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Abstract 
The current shortage of air traffic controllers (ATCO) and expected growth of air traffic in Europe requires new 
approaches to further ensure efficient and safe air traffic. One solution could be to increase the deployment 
possibilities of ATCOs to different airspaces or aerodromes. While concepts for such flexible endorsements in 
the upper airspace (centre) already exist, the development of similar concepts in the remote tower domain is 
not as advanced. 
Flexible endorsements can be empowered by increasing standardisation and offering more comprehensive 
technical support for ATCOs. This approach helps ATCOs to adapt more easily to new environments, such as 
Remote Tower Centres (RTC). In this context, the use of Artificial Intelligence (AI) technology as a tool to 
support ATCOs is of increasing interest. Despite its potential to complement traditional support tools and 
facilitate adjustments to future employment models, AI's role in this area has not yet been thoroughly 
investigated. AI-powered decision making enables ATCOs to quickly adapt to different tasks and environments 
by performing rapid analyses of real-time data, improving their overall flexibility, and responsiveness. 
To address this gap in research, this paper conducts a systematic literature review to identify the current state 
of research, trends, and challenges in the field of AI-supported decision-making for ATCOs. The review is 
carried out using Google Scholar and focusses on publications from the years 2020 to 2024. "Artificial 
Intelligence", "Decision Support", and "Air Traffic Controller" were used as keywords. 294 papers have been 
found and analysed. The findings were then iteratively filtered based on title, abstract, and content. Remaining 
hits were clustered according to thematic areas to provide an overview of key thematic focuses. 
Subsequently, experts were consulted to examine the extent to which the literature review outcomes support 
the concept of flexible ATCO deployment. The research outcomes show, that AI technologies offer significant 
advantages when it comes to supporting ATCOs in real-time decision-making, route optimisation, conflict 
detection, and situational awareness. However, much of the focus is on applications in the upper airspace. 
There is an absence of research directly addressing tower or RTC environments. The research presented in 
this paper has been conducted in the frame of the European IFAV3 project.  
 

1. INTRODUCTION  

Current regulations and practices in air traffic control (ATC) 
require ATCOs to obtain specific endorsements for the 
particular sectors or aerodromes they manage [1]. This 
endorsement process is stringent, reflecting the complex 
and unique demands of each controlled area. An ATCO 
must undergo thorough training on local procedures and 
airspace structure, ensuring they are fully equipped to 
handle the specific challenges of their designated 
environment. 

These regulations introduce significant inflexibility. An 
ATCO can only work in a specific sector or at a particular 
aerodrome if they hold the required endorsement, which 
applies exclusively to that sector or aerodrome. To work in 
additional sectors or at other aerodromes, they must obtain 
separate endorsements. For example, an ATCO certified at 
one aerodrome cannot be reassigned to another, even 
during staff shortages, without undergoing additional, time-
consuming training that can take several months to 
complete according to ICAO [2] and EASA [3] regulations. 
The rationale behind such strict regulations is grounded in 

safety. ATCOs must possess an in-depth understanding of 
each environment to manage traffic effectively. This 
knowledge is vital, especially in complex or high-traffic 
environments. The current system’s inability to adapt 
quickly to staffing shortages or shifts in traffic demand leads 
to operational inefficiencies. Although designed to maintain 
safety by ensuring deep familiarity with specific 
environments, this inflexibility limits the overall 
responsiveness of the air traffic management (ATM) 
system. 

To address these challenges, there is a growing interest in 
developing new strategies that would enable ATCOs to 
obtain and manage multiple endorsements or extend their 
existing endorsements. This could be achieved by 
increasing the level of standardisation and automation in 
ATC processes, as well as by providing more 
comprehensive technical tool support. 

In this context, this paper seeks to explore how AI might be 
integrated as part of the broader strategy to enhance ATCO 
flexibility. The focus is on evaluating whether AI can offer 
effective decision support and help ATCOs quickly adapt to 
various airspaces, aerodromes, and operational scenarios. 
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1.1. Project Background 

The IFAV3 project (Increased Flexibility of ATCO 
Validations - V3) started in summer 2023 as fourth of a 
series of SESAR projects conducting research on a more 
flexible ATCO deployment. The key approach is either to 
enable ATCOs to obtain and hold more unit endorsements 
in parallel than today at reasonable costs and with 
reasonable effort, or to extend existing unit endorsements 
to a larger airspace, or respectively more sectors and 
aerodromes. This shall be realized with various concepts 
and strategies, involving new technical means and ATCO 
assistance systems supporting him or her specifically in 
handling a less familiar airspace, nevertheless complying 
with all local procedures and ensuring a safe, orderly and 
efficient flow of traffic. The IFAV3 project is organized in two 
Solutions: 

Solution 1 aims at developing and validating flexible ATCO 
deployment enablers for an application in the upper 
airspace area control, with the goal to reach Technology 
Readiness Level (TRL) 6; 

Solution 2 aims to transfer the know-how about flexible 
ATCO deployment from previous projects to a new air traffic 
control environment that has not yet been considered as a 
use case: the application in RTCs. RTCs are facilities where 
ATCOs manage multiple aerodromes remotely, rather than 
being physically located at each site, offering a more 
flexible and efficient approach to ATM. Due to the very 
similar organization and nature of RTCs compared to area 
control centres (ACC), the same constraints and challenges 
are to be solved. Flexible ATCO deployments could be an 
appropriate answer here as well. In more detail, Solution 2 
conducted a literature review as well as a review of previous 
project outcomes, performed an applicability analysis and a 
gap analysis, followed by development of assistance tools 
to specifically support flexible deployment of ATCOs to 
different aerodromes. 

Previous SESAR projects PJ.33-W3-01a, PJ.10-W2-73 
IFAV and PJ.05-W2-35 did not yet investigate in detail the 
use of AI-based technical means to support a more flexible 
ATCO deployment. The first two projects define the IFAV 
framework, and the last project defines the functions of a 
remote tower solution and provides a requirement 
specification for those functions. As a result, a study was 
launched specifically to explore the potential of AI-based 
technologies in enabling more flexible ATCO deployment. 

1.2. IFAV3 categories of tool support 

The IFAV3 project categorises technical support tools into 
several key types, each serving a specific function in 
enhancing ATCO operations. These categories include:  

1) Pre-Shift / Learning Tools: Provide essential 
information and self-training opportunities to prepare 
ATCOs before their shift. 

2) Real-time Learning Tools: Offer real-time information 
to support learning during shifts, aligning with the 
'learning-by-doing' approach. 

3) Post-Shift Learning Tools: Help ATCOs to reflect on 
their performance and improve for future shifts. 

4) (Adaptive) Information Tools: Deliver relevant, real-
time information during shifts to aid decision-making 
without giving direct advisories. 

5) Advisory Tools: Provide direct handling 
recommendations for specific flights. 

6) Auto-Control Tools: Automate routine tasks using 
predefined settings, similar to an 'auto-pilot'. 

7) Other Tools: Include any tools that do not fit the above 
categories or are intended for non-executive roles, 
such as supervisors. 

By examining the alignment between the literature's results 
and these predefined categories, the paper aims to identify 
which AI-based decision support tools are most relevant 
and beneficial for enhancing ATCO flexibility. 

1.3. Artificial Intelligence – A Short Overview 

AI is a field of computer science that focuses on developing 
computer systems capable of performing tasks normally 
requiring human intelligence. Human intelligence refers to 
the cognitive abilities and processes that enable humans to 
perform complex tasks. These tasks include learning, 
reasoning, problem-solving, understanding natural 
language, recognizing patterns, and making decisions. 
EASA has defined AI in its AI Roadmap 2.0 [4] as, 

“Technology that can, for a given set of human-defined 
objectives, generate outputs such as content, predictions, 
recommendations, or decisions influencing the 
environments they interact with.” 

AI systems were designed for specific tasks, such as 
speech recognition or image classification. However, the 
advent of transformer models has significantly broadened 
the scope of AI capabilities. These models have enabled 
the development of more general AI systems capable of 
solving a wide range of tasks. Generative pre-trained 
transformer (GPT) exemplify this advancement, 
demonstrating the ability to perform tasks such as text 
generation, reasoning, programming, and content creation, 
approaching the notion of general intelligence [5]. The field 
of AI includes a variety of techniques, such as traditional AI, 
evolutionary algorithms, and machine learning. Traditional 
AI involves the explicit programming of rules and logic, 
making these systems deterministic and highly 
interpretable. However, they often struggle with adaptability 
and generalization. In contrast, evolutionary algorithms, 
inspired by natural selection, are used for optimizing 
complex search spaces [6]. Techniques like genetic 
programming and evolutionary strategies are scalable and 
can model highly intricate problems, though they typically 
lack generalization and interpretability. Machine learning, 
another key area within AI, focuses on systems that 
improve their performance with experience and data. Within 
machine learning, deep learning stands out as a powerful 
subset, utilizing multi-layered neural networks to model 
complex patterns in large datasets, further pushing the 
boundaries of what AI can achieve. Similar to evolutionary 
algorithm, machine learning is scalable, generalizable and 
can model complex problems, but they usually lack of 
interpretability. These AI techniques and the challenges 
they pose are also present in ATC. AI research in ATC aims 
to improve decision-making, traffic flow, and safety, but 
challenges in generalisation, interpretability, and scalability 
persist.  
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The initial search using the keywords described in Section 
2.2 yielded 294 matching papers. The following steps were 
then taken to collect and analyse the results further: 

1) First Examination (see upper third of Figure 1): The 
initial screening removed duplicates (7 papers), non-
English publications (13 papers), articles behind 
paywalls or without access (11 papers), non-peer-
reviewed publications, and opinion pieces (9 papers). 
This reduced the pool to 254 papers. 

2) Titles and Abstracts Review (see mid third of Figure 1): 
The titles and abstracts of the remaining 254 papers 
were reviewed to assess their relevance to the 
research questions. This step excluded papers that 
were not relevant to the topic or belonged to the wrong 
target group. This left 79 papers for full-text review. 

3) Full-Text Review (see lower third of Figure 1): The 79 
remaining papers underwent a detailed full-text review. 
This iterative filtering process involved multiple rounds 
of review and discussion among the research team to 
ensure alignment with the study's objectives. Papers 
that did not meet the inclusion criteria were further 
excluded, resulting in a final selection of 52 papers. 

2.5. Clustering of Thematic Areas 

In order to provide a comprehensive understanding of the 
current state of research on AI-supported decision-making 
for ATCOs, the selected literature was clustered into 
thematic areas. This process involved categorising the final 
selection of 52 papers based on their primary focus and 
contributions. It is important to note that not every paper 
was assigned to a single cluster, because some papers 
address multiple thematic areas, reflecting the 
interdisciplinary nature of the research. The numbers in 
parentheses indicate the number of papers classified within 
each thematic area. The following thematic areas were 
identified: 

1) AI in air traffic management and control (7): This theme 
focuses on the integration of AI technologies into 
overall air traffic management and control systems, 
exploring how AI can enhance efficiency and safety. 

2) Decision support systems (15): This is one of the 
largest thematic areas and includes papers that not 
only explore AI-supported decision-making 
conceptually, but also present concrete AI tools and 
systems designed to assist ATCOs. These systems 
analyse real-time data and provide actionable insights, 
directly supporting ATCOs in making informed 
decisions during air traffic operations. 

3) Trust in AI: Transparency and Explainability (11): This 
area addresses the importance of transparency and 
explainability in AI systems to build trust among 
ATCOs and other stakeholders. 

4) Human-AI interaction (7): Studies in this cluster explore 
the dynamics between human operators and AI 
systems, focusing on improving interaction and 
collaboration. 

5) Collaborative decision making (CDM) (5): Research 
under this theme investigates how AI can facilitate 
CDM processes among ATCOs and between different 
ATC units. 

6) Personalised AI-systems and behaviour learning (8): 
This thematic area examines AI systems that can 
adapt to the individual behaviours and preferences of 
ATCOs, enhancing personalised support. 

7) Conflict detection and resolution (CD&R) (15): Another 
major theme, it includes studies on AI techniques for 
detecting potential conflicts in air traffic and providing 
solutions to resolve them. 

8) Trajectory and path planning (8): This area focuses on 
AI-driven methods for planning optimal trajectories and 
paths for aircraft to ensure safe and efficient 
navigation. 

9) Separation and sequencing (approach phase) (4): 
Research here looks into AI applications for 
maintaining safe separation distances between aircraft 
during the approach phase and sequencing arrivals. 

10) Urban air mobility (UAM) and unmanned aircraft 
systems (UAS) (3): This emerging area explores AI’s 
role in managing UAM and integrating UAS into 
controlled airspace. 

11) Ground operations and taxiing (5): Studies in this 
theme investigate AI applications in managing ground 
operations and taxiing procedures to improve 
efficiency and safety on the ground. 

12) Meteorological and environmental factors (5): This 
thematic area covers research on how AI can assist in 
managing the impacts of meteorological and 
environmental factors on air traffic. 

 
FIGURE 2. Thematic cluster co-occurrence in research 
papers 

To further illustrate the distribution and relationships 
between the identified thematic areas, Figure 2 provides a 
visual representation of the strongest connections between 
the clusters. This chord diagram highlights the degree of 
overlap between thematic areas, showing how frequently 
two clusters are addressed together within the same 
papers. The diagram is particularly useful for identifying 
which thematic areas are frequently co-addressed. 

The strongest connections in the chord diagram can be 
explained by several factors. Cluster 2 (Decision support 
systems) and Cluster 7 (CD&R) are the largest clusters, 
meaning more papers explore these areas, leading to 
frequent overlaps. Additionally, CD&R is a well-developed 
field, increasing the likelihood of developed decision 
support systems. The links between Cluster 3 (Trust in AI) 
and Cluster 4 (Human-AI interaction), as well as between 
Cluster 7 (CD&R) and Cluster 8 (Trajectory and path 
planning), are logically connected, as these themes 
naturally complement each other. 

Having established the thematic clusters that categorise the 
current research, the next step involves leveraging these 
clusters to systematically extract insights relevant to the 
research questions. Specifically, these clusters will serve as 
the foundation for a detailed literature survey, guiding the 
identification of the current state of research, emerging 
trends, and key thematic areas within this field. 
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3. KEY FINDINGS ON AI-SUPPORTED 
DECISION-MAKING FOR ATCOS 

3.1. State of the Art (RQ1) 

This section provides an overview of the 52 papers selected 
for the detailed review, categorised into the thematic areas 
described in Section 2.5 based on their primary focus and 
contributions. Each thematic area includes a summary of 
the key contributions and references to the paper IDs in the 
references. 

AI in air traffic management and control: [11], [12], [13], 
[14], [32], [41], [54]. 

The reviewed papers highlight AI's transformative potential 
in ATM and ATC. AI is transforming ATM by enhancing 
situational awareness, optimising traffic flow, and predicting 
potential conflicts. By processing real-time data, AI allows 
ATCOs to move from reactive to proactive decision-making, 
reducing workload and improving efficiency. Machine 
learning models offer predictive insights that help mitigate 
risks before they escalate. Additionally, AI enhances 
network resilience by detecting anomalies and 
safeguarding against cyber threats. Its integration not only 
ensures smoother and more efficient operations, but also 
enables ATCOs to handle higher traffic volumes, reduce 
delays, and improve overall safety. The scalability and 
adaptability of AI systems provide critical support for the 
future of ATM, allowing airspace to be managed more 
dynamically and sustainably as air traffic continues to grow. 

Decision support systems: [7], [8], [14], [17], [19], [26], 
[28], [29], [34], [35], [36], [37], [40], [52], [58]. 

Numerous AI-based tools have been developed to assist 
ATCOs during various flight phases, particularly in 
managing emergency situations and handling complex 
traffic scenarios. These systems frequently utilise 
advanced machine learning algorithms and neural 
networks to deliver real-time risk assessments and support 
dynamic decision-making processes. By continuously 
processing live data, they offer precise risk evaluations and 
provide actionable recommendations, significantly 
enhancing situational awareness and improving 
coordination in critical, high-pressure situations. One of the 
key advantages these AI-driven systems hold over 
traditional approaches lies in their ability to automate 
repetitive tasks that typically consume time and cognitive 
resource. For instance, many of these tools efficiently 
manage conflict detection, trajectory planning, and 
communication, thereby reducing the workload of ATCOs. 
This allows human operators to focus more effectively on 
complex, unpredictable challenges that demand higher-
level decision-making skills. In addition to conventional user 
interfaces, some of these tools incorporate innovative 
mixed-reality technologies. These interfaces offer a shared 
and immersive view of air traffic situations in real time, 
optimising collaboration between various human operators 
by providing a unified visualisation of traffic data. Such 
innovations are designed to further enhance coordination 
and decision-making among ATCOs, especially in high-
density traffic scenarios. The specific functionalities of 
these AI-based tools are detailed further in the subsequent 
clusters. 

Trust in AI: Transparency and Explainability: [8], [9], 
[10], [13], [16], [18], [19], [22], [24], [26], [31]. 

Key findings focus on Explainable AI (XAI) techniques such 
as SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-Agnostic Explanations), which are 
designed to make AI decisions more transparent and 
interpretable for human operators. These methods help 
bridge the gap between complex AI models and the need 
for understandable outputs that ATCOs can trust. Research 
also emphasizes the importance of balancing transparency 
with strategic conformance to improve the acceptance and 
effectiveness of AI tools. Experimental studies, including 
human-in-the-loop simulations, have shown that while 
higher transparency can increase trust and situational 
awareness, it may also lead to increased cognitive load and 
potential complacency if not managed properly. 
Additionally, the development of frameworks like the 
Multisource AI Scorecard Table (MAST) aims to provide a 
standardised approach to ensuring transparency and 
building trust across various aviation stakeholders. Surveys 
and user studies with ATCOs and drone operators further 
explore the specific transparency needs of different user 
groups, highlighting the necessity of tailoring explainability 
features to their distinct requirements. 

Human-AI interaction: [9], [16], [18], [19], [23], [36], [53]. 

The papers in this cluster highlight the need for effective 
communication and teamwork between ATCOs and AI tools 
to ensure safety and efficiency in increasingly automated 
environments. Research focuses on developing advanced 
Human-Machine Interfaces and Interactions (HMI2) 
designed to improve usability and facilitate effective human-
AI teamwork. Additionally, the concept of Human-
Autonomy Teaming (HAT) is explored, aiming to balance 
human intuition with AI capabilities through interfaces that 
support different levels of human and autonomous control. 

Collaborative decision making: [6], [17], [35], [38], [40]. 

Research focuses on developing systems like the Intelligent 
System for Supporting Collaborative Decision Making 
(ISSCDM), which aids in real-time decision-making during 
emergencies. Mixed reality (MR) is also used to provide 
shared visualisations of airport traffic, improving teamwork 
and collective decisions. Additionally, training systems 
incorporating AI are designed to build collaborative 
decision-making skills among aviation professionals, 
ensuring effective teamwork in both routine and emergency 
situations. 

Personalised AI-systems and behaviour learning: [9], 
[15], [20], [21], [22], [40], [47], [56]. 

Key findings highlight the concept of strategic conformance, 
where AI tools align with each ATCO's unique decision-
making strategies, thereby increasing acceptance and trust 
in automation. Studies focus on individual-sensitive 
automation, using techniques like convolutional neural 
networks (CNNs) to tailor AI-generated advisories to match 
the cognitive styles of different ATCOs. Additionally, 
behaviour learning models analyse real-world data to 
predict ATCO actions during conflict scenarios, ensuring 
that AI systems provide contextually relevant support. 
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Conflict detection and resolution: [10], [14], [20], [22], 
[27], [30], [33], [34], [36], [38], [43], [44], [45], [50], [58]. 

AI and machine learning methods are extensively employed 
to model ATCOs conflict resolution actions which enhances 
automation in CD&R tasks. These methods ensure that AI 
systems not only detect potential conflicts, but also 
generate resolutions that align with ATCOs' typical 
strategies. Examples of these applications include the 
development of tools like the Interactive Conflict Solver 
(iCS), which involves ATCOs in the process by generating 
conflict scenarios and learning from their resolution 
strategies. Similarly, AI agents are designed to solve 
conflicts in en-route traffic scenarios by predicting potential 
conflicts and suggesting appropriate resolutions. These 
systems aim to increase the acceptance and trust in AI-
generated solutions by aligning them with the decision-
making preferences of individual ATCOs. 

Trajectory and path planning: [33], [34], [36], [43], [47], 
[51], [55], [56]. 

Key findings include AI-driven, decentralised systems that 
allow aircraft to autonomously adjust paths in real time, 
improving scalability compared to traditional centralised 
methods. CDR integrates with arrival sequencing, 
optimising paths through reinforcement learning. Tools like 
the Trajectory Generation and Advisory Tool (TraGAT) use 
evolutionary algorithms for conflict-free, efficient routes. AI 
enhances 4D trajectory planning by enabling real-time, 
dynamic re-planning during flight, responding to traffic, 
weather, or airspace restrictions without manual 
intervention. Unlike traditional methods, AI systems 
continuously optimise routes based on live data, balancing 
fuel efficiency, flight time, and safety. AI also clusters 
trajectories using Hidden Markov Models (HMMs), 
detecting anomalies in real time, further enhancing the 
safety and adaptability of ATM. 

Separation and sequencing (approach phase): [34], [46], 
[48], [49]. 

Key developments include AI-driven tools that tackle the 
Arrival Sequencing and Scheduling Problem (ASSP), using 
techniques like time-based separation (TBS) and particle 
swarm optimisation (PSO) to optimise arrival order and 
timing, reducing delays at busy airports. In parallel, 
probabilistic models, such as those predicting separation 
buffers and the Tunnel Gaussian Process (TGP) model, 
help maintain safe distances between aircraft. These 
models provide ATCOs with tools to manage aircraft 
spacing effectively, even under uncertainty, while offering 
insights into flight dynamics during the final approach. 

Urban air mobility and unmanned aircraft systems: [8], 
[23], [26]. 

This emerging area examines AI's role in managing UAM 
and integrating UAS into controlled airspace. As these 
technologies challenge traditional ATM methods, research 
focuses on leveraging AI to predict incidents and assess 
risks in low-level air traffic using algorithms like XGBoost. 
Studies also explore the transparency needs in unmanned 
traffic management (UTM) systems, revealing a preference 
among ATCOs and drone operators for operational 
transparency to enhance trust and usability. 

Ground operations and taxiing: [24], [27], [35], [37], [51]. 

Key developments include AI-driven decision support 
systems and improved Q-Learning algorithms for optimising 
taxiing routes, reducing delays, fuel consumption, and 
emissions. Tools like the Runway Utilization Boosting 
Interface (RUBI) assist ATCOs by predicting runway exits 
and providing explanations, improving decision-making in 
complex scenarios. Additionally, machine learning models, 
such as Random Forest, help replicate ATCOs' conflict 
resolution strategies during taxiing. The integration of MR 
technology provides ATCOs with an interactive, immersive 
way to manage ground control, allowing them to use a 
tangible digital twin that projects a 3D view of airport traffic 
onto a physical model for intuitive, hands-on interaction. 

Meteorological and environmental factors: [34], [48], 
[53], [54], [55]. 

Key developments include prediction systems that combine 
radar and weather data, aiding in route planning and 
reducing weather-related delays. Advanced visualisation 
techniques, such as five-dimensional displays, provide 
ATCOs with real-time views of weather conditions 
alongside trajectory data, improving situational awareness. 
These five-dimensional displays offer a three-dimensional 
visualisation of the flight route, combined with two additional 
dimensions representing time and meteorological data, 
such as wind fields and temperature. This allows ATCOs to 
monitor the current weather and forecast future conditions 
along the aircraft’s path in real time. Additionally, it is noted 
that the use of AI in decision support contributes to 
minimising the environmental impact of aviation by 
optimising flight paths and improving fuel efficiency. 

3.2. Emerging Trends and Technologies (RQ2) 

The trend towards greater transparency and explainability 
in AI tools is crucial. As AI becomes more embedded in 
critical decision-making, it's essential that ATCOs 
understand how recommendations are generated to build 
trust in these systems. While this need not be on a technical 
level, it is important to know what inputs the AI is using and 
the specific goals it is optimising for. 

In this context, the personalisation of AI tools plays a 
significant role. By tailoring AI systems to align with the 
specific decision-making strategies and preferences of 
individual ATCOs, the process by which AI arrives at its 
recommendations becomes more intuitive and aligned with 
human thinking patterns. This personalised and adaptive 
approach helps to bridge the gap between human and 
machine, making AI a more reliable and transparent partner 
in ATC. 

Although still in its early stages, the integration of AI in 
training is emerging. By familiarising ATCOs with AI tools 
during training, they gain confidence in the system's 
recommendations. Additionally, AI can personalise training 
to each ATCO's needs, supporting a skill-based approach 
that enhances their abilities. As this trend develops, it has 
the potential to significantly improve the deployment of 
ATCOs by equipping them with the necessary skills and 
confidence to adapt to diverse and complex operational 
environments. 
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3.3. AI in Tower and RTC Environments 

This section presents the identified distribution and focus of 
AI-based decision support research papers within different 
ATC environments, with particular emphasis on Tower and 
RTC environments. The literature review is categorised into 
four distinct groups based on their primary focus areas, as 
illustrated in the accompanying bar chart (Figure 3). 

 
FIGURE  3. Distribution of literature contributions to ATC 
environments 

The first category in Figure 3 includes papers that primarily 
discuss AI-based decision support specifically designed for 
airport control towers. Out of the final 52 papers selected, 
13 belong to this category. These papers thoroughly 
explore the application of AI technologies to enhance 
decision-making processes within the control tower 
environment. The following key interpretations and 
applications of how AI can assist tower ATCOs in their 
decision-making were extracted from the literature: 

1) Trustworthiness and explainability: By providing 
explainable AI systems, ATCOs can better understand 
how decisions are made, which enhances their trust in 
these technologies [8], [24]. 

2) Processing and analysing large data sets: AI-based 
systems can assist ATCOs in processing and 
analysing the vast amounts of multimodal data from 
various surveillance systems, helping them to quickly 
extract relevant information and stay up to date [19], 
[27]. 

3) Advanced support and automation: Concepts such as 
highly automated single controller operations (SCO) 
and the digital co-controller (DC) provide significant 
support by automating time-consuming tasks, thereby 
reducing the workload of ATCOs [29]. 

4) Immersive and interactive visualisations: Mixed reality 
(MR)-based systems, such as the digital twin, allow for 
interactive and immersive visualisation of ground 
control tasks, which can improve situational awareness 
and decision-making [35]. 

5) Efficient route planning: AI-driven decision support 
systems can allocate efficient and conflict-free taxiing 
routes, minimising taxi time, reducing fuel 
consumption, and mitigating emissions [37], [51]. 

6) Training and real-time monitoring: Frameworks for 
modelling and characterising aircraft trajectories near 
airports support the training of ATCOs and ensure 
safety through real-time monitoring of operations [47]. 

7) Optimising aircraft separation: Probabilistic models for 
predicting separation buffers can improve the safety 
and efficiency of landing operations by helping ATCOs 

to calculate optimal separations and account for 
uncertainties in aircraft movement [48], [49]. 

The second category in Figure 3 covers papers that partly 
focus on tower environments or discuss AI-based decision 
support that could be adapted for use in tower 
environments. There are 11 papers in this category. These 
findings may not be exclusively dedicated to tower 
operations, but contain significant insights or 
methodologies that could be beneficial when applied to 
tower environments. 

For the third category in Figure 3, 3 papers reference 
(multiple) RTC environments. It is important to note that this 
third category overlaps with the first two, meaning that 
these 3 papers are already included in the counts for 
categories 1 and 2. To reflect this overlap, the bar for the 
third category is visually toned down in colour. The 
relatively low number of papers referencing RTCs suggests 
that this is a nascent field with significant potential for future 
research and development. Outstanding is the following 
application: 

1) Smart Digital Tower (SDT) prototype: The SDT at 
Changi Airport provides real-time surveillance of 
Changi Airport’s aerodrome operations. The AI 
systems in the SDT analyse large volumes of data in 
real-time, providing predictive insights and 
recommendations and enables the automation of 
routine tasks. By processing data from multiple 
sensors, AI enhances situational awareness and offers 
a consolidated airspace view, facilitating rapid, 
informed decision-making [52]. 

The fourth category in Figure 3 encompasses papers that 
address AI applications in various other areas of air traffic 
control, not specifically related to tower or RTC 
environments. This is the largest category, with 28 out of 
the 52 papers falling under it. However, as these 
contributions are already thoroughly discussed in Section 
3.1, they are not detailed here again, as this section focuses 
specifically on applications in Tower and RTC 
environments. 

3.4. Identified Gaps and Research 
Opportunities (RQ3) 

Despite the considerable advancements in applying AI for 
decision support in ATC, several gaps remain. These gaps 
not only highlight the current limitations in the existing body 
of research, but also present valuable opportunities for 
future research. Areas requiring attention include: 

1) Focus on tower and RTC: Research on AI applications 
in tower and RTCs is limited, with most studies 
focusing on upper airspace. Future work should target 
these environments, considering their unique 
demands. 

2) Integration of AI with human factors: The successful 
deployment of AI in decision support requires a 
seamless integration with human operators. However, 
research on human-AI interaction in this field is still in 
its nascent stages. There is a critical need to 
understand how AI can be designed to complement 
human decision-making processes rather than replace 
them. This involves studying how AI systems can adapt 
to the cognitive and behavioural patterns of individual 
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ATCOs and how these systems can be designed to 
support rather than disrupt existing human workflows. 

3) Skill fading and dependence on AI: There is a risk of 
ATCOs' skills fading due to over-reliance on AI. 
Research should focus on how AI can be used to 
support and retain essential skills. This is especially 
important given the emerging concepts for skill-based 
endorsements. 

4) Ethical and regulatory considerations: Issues such as 
data privacy, job displacement, and ethical implications 
of AI-driven decisions are increasingly important. 
Research in this area should not only address the 
technical aspects of AI deployment, but also consider 
the broader societal impacts. Additionally, the 
development of regulatory frameworks, including 
certification processes that govern the use of AI, is vital 
to ensure that these technologies are deployed in a 
safe and responsible manner. 

In conclusion, while AI offers immense potential in decision 
support, addressing these gaps is essential to ensuring its 
successful integration and long-term viability. 

4. APPLICATION OF RESEARCH RESULTS TO 
FLEXIBLE ATCO DEPLOYMENT  

In evaluating the alignment of literature findings with the tool 
categories (Section 1.2), it becomes evident that AI has the 
potential to play a significant role in supporting flexible 
ATCO deployment. The literature review reveals varying 
degrees of support for each tool type, as summarised in the 
following table. The ID column represents the respective 
category. “Other Tools” from category 7 are not considered 
in this evaluation. 

ID Fit Explanation 

1 M The literature does discuss the potential of 
AI in training, specifically noting the 
importance of familiarising ATCOs with AI 
tools during their training phases. This 
aligns with the concept of pre-shift learning 
tools, as AI can be used to personalise 
training to each ATCO's needs and enhance 
their abilities before they take on operational 
responsibilities. However, the focus is more 
on real-time applications and the 
development of AI for situational awareness 
and decision-making rather than pre-shift 
training specifically. 

2 H The literature highlights AI's role in real-time 
decision-making, conflict detection, and 
route optimization, which aligns well with the 
concept of real-time learning tools that 
support ATCOs during their shifts. The 
emphasis on AI systems that provide non-
disruptive support when ATCOs have spare 
capacity fits perfectly with this tool category. 

3 L / 
M 

While the primary focus of the literature is 
on real-time support, the mention of AI in 
training could be expanded to include post-
shift learning scenarios. However, the 
literature does not extensively cover tools 
specifically designed for post-shift reflection 

and self-assessment, suggesting that this is 
an area where further development and 
research are needed. 

4 H The literature strongly supports the 
development of adaptive information tools, 
particularly through the discussion of AI 
systems that enhance situational 
awareness and provide tailored information 
based on current operational needs. 

5 H AI's role in providing direct advisories, 
especially in CD&R, is well-covered in the 
literature. The discussion around decision 
support systems and collaborative decision-
making tools indicates strong research 
backing for tools that offer direct, actionable 
advices to ATCOs. 

6 M The literature discusses the automation of 
routine tasks and the development of AI 
systems that can perform certain control 
tasks autonomously, aligning with the 
concept of auto-control tools. However, 
while these concepts are discussed, full 
automation of ATCO tasks remains a topic 
of ongoing research and development. 

TABLE 1. Alignment of literature findings with IFAV3 tool 
categories (L: Low, M: Moderate, H: High; for column Fit) 

This table highlights that while AI integration is promising 
across most categories, the degree of support varies. Real-
time learning tools, adaptive information tools, and advisory 
tools are particularly well-supported by current literature, 
reflecting a strong alignment between AI capabilities and 
the needs identified in the IFAV3 project. 

5. SUMMARY 

In the context of increased flexibility of ATCO 
endorsements, AI-powered ATCO decision support tools 
can foster the flexibility of ATCO deployment. The flexible 
endorsement concept has already been investigated for 
upper airspace. Furthermore, an applicability analysis 
explored which elements from upper airspace can be 
transferred to the tower environment. However, there must 
be further research that can support more flexible ATCO 
endorsements in tower and remote tower environments. 

This paper presents a literature survey to investigate 
potential benefits and limitations of research topics from 
other applications than the IFAV3 project. Systematic 
methodology was applied to answer the questions about 
current state of research, emerging trends as well as gaps 
and challenges of AI-supported decision-making for 
ATCOs. 294 Google Scholar listed papers that match 
relevant keywords and were published in year 2020 or later, 
were filtered down to 52 papers after scanning titles and 
abstracts as well as a full-text review for a subset of the 
initial number of papers. The final selection of papers was 
clustered into twelve thematic areas (Section 2.5). The core 
topics, activities, and conclusions of these areas are 
compiled and presented. 

While the potential of AI in ATC is recognized, the human 
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factor of trust and human-AI interaction is often highlighted 
to play a critical role that deems more investigation. One 
application of interest is the prediction of ATCO actions to 
provide contextually relevant support. Furthermore, 
emerging trends of AI application in training and decision-
making are described. 

However, current AI research for tower applications is very 
limited. A deeper analysis revealed that just 24 papers can 
be attributed to the tower domain. Only three of those 
papers make a direct link to remote tower centres which are 
of key interest for applying IFAV3 concepts for flexible tower 
ATCO endorsements. 

Finally, the studied literature has been analysed how the 
relevant ideas can be applied to seven different categories 
of tools for flexible ATCO deployment. For IFAV3 
application, AI potential according to the literature analysis 
is highest for adaptive information tools, advisory tools, and 
real-time learning tools. The tool ideas to be developed for 
IFAV3 RTC support will undergo a TRL 2 validation as 
workshop with operational experts planned for 2025. 
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