Ionospheric impact on space-borne GNSS reflectometry: studying satellite and sounding rocket scenarios

- M. Semmling (1), M. Moreno (1), F. Zus (2),
- G. Stienne (3), M. Hoque (1), J. Wickert (2,4),
- H. Nahavandchi (5), A. Dielacher (6), P. Badia (7)
- T. Voigtmann (8), J. Götz (9), J. Berdermann (1)
- (1) German Aerospace Center DLR-SO, Neustrelitz, Germany
- (2) German Res. Centre for Geosci. GFZ, Potsdam, Germany
- (3) Univ. Littoral Côte d'Opale ULCO, Calais, France
- (4) Tech. Universität Berlin TUB, Berlin, Germany
- (5) Norwegian Univ. of Sci. & Tech. NTNU, Trondheim, Norway
- (6) Beyond Gravity Austria GmbH BGA, Wien, Austria
- (7) Syntony GNSS, Toulouse, France
- (8) German Aerospace Center DLR-MP, Köln, Germany
- (9) German Aerospace Center DLR-FT, Braunschweig, Germany

MAPHEUS-14 rocket launched from Esrange Northern Sweden Feb 28, 2024

Outline

Background and Motivation

Prelim. Results from Satellites

Preparation and Simulation of Rocket Obs.

Summary & Outlook

Background and Motivation

Motivation GNSS Reflectometry

A: Low Earth Orbiter

Wickert et al. 2016 Semmling et al. 2016 Moreno et al. 2023

B: Aircraft

Semmling et al. 2014 Moreno et al. 2022

C: Research Vessels

Wang et al. 2019 Semmling et al. 2019, 2022 Semmling et al. 2023

Application

sea surface altimetry sea state estimation sea-ice detection water vapor estimation ionosphere monitoring

A: e.g. PRETTY, h ~ 540 km

C: e.g. Polarstern, h ~ 25 m

B: e.g. HALO, h ~ 3500 m

Opportunities and Challenges

- GNSS signal are freely available with global coverage
- Coherent signature have been observed in various scenarios also from space
- Main goal: understand & correct ionospheric effects, exploit them for earth observation
- Disturbances to be considered
 - Irregularities on Earth surface (land, ocean roughness)
 - Irregularities in Earth's atmosphere (ionosphere, troposphere)
- Best Opportunities for coherent reflectometry
 - Over sea ice, calm ocean and in coastal areas
 - At grazing elevation angles
- New points in this study
 - Sat. obs. down to grazing elevation -> increased atmo. effect
 - Rocket obs. focusing on E-layer detection

Radio Occultation events recorded with CHAMP mission (one month)

red with reflection blue w/o reflection

Beyerle et al. 2002

Reflectometry events recorded by Spire constell. (four months)

coherent obs. coincide with higher SNR

Roesler et al. 2021

Considerable Factors

Sea Surface

- Roughness (Sea State)
- Penetration (e.g. Sea Ice)
- ...

Atmosphere

- Refraction (neutral gas and ionosphere)
- Scintillation (Plasma Depletion, Space Weather)
- ...

Receiver & Transmitter

- Position & Attitude uncertainty (of vessel, aircraft or satellite)
- Antenna & Instrumental parameter (e.g. gain pattern)
- **.** . . .

Data for space-borne reflectometry

Mission:

TDS-1

PRETTY

MAPHEUS-15

Platform type:

small sat

cube sat

sounding rocket

Observation alt.:

~ 650 km

~ 560 km 80 ... 240 km

Major field of view:

near-nadir

grazing

grazing

Supported signals:

GPS L1 C/A

GPS L5C & GAL E5

GNSS L1 & L5

Observation area:

Hudson Bay, Canada

Arctic Ocean

Northern Europe

Time period:

Jan 2015

May – July 2024

Nov 2024 (planned)

Prelim. Results from Satellites

Altimetric Scenario with TDS-1

Coherent Phase Tracks of TDS-1 Mission

- Two tracks over Hudson Bay (HB) with rather high SNR selected for analysis, they run over sea ice
- Reflection at spec. Point with high and mid elevations:
 - 1) western HB track ~ 58°
 - 2) eastern HB track ~ 30°

Retrievals for Eastern HB Track 2)

- Surface height retrievals (black marker) follow the sea surface height model (red marker)
- Altimetric scenario because expected delay (based on model) is dominated by sea surface height effect

Atmospheric Scenario with PRETTY

Coherent Phase Tracks of PRETTY Mission

- Nine sea-ice tracks over Arctic Ocean (AO) with reflection signature (rather low SNR), segments without reflection (grey)
- Reflection at spec. Point with grazing elevation:
 - 1) western AO track 0 ... 11°
 - 2) Greenland track 0 ... 10°

Retrievals for Western AO Track 1)

- Surface height retrievals (black marker) follow not the sea surface height model (red marker)
- Atmospheric scenario because expected delay (based on model) is dominated by neutral atmo. effect

Atmospheric Scenario with PRETTY

- variable
 - Code delay obs.
 - Code delay fit
 - neutral atmo, model
 - Ionosphere model
 - neu. + iono. model

More simulations on ionosphere in satellite scenario:

Moreno et al. 2023

Nine sea-ice tracks over Arctic Ocean (AO) with reflection signature (rather low SNR), segments without reflection (grey)

30°E

0°

- Reflection at **spec. Point with grazing elevation**:
 - 1) western AO track 0 ... 11°

30°W

2) Greenland track 0 ... 10°

- In grazing reflection geometry (elev. < 15°) atmo. delay increases exponentially
- retrieved delay and model agree in this trend, bias remains (10m range underestimation)

60°W

Preparation and Simulation of Rocket Obs.

GNSS setup on MAPHEUS rocket

Receiver unit in payload module

GNSS Bitgrabber (redundant)

Payload Adapter

GNSS Antenna

Clear view to Earth once engine is thrown off

Design & layout for GNSS remote sensing

Payload adapte

- Bitgrabber (R1,2)Syntony GNSS
- Antenna (A)
 matterwaves
- Bias-tee (B)
- Splitter (S12)
- Powercontrol (DC)

GNSS setup components

GNSS remote sensing simulation

Ionospheric test scenario

- 3h of elec. density data from EISCAT (European Incoherent Scatter) radar site near Tromsø, Norway
- Polar night period with E-layer dominated ionosphere

- Chapman layer profile fitted to EISCAT data, dominant E-layer peak and moderate F-layer peak
- Profile from empirical NEDM (Neustrelitz Elec. Density Model) for comparison, E-layer underestimated

Results for mid elevation event

- Rays path for two receiver heights (H1 ~ 50km, H2 ~ 240km)
- For H1: incident-reflected (ir) and direct (d) signals hit E-layer
- For H2: only incident-reflected signal hits E-layer (even twice)

- Comparison of TEC along direct and incident-reflected paths dependent on height of receiver (rocket)
- NEDM scenario (black), E-layerdomin. scenario (red)
- TEC at 120km (above E-layer) differs significantly between scenarios:
 - ~ 5 TECU on ir path
 - ~ 2 TECU on d path

- Comparison of relative ionosphere excess path (between ir and d path)
- NEDM scenario (black) and E-layer domin. scenario (red) for L1 and L5
- ex. path at 120km (above E-layer) differs in dm range between scenarios:
 - ~ 4 dm for L1
 - ~ 8 dm for L5

Results for grazing elevation event

- Rays path for two receiver heights (H1 ~ 50km, H2 ~ 240km)
- For H1: incident-reflected (ir) and direct (d) signals hit E-layer
- For **H2**: **only incident-reflected** signal hits E-layer (even twice)

- Comparison of TEC along direct and incident-reflected paths dependent on height of receiver (rocket)
- NEDM scenario (black), E-layerdomin. scenario (red)
- TEC at 120km (above E-layer) differs significantly between scenarios:
 - ~ 8 TECU on ir path
 - ~ 4 TECU on d path

- Comparison of relative ionosphere excess path (between ir and d path)
- NEDM scenario (black) and E-layer domin. scenario (red) for L1 and L5
- ex. path at 120km (above E-layer) differs in dm to m range between scenarios:
 - ~ 7 dm for L1
 - ~ 10 dm for L5

Summary & Conclusion

Conclusion

- GNSS signals offer opportunities for atmospheric remote sensing incl. GNSS-R
- Coherent reflection tracks often occur over smooth surface (e.g. sea ice)
- Altimetry or atmosphere dominated satellite obs., elev. angle plays major role
- Can we detect E-layer dominated ionosphere with GNSS-R?
- Rocket experiment is currently prepared to answer
- **Delay** resolution in **dm range** (2-4 TECU) is required ...

Acknowledgements

The rocket experiment is conducted within DLR's RESITEK project (RESIliente TEchnologien für den Katastrophenschutz).

The PRETTY data study is partly funded by ESA.

Thank you for your attention

References

- Beyerle et al. 2002: GPS Radio Occultations with CHAMP: A Radio Holographic Analysis of GPS Signal Propagation in the Troposphere and Surface Reflections.

 Journal of Geophysical Research
- Liebsch et al. 2006: Quasigeoidbestimmung für Deutschland.

DVW-Schriftenreihe

- Fabra et al. 2011: Phase Altimetry with Dual Polarization GNSS-R over Sea Ice.
 - IEEE Transaction on Geoscience and Remote Sensing
- Semmling et al. 2011: Detection of Arctic Ocean tides using interferometric GNSS-R signals.
- Geophys. Res. Lett.
- Förste et al. 2013: EIGEN-6C2 A new combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse
 - Geophysical Research Abstracts
- Semmling et al. 2013: A zeppelin experiment to study airborne altimetry using specular Global Navigation Satellite System reflections. Radio Science
- Semmling et al. 2014: Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission. *Geophys. Res. Lett.*
- Semmling et al. 2016: A phase-altimetric simulator: studying the sensitivity of Earth-reflected GNSS signals to ocean topography. *IEEE Transactions on Geoscience and Remote Sensing*
- Camps et al. 2016: Ionospheric Effects in GNSS-Reflectometry From Space.
 - IEEE Selected Topics in Applied Earth Observations and Remote Sensing
- Wickert et al. 2016: GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station.

 IEEE Selected Topics in Applied Earth Observations and Remote Sensing
- Li et al. 2017: First Space-borne Phase Altimetry over Sea Ice Using TechDemoSat-1 GNSS-R Signals. Geophys. Res. Lett.
- Jakowski & Hoque 2018: A new electron density model of the plasmasphere for operational applications and services.

 J. Space Weather Space Clim.

References

- Dielacher et al. 2019: The ESA Passive Reflectometry and Dosimetry (PRETTY) Mission.
- IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
- Semmling et al. 2019: Sea Ice concentration derived from GNSS reflection measurements in Fram Strait.
 - IEEE Transactions on Geoscience and Remote Sensing
- Fragner, H. et al. 2020: Status of the ESA PRETTY Mission.
 - IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
- Hersbach et al. 2020: The ERA5 global reanalysis.
 - Q J R Meteorol. Soc.
- Cardellach et al. 2020: First precise spaceborne sea surface altimetry with GNSS reflected signals.
- IEEE Selected Topics in Applied Earth Observations and Remote Sensing
- Roesler et al. 2021: Coherent GNSS-Reflections Characterization Over Ocean and Sea Ice Based on Spire Global CubeSat Data.
- IEEE Transaction on Geoscience and Remote Sensing
- Moreno et al. 2022: Airborne Coherent GNSS Reflectometry and Zenith Total Delay Estimation over Coastal Waters.
 - Remote Sens.
- Semmling et al. 2022: Algorithm Theoretical Baseline Document PRETTY mission.
 - Project report within: Scientific Support for the Nano-Satellite Mission PRETTY
- Moreno et al. 2023: Characterizing Ionospheric Effects on GNSS Reflectometry at Grazing Angles from Space
 - Remote Sens.
- Semmling et al. 2023: Ionosphere Sounding in the Central Arctic: Preliminary Results of the MOSAiC Expedition.
 - URSI Radio Science Letters