PDLR

Ultra-Efficient Short-Range Aircraft Design

Facts And Challenge

- About **2%** of global energy-related **CO2 emissions** from aviation
- 5% of current anthropogenic climate change caused by global aviation
- Non-CO2 effects play a major role
- Despite increasing global fleet efficiency, aviation's impact is increasing due to the projected growth in aviation
- Operation is the predominant phase in terms of climate impact
- Long-lifetime of aircraft causing long fleet renewing
- Huge investments and long development times needed for new aircraft
- Challenging technical requirements
- Economically viable solutions

The Project EXACT (2020-2023) - Contents

Which concepts have the potential to drastically reduce aviation's climate impact while maintaining a high economical competitiveness?

EXACT Aircraft Models

Aircraft Design Work Package:

- Expand tools and know how for consistent aircraft design throughout different aircraft classess and a multitude of concepts.
- Explore aircraft design synergies and market sweet-spots for different power providers and energy carriers at each aircraft class.
- Focus on most fitting concepts for reduced climate impact combined with market competitiveness.

The study **"speed vs sustainability"** lead to improved understanding of the effects and enablers of switching to subsonic flight at the larger aircrat classes!

Battery-electric flight with a range-extender gas turbine to reduce fuel consumption and significantly increase efficiency on short distances.

Georgi Atanasov, DLR Institute of System Architectures in Aeronautics, 08.10.2024

"EXACT" Project Aircraft Models

Aircraft Design Boundary Conditions

Reference A/C:

A321neo interpretation (EIS2016)

Top-Level-Aircraft Requirements (TLARs)

Design Range	[nm]	2500
Design PAX (single class)	[-]	239
Max. Payload	[kg]	25000
Cruise Mach Number	[-]	0.78
TOFL (ISA +0K SL)	[m]	2200
Approach Speed (CAS)	[kt]	136
Wing span limit	[m]	<=36

Redesign for EIS2040:

- TLARS:
 - o Range 1500nm
 - TOFL (ISA +0K SL) 1900m
 - 250 PAX; Design Payload 23750kg
- Approach speed <140kts
- Technology factors:
 - Gas turbine +5% efficiency
 - Fuselage mass -5%
 - Empennage Mass: -8%
 - CFRP Wing with foldable wing tips
 - Bleedless systems architecture

- the sort-range operational network
- Fully electric flight capability

5

Overall Configuration

D250-PHEP Power Profile – Electric Mission

- The mission is flown only with battery energy, including taxi, take-off, approach and landing.
- The gas turbine is not used for the main mission but will be started in case reserves are needed.
- Sufficient fuel is carried in case a diversion after the mission is needed.
- ~20% battery capacity remains after the mission

5% contingency +

sufficient energy for electric go-around (to allow starting the gas turbine)

D250-PHEP Power Profile – Range-Extender Mission

- After electric taxi and takeoff, the fuel is burned, making the aircraft lighter. Sufficient fuel for the reserve mission is spared.
- After the fuel for the main mission is burned, the flight continues electrically without turning on the gas turbine again (except in case of a diversion).
- Should the gas turbine fail during the range-extender phase, the aircraft can divert electrically with ~300nm diversion radius.
- Since the electric flight starts from cruising altitude, the electric distance is around 300nm, which is the possible diversion radius in case the gas turbine fails.
- Sufficient fuel is carried in case a diversion after the mission is needed.
- ~20% battery capacity remains after the mission (contingency + go-around)

Off-Design Performance

The Plug-In-Hybrid concept offers an extreme advantage in off-design performance. \rightarrow Highly relevant for short routes.

Energy vs Range

11

The aircraft are compared in terms of simulated global fleet operation cost and climate impact.

Fleet Simulation: 2 Different Fleet Operators

EXACT global assessment: Two fleet operators of 500x aircraft simulation.

Operator 1: Typical Intra-Continental Routes

Operator 2: Shorter Routes (more advantageous for slower aircraft)

Fleet Energy Consumption – Typical Operator

Evolutionary advancements offer a significant improvement potential.

Flying slower can further significantly boost energy efficiency.

Flying slower & plug-in-hybrid propulsion:

- -45% energy consumption
- -65% kerosene comsumption

Fleet Energy Consumption – Shorter-Routes Operator

٠

•

Shorter routes operation \rightarrow more fully-electric flights:

- -60% energy consumption vs modern airliners
- -85% kerosene comsumption vs modern airliners

Incl. battery replacement costs of 3ct/kWh (300 cycles & 100€/kWh)

Significantly less engine maintenance:

- Only one gas turbine
- Least installed total power
 (1 lange groups 2 and power lange)
 - (4 large props & no power lapse)
- The gas turbine only used for electric missions and only partially used for rangeextender missions (climb & cruise).
- Geared e-motors (single-stage gearbox) maintenance expected significantly cheaper than turbofan or turboprop maintenance.

Cost Comparison – Turboprop Network

Georgi Atanasov, DLR Institute of System Architectures in Aeronautics, 08.10.2024

17

Results Summary

EXACT fleet simulation results comparison to a fleet of modern airliners operating on fossile kerosene.

250PAX Turbofan EIS2040

250PAX Turboprop EIS2040

250PAX Plug-In Concept EIS2040

Fleet energy demand $\overbrace{}$ 20%For Fleet Operation with Fossil KeroseneClimate Impact Reduction $\overbrace{}$ $\sim 20\%$ Seat Mile Cost $\overbrace{}$ $\sim 20\%$ Fleet Operation with Synthetic KeroseneClimate Impact Reduction $\overbrace{}$ $\sim 15\%$ Fleet Operation with Synthetic Kerosene $\sim 40.60\%$ Seat mile cost $\overbrace{}$ $\sim =10\%$

18

Way Forward

- The current study focused on finding the potential of slower flight & plug-in hybrid.
- Further studies will focus on reducing the modelling uncertainties by:
 - o Increasing the aircraft & propulsion system modelling level of detail
 - Defining further technology scenarios
 - Analyzing needed airport infrastructure
 - Analyzing impact of different turn-around strategies on operating costs
 - More detailed energy production analysis

Thank you for your attention!

Pas exactions

POLR

ex

1 × × ×

Par exact ican