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Current

Objective
1. Identify electrochemical limits of materials
2. Optimize pore network for changing requirements and conditions of oxygen 

evolution (2-phase-reaction) and oxygen reduction reaction (3-phase-reaction)
3. Enhance performance by a multi-layer approach: addition of specialized 

reaction and gas-diffusion layer. 

Introduction

Bi-functional Gas-Diffusion-Electrodes

Multilayer Pore Network

Motivation
• Zinc-Air-Batteries (ZAB) - a solution for midterm energy storage systems 

due to their cost structure, safety and abundance of materials.
• State-of-the-art gas-diffusion electrodes (GDE) challenge the economic 

feasibility due to the sluggish oxygen reactions 𝜂𝑅𝑇𝐸 ≈ 60% and the use of 
expensive bi-functional catalysts.

• Additional: material stability under oxygen evolution reaction problematic.
➢ Existing GDEs need to be optimized for bi-functionality.

Architecture Design

Positive slope:
• Irreversible oxidation
➢ Surface passivation [1]
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90wt.% Ni – 10 wt.% PTFE
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Electrolyte

Variation

Addition of an acidic
Gel-Polymer-Electrolyte:
• Electrolyte retention
• Reduce gas crossover
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Addition of a 
Gas-Diffusion-Layer
• No electrolyte 
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Addition of an alkaline
Gel-Polymer-
Electrolyte:
• Zn-Electrode needs 

alkaline conditions
• bipolar-cell
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• No CO2 Absorption
• Better O2 Solubility
• Material stability 

Goal

Multilayer GDE
+ Bi-layer GPE

• Improved 𝜂𝑅𝑇𝐸
• Electrochemical stable 

in conditions of 
secondary ZABs

• Optimal wetting for 
OER and ORR 
conditions 

Powder Manufacturing

Prepare mixture of hydrophilic 
metal powder, catalyst and 
hydrophobic binder (PTFE)

Distribute Powder

Distribute powder evenly on  
metal mesh

Pressing & Heat Treatment

Press powder to create 
electrode and melt binder for 
mechanical stability

Catalyst

Binder

Alkaline
𝑂𝐻− ⇌ 𝑂2 + 2 𝐻2𝑂 + 4 𝑒−, 𝐸0 = + 0.4 𝑉

Acidic
2 𝐻2𝑂 ⇌ 𝑂2 + 4 𝐻+ + 4 𝑒−, 𝐸0 = +1.2 𝑉
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Optimize Pore Network

• Potential for OER (U>1V vs. RHE) is demanding for used materials
➢ e.g. typical used Carbon decomposes @ U > 1.3 V vs. RHE [1]

• Ni and Ag show good performance but degrade quickly

Silver GDE
90wt.% Ag – 10wt.%PTFE
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Model development 
Simple models for an informed GDE Design
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References Summary
• To achieve a economical viable ZAB for midterm storage state-of-the-art electrodes 

need to be improved to overcome their shortcomings: low 𝜂𝑅𝑇𝐸 & material stability.
• In the HIPER project first steps are done to follow two approaches: 

1. Use model based insides to improve the monolayer GDE
2. Extend the monolayer architecture 

1 Oxygen Transport and Reduction Reaction in a cylindrical pore (2D)
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𝑑𝑃𝑜𝑟𝑒
: Contact line per base surface

2 Modelling of wetting degree: Randomly generated parallel pores pcS curves with 
mixed wettability

⇒Small pores perform better because reaction only happens close to the contact line

Imbibition Drainage

⇒ Adjust wettability with PTFE content 𝛼
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