code written in eLua that



is not depending on platform-specific methods is compatible
to the Lua Reference Implementation.

5) JavaScript - Espruino: JavaScript is a scripting language
that is mostly used for client-side scripting of webbrowsers.
Espruino is implementing an JavaScript interpreter for embed-
ded microcontrollers. Unlike other implementations presented
here, the Espruino platform includes a special method for au-
tomatic memory management called Variable Store. Espruino
comes with several implementations for ARM Cortex-M and
ESP8266 microcontrollers.

6) Ruby - CRuby: Ruby is a popular scripting language
which is developed as an all-purpose programming language
and mostly used in server-side web applications. One major
feature of Ruby is the consistent object orientation that consid-
ers even primitive data types like integers and floating point
numbers as objects. The standard CRuby implementation is
available for Windows and POSIX platforms.

7) Perl - Reference Implementation: Perl is a language
primarily designed for processing text files but can be used
as a multi-purpose language. An extensive amount of libraries
is available and Perl has very good support for regular expres-
sions. The reference implementation is available as a single
library and supports POSIX Operating systems as well as
Windows.

B. Pre-selection of Candidates

While all of the candidates would generally be suitable for
the use case, a preliminary evaluation can help to identify
some as less suitable. The initial decision can be made between
the microcontroller implementations and the standard imple-
mentation of Lua and Python. The standard implementation
is more suitable for our use case as they are designed to
be a plugin language rather than eLua and MicroPython,
which are designed as standalone interpreters. A standalone
interpreter for embedded systems is typically equipped with
pre-built extensions for the use with microcontrollers, such as a
hardware abstraction layer. In the context of avionics systems,
however, the language is typically employed on top of an
RTOS, rendering these extensions unnecessary. Consequently,
the standalone version must be modified to function as a
plugin container. Another candidate that can be excluded at
this stage is CRuby. This language is highly reliant on object
orientation, treating all the elements as objects, which pro-
duces more overhead, performance issues, and more memory
consumption, particularly in the case of a scripting language.
Furthermore, having object orientation throughout all language
elements will add additional effort for the porting of the engine
to DO-178C. As more rules apply to object-oriented languages
according to the DO-178C standard, the scripts will be more
difficult to certify. The last candidate to be excluded is Perl.
Although Perl is a widely used language, its design decisions
are contrary to the requirements of safety-critical systems. Perl
is in generally considered difficult to read due to the high
amount of "syntactic sugar" that enables multiple ways to
write the same expression. After eliminating these unsuitable

candidates, the remaining three will be discussed in detail in
the following sections.

VI. METHODOLOGY

The candidates are evaluated according to different criteria
which are related to the concepts discussed in the previous
section. The following criteria have been selected and the
methodology of the evaluation will be described in detail.

A. Language Complexity

Language complexity is a key factor in determining the
adaptability of a language and the effort required to train
developers, and is therefore important in the selection process.
For this study, language complexity is measured by the number
of keywords in a language. The more keywords a language
has, the more concepts are implemented and the more complex
the implementation has to be to cover these concepts. In the
context of the use case, a less complex language is preferred
because it reduces the effort to adapt the languages to meet
the safety-critical requirements.

B. Implementation Complexity

This criterion evaluates the complexity of the codebase for
the language implementations. This is especially important
for adapting the implementation to the requirements described
in the use case. The metric for this is the code size of the
implementations, with fewer lines of code and fewer modules
the better.

C. Interpretation Technique

The method used to interpret the scripting code is important
when evaluating runtime behavior and memory consumption.
However, there is not much difference between the techniques
presented (direct interpretation and JIT compilation) when
determining the worst-case execution time. However, for the
proposed use case, a minimum set of tools should be used to
enable a rapid prototyping process. Therefore, it is preferable
to translate the script from its textual representation rather than
from an intermediate byte-code representation.

D. Automatic Memory Management

As mentioned earlier, the algorithm used for the garbage
collector has a large impact on the real-time performance. The
requirement for automatic memory management is predictable
behavior in terms of when the collection is called and how
long a run will take. This criterion has a moderate impact on
the selection process, since all algorithms can potentially be
modified to meet real-time constraints.

E. Typing Concept

Since all languages are dynamically typed, this criterion
considers both strong and weak typing concepts. Since weak
typing is a potential source of programming errors, the selected
language should implement a strong typing concept. This crite-
rion is of medium relevance because the problems associated
with weak typing and implicit type casting can be limited
by applying coding rules that restrict certain expressions in



the language. However, applying extensive coding rules may
limit the usability of the language, and users of the standard
implementation will have to learn how to comply with these
rules. In addition to usability, coding rules will require tools
such as static code analyzers to help enforce the rules. These
tools will also grow in complexity as the rules become more
extensive. Therefore, it is not impossible to use weakly typed
languages, but more strongly typed languages are preferred.

F. Portability

The portability criterion evaluates the effort required to
port the given implementation to any given operating system.
In general, all proposed candidates are compatible with the
POSIX interface. Therefore, this criterion analyzes the de-
pendencies needed to build a minimal scripting environment.
These dependencies include standard libraries and dependen-
cies on operating system libraries.

G. Integrated Language Features

Many scripting languages provide a high level of abstraction
from the underlying platform to the application developer.
These abstractions implement commonly used data structures
such as lists, queues, stacks, etc., and operating system features
such as threading. These abstractions are achieved through
a standard library that must be ported to each platform. In
general, these features are desirable because they are ready
to use and the developer can focus more on solving the
actual problem. However, in the context of the use cases,
many features are not needed (such as threading) and will
significantly increase the effort to port the language to another
platform. Therefore, the relevance of this criterion is low.

H. Community Support

All languages and their implementations proposed for mod-
ification are open source projects. This criterion takes into
account the state of the community (documentation, develop-
ment activity, etc.). Since modifications or at least extensions
need to be implemented, an active community and good
documentation would be helpful. This criterion is considered
low because modifying the scripting engine results in a fork
of the original implementation and is not maintained by the
original project community.

VII. COMPARISON OF CANDIDATES

Table II shows a comparison of the different approaches
with respect to the criteria stated in the previous section.

Considering the sum of all criteria, the Lua language is
the most suitable solution for our use case. Although some
parts of the language and the implementation need to be
modified, the concept of Lua as a very minimal language
is very advantageous. In terms of complexity, Lua is the
least complex when it comes to the language itself and the
implementation of the standard scripting engine. Having fewer
keywords than Python or JavaScript will make it easier to
implement code checking tools. The smaller code base will
make it easier to modify the scripting engine. Another benefit

Criteria
Relevance

Lua Python Espruino

Language
complexity

High Low (21) Medium
(33)

High (64)

Implementa-
tion

complexity

High Minimal High Medium

Portability High High (only
little

changes
and

extensions)

Medium
(standard

library has
to be

adapted)

Medium
(some core

features
need modi-
fications)

Interpretation
technique

High Direct in-
terpretaton
(Textual)

Just-in-
time

compila-
tion

(Textual)

Direct in-
terpretation
(Textual)

Automatic
memory
manage-

ment

Medium Mark &
Sweep GC

Mark &
Sweep GC

Variable
Store

Typing
concept

Medium Weak (no
explicit
casts)

Strong Weak

Integrated
language
features

Low Few Many Few

Community
support

Low High High Medium

TABLE II: Comparison of scripting language candidates

of Lua’s minimal and extensible design is that a basic setup
requires only a single library written in ANSI C code. This
increases the portability of the scripting language, and the
only task to be performed when porting the language to a
new platform is the implementation of extensions to access
platform-specific features. Compared to Espruino, the core
features do not need to be modified, as they do not depend
on any hardware. Also, Lua does not have a standard library
like Python that provides basic language runtime functions
that would otherwise have to be ported. The interpretation
technique of Lua is a direct textual interpretation, as it is
for Espruino. This technique is more suitable for use in real-
time systems, as it behaves more deterministically and the
just-in-time compilation used in MicroPython does not bring
any performance advantage. The mark-and-sweep garbage
collector is not the best choice compared to the variable store
implemented in the Espruino engine. Although the garbage
collector is not deterministic when running at arbitrary times,
the implementations used in Lua and Python can be disabled
and controlled manually. This allows the explicit invocation
of garbage collection runs at specific time slots, making it
possible to use these implementations with little modification.
Another important criterion for evaluating the candidates is
the typing system. Python is the best candidate because it
supports a stronger type system than the other two candidates.
All other languages use a weak typing system that makes
extensive use of implicit type conversions. This disadvantage
can be mitigated by code analysis tools that check for implicit
type casts and other restricted language constructs. While a



very good choice in all other categories, Lua’s typing system
is rather disadvantageous for use in safety-critical systems.
Lua only supports implicit casts, which is a potential source
of programming errors, and tools must be provided to ensure
consistent conversion of variables. Another minor drawback of
Lua is related to the minimal concept of the language. Since
it contains only the minimal set of language features, some
convenient features of Python such as libraries of commonly
used containers, threading support, etc. are missing. There are
several libraries that implement some of these features, but the
engine itself does not contain a standard library. When using
Lua, it may be necessary to create a library of commonly used
data structures to support the rapid prototyping use case.

VIII. DISCUSSION

The comparison of the three candidates showed that the
concept of the Lua languages best fits our requirements,
although there are some major drawbacks, especially in the
context of the typing system. Therefore, it is recommended
to use the standard Lua implementation as a reference for
further development. However, the standard implementation
is not directly usable and needs to be modified to meet the
requirements of safety-critical systems. To enable the use
of common software engineering tools (such as unit test
frameworks, code coverage analyzers, etc.), modifications to
the Lua language itself should be as limited as possible. In
this way, it will be possible to use currently available tools
for the standard implementation with little or no modification.
In order to make the engine and scripts certifiable for the DO-
178C standard, several modifications have to be made.

A. Modifications to the Garbage Collector

As mentioned earlier, the automatic, arbitrary calls to the
garbage collector will break the real-time requirements of
a safety-critical system. To meet real-time requirements for
script execution, the automatic garbage collector must be
turned off and called manually at an appropriate time. Lua
already provides functions to manually control the garbage
collector from within the scripts. These functions need to be
externalized so that they can be executed by a dedicated task
of the operating system. Also, the language-internal functions
for controlling the garbage collector need to be removed to
ensure that it is not inadvertently enabled. This especially
affects worst-case execution time and memory consumption.

B. Modifications to the Type System

The main part of the change is Lua’s typing system. Lua
only supports implicit casts, which is not generally forbidden,
but the DO-178C standard requires that these type conver-
sions are "safe and the implications understood". Therefore, a
mechanism for tracing these casts and ensuring safe casts must
be established, where developers can add the information of
the intended conversion. This can be achieved with extensions
to the Lua language through so-called annotations, which tag
variables and conversions with the intention of that conversion.
These annotations do not need to be parsed by the interpreter,

but can be used in code verification tools. These tools can then
be used to check the implicit conversions against the intended
conversions given by the annotations and warn the developer
if there is a mismatch.

C. Code Verification

For use in production, certified aircraft systems, coding
rules must be established that cover all applicable DO-178C
requirements. To verify these rules, code verification tools are
needed to support the development and certification process.
These code verification tools can be implemented in a model-
based manner, where the script itself is mapped to a model.
Depending on the set of rules to be established, annotations
can be added to the language to provide additional information
to the model. This model can then be processed by various
model verification methods to check compliance with the
coding rules. Any tools used for the purpose of verifying
specific DO-178C objectives must comply with the Standard
for Software Tool Qualification Considerations Supplement
DO-330.

IX. CONCLUSION AND OUTLOOK

Lua is the most suitable candidate according to the char-
acteristics used for comparison. This trade study showed
that Lua is a suitable candidate for a scripting language
in the area of safety-critical systems. Since this scripting
engine cannot be used directly, some modifications have to
be implemented, mainly in the context of automatic memory
management. While the engine that will execute the Lua code
can be certified by these modifications, the features of the
Lua language itself have to be limited. Therefore, the next
step in making Lua scripts certifiable is to create coding
rules that map to the applicable requirements of the DO-
178C standard. These coding rules will ensure that the scripts
comply with the requirements. To support the enforcement
of these rules, code verification tools must be created. These
tools will need to comply with the additional tool qualification
supplement to DO-178C: DO-330 Software Tool Qualification
Considerations. In future work, we will take the results of this
trade study and work on a design approach that will lead to a
certifiable scripting language based on the Lua implementation
presented in this work.
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