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A B S T R A C T

Policy packages, such as the “European Green Deal”, call for a substantial restructuring of the power plant park. 
This, in combination with more flexible demand, will result in novel electricity price dynamics. These can be 
studied using, e.g., agent-based models which simulate bidding decisions of market actors, thereby uncovering 
emergent market phenomena. For their bidding decisions, simulated actors – just like real-world actors – require 
accurate market price forecasts. Techniques to obtain such forecasts need to be applicable to vastly different 
future electricity market scenarios, ideally without the need of scenario-specific retraining. This is a major dif-
ference compared to real-world electricity market forecasting, which is based on minimal variations in the un-
derlying energy system. Despite the long track record in this field, it is not sufficiently clear which methods are 
suitable for forecasting simulated future electricity markets in greatly varying scenarios and technology mixes. 
To address this gap, we assess the applicability of different forecasting techniques to price time series generated 
by simulations of the future electricity market. We then evaluate the forecast accuracy of two recent machine 
learning architectures, namely N-BEATS and Temporal Fusion Transformers, based on parameter combinations 
with significant expansions of renewable energy and flexibility option capacity. As expected, the results 
demonstrate that machine learning exhibits superior accuracy compared to naïve benchmarks. Particularly, 
when future covariates, such as residual load, are employed, the mean absolute error consistently remains below 
1.40 EUR/MWh. This may be attributed to reduced inner complexity of simulated electricity prices compared to 
real-world market dynamics. Our findings demonstrate that machine learning can provide reliable forecasts of 
future electricity prices and that retraining may not be necessary even with widely varying shares of renewable 
energy and flexibility capacity. These forecasting methods could therefore be effectively employed in electricity 
market simulations in the context of the energy transition.

1. Introduction

In order to make well-informed decisions and to develop effective 
legislation, investors and policy makers require a comprehensive un-
derstanding of the electricity market, including its future developments. 
This is particularly important in the context of significant changes being 
introduced by the ongoing energy transition. New legislation, exempli-
fied by the “European Green Deal” (European Commission, 2021), de-
fines a transformation of the energy system that will diverge from the 
status quo in a number of significant ways. These changes include a 
transition towards high shares of variable renewable energy (RE) 

sources and a substantial increase in flexibility options such as battery 
storages and demand-side flexibility technologies. These developments 
are already influencing the current market environment and will also 
have an increasing impact on future electricity markets, resulting in 
novel price dynamics (Haugen et al., 2024).

Scenarios of the energy transition can be simulated by applying, e.g., 
agent-based modeling (ABM), which is a promising approach in this 
field of study (Pfenninger et al., 2014). ABM enables researchers to 
identify and analyze the market dynamics that result from the decisions 
of individual market actors. In order to formulate these decisions and 
optimize their operational schedules, agents require forecasts of 
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electricity prices. This problem falls within the domain of time series 
forecasting, a well-established area of research with a rich history. A 
considerable body of research and the increasing computational power 
have led to the development of a wide range of approaches, from simple 
techniques to highly sophisticated machine learning (ML) methods 
(Petropoulos et al., 2022). However, existing studies have largely 
focused on past and present energy systems, and there is a clear need for 
research that explicitly integrates the significant changes associated 
with the energy transition.

What is therefore required is a robust and comprehensive approach 
to forecasting electricity prices that can be applied across diverse energy 
transition scenarios. This solution must ensure accuracy and consis-
tency, while maintaining a reasonable level of preparation and execu-
tion time. For this purpose, we investigate and combine two areas of 
research, electricity market simulation and time series forecasting, with 
a particular focus on ML. This integration is intended to facilitate the 
generation of robust results even in scenarios characterized by a sig-
nificant increase in RE sources and novel price dynamics.

1.1. Related works

A comprehensive review on electricity price forecasting was carried 
out in Weron (2014) describing the special nature of electricity as a 
commodity. Especially in the recent past, an extensive number of re-
views has been published (Jiang and Hu, 2018; Jedrzejewski et al., 
2022; Tschora et al., 2022; Heidarpanah et al., 2023; Xiong and Qing, 
2023; Jiang et al., 2023; Lehna et al., 2022). Probabilistic electricity 
price forecasting is extensively reviewed in Nowotarski and Weron 
(2018). The recent work of Beltrán et al. (2022) proposes a framework 
for day-ahead electricity price forecasts using statistical methods and 
neural networks (NN) enforcing the human-machine collaboration. In 
Beran et al. (2021), hybrid models, specifically combined fundamental 
and econometric models, are found to be best suitable for day-ahead to 
week-ahead electricity prices, the relevant range for most operational 
decisions and strategy optimization. Transfer learning is tested in Gun-
duz et al. (2023) demonstrating an improved performance compared to 
a single-market procedure. Besides standard statistical methods (e.g., 
autoregressive moving-average models), NN and especially deep 
learning are gaining more popularity due to higher availability of 
computational power (Akhtar et al., 2023).

As the shares of RE in the electricity mix increases, the electricity 
price is increasingly influenced by fluctuations in solar irradiation and 
wind speed (Alkhayat and Mehmood, 2021; Meng et al., 2022). This 
highlights the need for adaptations in forecasting approaches to account 
for these variables (Nyangon and Akintunde, 2024). Expected load and 
RE generation are highly relevant for accurate electricity price forecasts 
(Billé et al., 2023; Bai, 2024; Da Silva and Meneses, 2023; Alhendi et al., 
2023; Bashir et al., 2022). Regarding solar irradiation time series, the 
application of neural networks is prominent by applying long short-term 
memory (LSTM) networks (Cheng et al., 2021), hybrid deep NN comb-
ing multivariate inputs (Huang et al., 2021). Further, the solar power 
generation potential is also of high interest to market participants and 
modelers (Ledmaoui et al., 2023). For this, also LSTM networks are 
applied to forecast the expected generation by integrating domain 
knowledge explicitly for photovoltaics (PV) (Qu et al., 2021). Fore-
casting approaches are developed to be used even when no sufficient 
meteorological data is available by using data from other surrounding 
PV stations (Zhen et al., 2021). Looking at the area of wind forecasts, we 
also find a wide range of approaches (Arslan Tuncar et al., 2024), such as 
combining statistical methods with NN (Camelo et al., 2018) or 
temporal-based transformer (Mo et al., 2024). Nazir et al. (2020) give an 
extensive overview of different wind forecasting methods with 
increasingly popular NN integrations. Sewdien et al. (2020) identified 
critical parameters in NN for wind generation forecasting concluding 
that longer forecast periods require larger and more layers in the NN. 
Focusing on the trading aspect of wind generation, Fan et al. (2009)

apply a two-stage NN, whereas Cruz et al. (2011) confirm an influence of 
wind generation forecasts on price forecasts when analyzing the situa-
tion in Spain. Fraunholz et al. (2021) combine forecasts based on ML 
within an ABM demonstrating that the NN approach outperforms linear 
regression and naïve benchmarks in a European case study from 2020 to 
2050. In Shimomura et al. (2024), explainable artificial intelligence is 
employed to evaluate the impact of RE sources on electricity prices in 
Japan. In Castilho Braz et al. (2024), the Brazilian electricity markets are 
the subject of a detailed analysis, with forecasts of price trends for both 
the day-ahead and Intraday markets. Walter and Wagner (2024) present 
a generative time series simulation for day-ahead electricity prices on an 
empirical study on the EPEX spot market in Europe in the years 
2020–2023. In order to forecast electricity prices in the Hungarian 
market, an extensive data set comprising more than 40 years of mete-
orological data has been applied in Mayer et al. (2023).

The majority of these studies share a common characteristic: they 
present extensive training, testing, and validation of their models on rich 
historical data, but with little variation in the underlying electricity 
system. This represents a significant limitation in the analysis of energy 
transition scenarios, given that electricity price dynamics will be 
fundamentally different in future electricity markets with high shares of 
variable RE.

1.2. Novelty

In order to address the shortcomings of existing research, which is 
closely associated with past and current energy system dynamics, we 
propose a novel assessment of various forecasting techniques. The 
approach is based on the combination of advanced ML with an ABM 
capable of generating electricity price training data sets for a range of 
potential future electricity systems. This setup allows us to investigate 
novel electricity price dynamics. Notably, RE technologies are progres-
sively replacing conventional power plants, with fuel-based technolo-
gies projected to be gradually phased out in the coming years. The rising 
prevalence of RE is expected to have considerable influence on elec-
tricity prices, given that RE are characterized by almost negligible 
marginal costs and that conventional power plants are losing their role 
in price formation. Moreover, the expanded integration of flexibility 
options, such as battery storage, will significantly impact the energy 
system. Consequently, we employ the state-of-the art ABM electricity 
market simulation AMIRIS (Schimeczek et al., 2023a). Specifically, 
AMIRIS is parameterized to simulate a range of potential future elec-
tricity market scenarios which are then transformed into extensive 
training and testing data sets. While we acknowledge that simulated 
data cannot fully replicate all nuances present in measured data, it is 
recognized that it offers a valuable and innovative additional perspec-
tive. For example, Frey et al. (2020) have already identified the emer-
gence of new price dynamics resulting from transformative shifts 
observed in such electricity market simulations. The objective of our 
research is, therefore, to gain a more comprehensive understanding of 
the accuracy and performance of varying electricity price forecasting 
methods in evolving renewable-based electricity markets.

1.3. Paper structure

The paper is structured as follows. In Section 2, we present an 
overview of agent-based energy market simulation and describe the 
open electricity market model AMIRIS in. In Section 3, we provide 
background information on electricity markets. Subsequently, five 
forecasting methods are described, ranging from naïve benchmarks to 
advanced ML methods. The necessary training and testing data is 
generated by AMIRIS. In Section 4, we assess the implemented ap-
proaches in terms of their quantitative forecasting accuracy. In Section 
5, we discuss the practical applications and constraints of the afore-
mentioned methods, with particular consideration given to the 
perspective of electricity market simulation models. Finally, in Section 
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6, we give a summary of the findings and outline remaining open 
questions.

2. Material and methods

In this Section, we argue why ABM is a powerful method to inves-
tigate future electricity markets. Subsequently, we present the ABM 
AMIRIS, which is applied in this study, and we provide an overview of 
the model design and architecture. Finally, we argue the suitability of 
AMIRIS for generating training and testing data for the ML networks.

2.1. Agent-based energy market simulations

The liberalization and the growing complexity of energy markets 
over the last decades brought new challenges to energy systems mod-
elers (Pfenninger et al., 2014). The growing field of ABM can help re-
searchers to find answers to pressing questions of today’s and 
tomorrow’s complex energy systems (Klein et al., 2019). Especially 
when simulating electricity markets, ABM have proven to be a well 
suitable method (Farmer et al., 2015; Ringler et al., 2016; 
Deissenroth-Uhrig et al., 2017; Barazza and Strachan, 2020). Firstly, by 
incorporating the perspective of individual actors, researchers gain 
insight into possible emergent effects stemming from individual agents’ 
actions causing macro-level phenomena (Frey et al., 2020). Secondly, 
employing heterogenous agents in an ABM simulation allows for the 
representation of diverse actor characteristics, including their objec-
tives, risk profiles, information levels, and interactions with their envi-
ronment (Kraan et al., 2018). Thirdly, the practical applicability of ABM 
in addressing real-world energy transition challenges, while maintain-
ing computational feasibility, stands as a significant advantage over 
game theoretical approaches, which may become intractable when 
parameterized for tackling substantial real-world problems (Hansen 
et al., 2019). It is highly important to accurately represent agents and 
their environment in an ABM. Besides detailed actors’ studies (Reeg, 
2019), the agent’s interactions have to be modelled with a high level of 
detail. The central element of these economic models is the simulated 
day-ahead electricity market where a market clearing is carried out 
periodically. In order to participate in the market, an agent has to submit 
its bids and asks to the market. To this end, the agent is equipped with 
decision making mechanisms that account for different qualities of 
strategic decisions (Guerci et al., 2010; Li, 2012). Since agents typically 
act on expected prices, accurate electricity price forecasts are critical for 
the simulation and performance of such agents.

In the realm of energy systems analysis, models must acknowledge 
the complex interplay of social, technological, economic and environ-
mental dimensions (Bale et al., 2015). ABM are well-suited in examining 
the interactions and behaviors of diverse actors, accounting for market 
imperfections (Weidlich and Veit, 2008; Ragwitz et al., 2007). Notably, 
there are several (open) ABM, such as AMIRIS (Schimeczek et al., 
2023a), ASSUME (Harder et al., 2023), BSAM (Kontochristopoulos et al., 
2021), EMLab-Generation (Chappin et al., 2017), MASCEM (Vale et al., 
2011), and PowerACE (Sensfuß, 2008).

2.2. Electricity market modelling using AMIRIS

We deploy the open ABM AMIRIS which is the “Agent-based Market 
model for the Investigation of Renewable and Integrated energy Sys-
tems” (Schimeczek et al., 2023a). AMIRIS has been developed since 
2008 and was published open source1 in late 2021 (Nienhaus et al., 
2021). It is a powerful simulation tool based on the framework FAME 
(Schimeczek et al., 2023b; Nitsch et al., 2023a) and it is used for the 
analysis of energy policy instruments and market integration of RE and 
flexibility options. The heart of the model is the simulation of the 

day-ahead electricity market revealing market dynamics and agent in-
teractions (Nitsch et al., 2021a) while considering different policy 
frameworks (Frey et al., 2020). In Klein et al. (2019), a detailed com-
parison of AMIRIS with two other ABM contrasting a state-of-the art 
optimization model is carried out. AMIRIS has been back-tested for the 
day-ahead electricity markets of Germany (Maurer et al., 2024) and 
Austria (Nitsch et al., 2021b) which resulted in a good fit of simulated 
and historical electricity prices. Fig. 6 in the Appendix provides an 
overview of the agents represented in AMIRIS (i.e. power plant opera-
tors, traders, flexibility marketers, markets, and regulators) and their 
interactions via information, energy, and money flows. Users have to 
define and provide the input data, keeping feature selection and the 
identification of relevant time series in mind (Müller, 2021). In the 
context of AMIRIS this translates to power plant park structure, RE 
generation time series, demand data, and operational cost data. Flexi-
bility options apply one of two distinct strategies when participating in 
the day-ahead electricity market: maximizing their own profits or 
minimizing system dispatch costs (Nitsch et al., 2024). These strategies 
represent a business-centered optimum or a system-friendly approach to 
dispatch the storage. Further revenue streams for flexibility options, 
such as Intraday markets, are currently under development.

In our analysis, we will use data derived from AMIRIS to test different 
forecasting approaches. This offers many key advantages: i) we generate 
training and testing data matching our needs to feed the NN, ii) we are in 
full control over the level of complexity in each scenario by defining 
agents and their properties individually, iii) we are able to assess the 
impact of changing power systems on price dynamics and test the suit-
ability of different forecasting methods, iv) we demonstrate the use-case 
of applying different ML architectures in an electricity market simula-
tion model, and v) we extract the key learnings of integrating the pre-
sented ML approaches in order to provide benefits for other electricity 
market simulation model in the field. The detailed procedure of the 
scenario definition is described in Section 3.2.

3. Theory and calculation

We present the theory behind wholesale electricity markets in Sec-
tion 3.1. This includes a brief summary of changing price dynamics 
introduced by growing RE shares and impacts by large flexibility option 
capacity which will likely be installed in the (near) future. Based on the 
theory, Section 3.2 outlines our scenario definitions while Section 3.3
describes the models tested to forecast electricity prices.

3.1. Fundamental aspects of electricity markets

Wholesale electricity prices are the market result of matching supply 
of producers (i.e. power plant operators) and demand of consumers in a 
dedicated market zone. Besides trading at the power exchange, con-
sumers and producers can also agree on individual over-the-counter 
trades. Although, these trades are usually non-transparent and bi- 
lateral, we assume them to be mostly aligned with wholesale prices, 
since larger price spreads would resemble arbitrage opportunities. 
Beyond that, there are also dedicated markets which are designed for 
ancillary services, e.g., frequency restoration reserves, usually with pay- 
as-bid schemes (Aussel et al., 2017). In reality, these markets do have 
implications on the wholesale markets since they impact the available 
capacity, however, they are currently not in the focus of the AMIRIS 
simulation. Consequently, similar to futures and forwards markets, they 
are not included in our day-ahead electricity price forecasting process 
but may be considered in extensions to our work. The main instrument 
to determine electricity prices is the day-ahead spot market where a 
market clearing is carried out (Martin et al., 2014). Bids and asks are 
sorted resulting in a merit-order. In Central Europe, a uniform pricing 
mechanism is established in the day-ahead electricity markets (Zakeri 
et al., 2023). Our model is therefore also based on this form of pricing. 
For the clearing, a congestion-free nature of the market and 1 https://gitlab.com/dlr-ve/esy/amiris (accessed on 30 October 2024)

F. Nitsch et al.                                                                                                                                                                                                                                   Energy Reports 12 (2024) 5268–5279 

5270 

https://gitlab.com/dlr-ve/esy/amiris


decentralized dispatch are assumed.
In accordance with economic theory, market participants define 

their bids according to their marginal cost. This mainly includes oper-
ational costs, fuel costs, and emission certificate costs. In reality, non- 
convex costs (Makkonen and Lahdelma, 2006) can lead to uplifts, i.e. 
markups to marginal costs accounting for ramp-up costs (Liberopoulos 
and Andrianesis, 2016), and downlifts, i.e. markdowns accounting for 
ramp-down costs (Pape et al., 2016). AMIRIS can also consider such 
markups or markdowns.

3.2. Energy transition scenarios

We define two main sets of scenarios. Firstly, we vary the storage 
capacity within four distinct electricity market configurations, reflecting 
different degrees of market influence by these flexibility options. Sec-
ondly, we examine the expansion of RE in terms of PV and wind onshore 
installations. This approach is designed to yield insights into forecasting 
accuracy in scenarios with different combinations of RE shares. It is 
essential to note that both sets of scenarios should be viewed as 
parameter variations rather than being interpreted as definitive, so-
phisticated scenarios, roadmaps, or guidelines for shaping future elec-
tricity markets.

Regarding the variation of flexibility option capacity, such as battery 
storage systems (Divya and Østergaard, 2009), we define four distinct 
scenarios in Table 1. “No Flex” describes an artificial electricity system 
where the power plant park solely consists of controllable conventional 
power plants and fluctuating renewable power plants. Due to the 
idealized way of modelling renewable power generation by applying 
exogenously defined time series, we expect a highly correlated situation 
between residual load (i.e. load which has to be met by dispatchable and 
typically conventional power plants) and the day-ahead electricity price. 
This is also the reason why we do not consider a conventional-only 
scenario.

When we introduce flexibility options, see “Little Flex”, we expect to 
observe a more complex pattern due to the impacts of flexibility options. 
Initially, we will keep their share relatively small and increase it in “Mid 
Flex” up to “High Flex” so that we can evaluate the capabilities of the 
forecasting algorithms. Simple forecasting methods most likely will not 
perform well in the latter two settings, because the operational decisions 
by flexibility options decouple the idealistic residual load and price 
relationship. The remainder of the system consists of a load agent ful-
filling its electricity demand, a day-ahead electricity market agent per-
forming an hourly market-clearing, as well as supply traders offering 
their generation capacity at their marginal costs. The installed power 
plant capacity is approximately aligned with the German market in 2019 
(Nienhaus et al., 2023) whereas load and RE generation potential are 
derived from 2018 and 2019 (SMARD, 2020). In all four scenarios, the 
RE capacity is identical and based on historical values. This implies that 
potential future scenarios with higher RE shares and potentially 
different price dynamics are currently not considered.

While the scenarios presented so far only consider different shares of 
flexibility options, we also compile scenarios of RE expansion which 
provide additional insights of forecasting performance. For this purpose, 
the AMIRIS scenario generator scengen (Nitsch et al., 2023b) was used to 
generate more than 100 scenarios which are processed to training and 
testing data sets. In each scenario, PV and wind onshore capacity is 

randomly chosen within a predefined range. All other parameters 
roughly correspond to the German electricity system in 2019 (Nienhaus 
et al., 2023). All input data undergoes a thorough check for outliers and 
is subsequently normalized to facilitate the ML process.

3.3. Investigated forecasting methods

In total, we compare five forecasting methods with varying levels of 
complexity, two comprehensive ML architectures and three bench-
marking methods. N-BEATS (Oreshkin et al., 2019) is a NN for time 
series forecasting by applying deep learning. It is well tested on data sets 
used in forecasting competitions and is said to be applicable on a wide 
range of domains. Temporal fusion transformers (TFT) (Lim et al., 2021) 
allow to integrate past and also future covariates in their training. This is 
a significant advantage over many other methods promising better 
forecasting performance. Seasonal and trend characteristics can be 
embedded by temporal features within the input data and the model’s 
ability to encode such information directly. In our application, inte-
grating covariates into the training process is expected to enhance 
forecasting performance, see also Fig. 1. Past and future covariates 
describe time series that are available for the past and future, respec-
tively. Examples of such time series include time and calendar infor-
mation. Additionally, historical covariates, which are only available for 
past time steps, may be included in the model. These could include, for 
example, actual renewable energy generation. A detailed preliminary 
study on feature selection was carried out in Nitsch and Schimeczek 
(2023). The impact of varying train-test splits, ranging from 75 % to 
25 % and 25–75 %, was evaluated.

In order to quantify the accuracy, a set of commonly used day-ahead 
electricity price forecasting methods is employed as a benchmark 
(Hyndman and Athanasopoulos, 2018). Namely, we apply the naïve 
benchmark 

p̂T+h∣T = pT (1) 

where the forecasted day-ahead electricity price p̂ at the time T+h is set 
equal to the day-ahead electricity price p at time T (Hyndman and 
Athanasopoulos, 2018). A slight modification involves setting 

p̂T+h∣T = pT+h− 24 (2) 

where the forecasted day-ahead electricity price is derived from the day- 
ahead electricity price p at time T + h − 24, taking into consideration 
the daily price patterns (Hyndman and Athanasopoulos, 2018). Addi-
tionally, we deploy an Exponential Smoothing (Winters, 1960; Holt, 
2004) as 

p̂T+h∣T = αpT + α(1 − α)pT− 1 + α(1 − α)2pT− 2 +… (3) 

with the smoothing operator α, a parameter with values in the range 
[0, 1], which is a simple yet well-proven time series forecasting method 
applying exponentially decreasing weights over time.

Hyper-parameters were optimized using the state-of-the-art frame-
work Optuna (Akiba et al., 2019). The model code and documentation 
can be found in the open repository focapy (Nitsch, 2023). For error 
metrics, we calculated mean absolute errors (MAE) as 

Table 1 
Overview of scenarios distinguished by different flexibility option capacity.

Scenario No Flex Little Flex Mid Flex High Flex

Parameter

Electricity demand 527 TWh/a
Conventional capacity 77 GW
Renewable capacity 120 GW
Flexibility options 0 GW 4 GW 20 GW 80 GW Fig. 1. Past and future covariates as time series inputs to TFT.
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MAE =
1
T
∑T

t=1
|at − p̂t | (4) 

where a and p̂ represent the actual and forecasted prices, respectively, 
with a total length of T. We chose an absolute error metric, such as MAE, 
given the potential for target values (electricity prices) to be (close to) 
zero or even negative, making the use of mean absolute percentage er-
rors (MAPE) problematic. Additionally, we calculated root-mean- 
squared errors (RMSE) as 

RMSE = √{
1
T
∑T

t=1
(at − p̂t)

2
} (5) 

4. Results

We begin by examining the results of the AMIRIS scenarios with 
different shares of flexibility options followed by the results of fore-
casting accuracy in scenarios of RE expansion.

4.1. Different shares of flexibility options

Prior to presenting the results of the forecasting methods in Section 
4.1.2, we analyze the simulation runs of the four scenarios. These results 
offer valuable background information that aids in interpreting the 
forecasting accuracy.

4.1.1. Impact on market dynamics
Fig. 2 shows day-ahead electricity prices as simulated by AMIRIS 

over a 168-hour period, with each line representing one of the four 
scenarios (essentially varying the amount of flexibility options avail-
able). Increasing storage capacity generally has a dampening effect on 
electricity prices. In particular, price peaks can be flattened by dis-
charging storage, while valleys can be raised by charging storage. It is 
important to note that the storage operator aims to maximize its profits, 
while taking into account its impact on electricity prices when opti-
mizing its bidding schedule. As a result, there are certain time periods 
when all four curves are aligned, indicating that during these hours the 
storage operator either has no significant impact on the resulting elec-
tricity prices, or is simply inactive.

The statistics in Table 2 provide an understanding of the variability 
of electricity prices under different assumptions of storage installations, 
highlighting the impact of flexibility on pricing dynamics. In “No Flex”, 

there is a relatively wide dispersion of prices, as indicated by the stan-
dard deviation of 15.27 EUR/MWh. The minimum price2 is − 63.51 
EUR/MWh, while the maximum is 116.83 EUR/MW. Moving to “Little 
Flex”, the mean price increases slightly to 38.49 EUR/MWh, accompa-
nied by a lower standard deviation of 13.75 EUR/MWh, indicating a 
narrower spread of prices compared to “No Flex”. In “Mid Flex”, the 
mean price rises further to 38.80 EUR/MWh, with a continued decrease 
in the standard deviation to 12.07 EUR/MWh, suggesting the previously 
described price dampening effect. Finally, in “High Flex”, the mean price 
reaches 38.96 EUR/MWh, accompanied by the lowest standard devia-
tion of 11.17 EUR/MWh among all scenarios. The results from the year 
2018 demonstrate similar overall trends as found for the year 2019. 
However, differences arise in the weighted mean electricity prices 
amounting to 43.50 EUR/MWh in 2018 and 38.50 EUR/MWh in 2019.

4.1.2. Electricity price forecasting accuracy
The two ML methods N-BEATS and TFT are trained on 2018 and 

tested on 2019. For the evaluation of the forecasting accuracy, a full year 
is chunked in roughly 500 samples, each with 168 hours of past covar-
iate data and 24 hours to forecast. Forecasted values are then tested 
against actual values from the simulation. Table 3 lists MAE of all 
forecasting methods in the four scenarios.

The MAE provide insights into the forecasting capabilities of each 
method within different shares of flexibility options. Notably, the TFT 
trained with future covariates (expected load and RE generation) shows 
the lowest MAE values, suggesting its superior accuracy in forecasting 
electricity prices across a spectrum of scenarios. The benchmark 
methods are performing worse in every scenario, but are much cheaper 
to apply, since they do not require to train a model. Further, the pre-
sented results clearly demonstrate a consistent trend of improved ac-
curacy across the scenarios of “No Flex” to “High Flex”. We conclude that 
this effect is likely due to the price flattening effect of increasing market 
impact of flexibility options, see also Fig. 2.

Fig. 3 displays an exemplary forecast made by the TFT model in “Mid 
Flex”. Overall, the forecast aligns well with the actual price dynamics. 
Nevertheless, there is a slight deviation as the model fails to accurately 
forecast the first valley underestimating actual values. This can likely be 
attributed to price dynamics caused by charging actions of flexibility 
options. Forecasting errors also exhibit a temporal dependency that 
correlates with the load pattern. Consequently, accuracy tends to be best 
at night, with errors peaking during the day (Nitsch and Schimeczek, 
2023). In the context of the German case study presented, local weather 
effects, including short-term fluctuations in renewable energy genera-
tion, generally have a limited impact on the day-ahead market zone and 
are therefore not of great influence to this particular forecasting 
procedure.

4.2. Forecasting accuracy in future energy scenarios

As elaborated in the Introduction in Section 1, the energy transition 
will bring very different market dynamics compared to historical ob-
servations. Besides the expanding flexibility potential, as presented in 
Section 4.1, we expect considerable impacts by the expansion of RE 
leading to novel price dynamics of electricity markets. Therefore, we 
investigate the effects on forecasting accuracy in such scenarios. For this 
we have created unique training and testing data, as described in Section 
3.2. Due to high computational costs of ML training, we have limited this 
analysis to TFT, the best performing method so far. Fig. 4 shows the 
results of different train-test splits in two model configurations (without 
future covariates and with future covariates). All six models are trained 
and evaluated independently. The left column shows the available 
training data to the TFT model and their weighted mean average prices 

Fig. 2. Price dampening effect of different flexibility capacity in the four sce-
narios on simulated electricity prices over a one-week period in 
November 2019.

2 Periods of high inflexible generation and low demand can lead to negative 
prices in electricity markets.
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of the scenario marked with ‘x’. Values in between are interpolated by a 
cubic method. It is evident that as RE capacity increases, electricity 
prices tend to decrease – a trend consistently observed across all three 
rows representing different numbers of scenarios and train-test splits (10 
scenarios, 30 scenarios, and 90 scenarios). The middle and right column 
show the forecasting accuracy evaluated as MAE over all errors of the 
forecasted electricity prices against the actual electricity prices as 
calculated by AMIRIS. In the middle column, the TFT relies solely on 
past covariates, while in the right column, the TFT also incorporates 
future covariates, such as calendar information, expected load, and RE 
generation.

Notably, we observe a robust results with MAE values ranging from 
2.25 to 3.25 EUR/MWh when at least 30 scenarios are employed as 
training data (middle and bottom rows). However, when restricting 
training data to only 10 scenarios (top row), forecasting accuracy de-
teriorates significantly, with MAE doubling, when assessing scenarios 
that fall well outside the range of known training data. This strongly 
suggests that the selection of training data is important for the perfor-
mance of the model. Moreover, the TFT model equipped with future 
covariates (right column) consistently outperforms the version relying 
solely on past covariates (middle). Errors are reduced by approximately 
an order of magnitude, which holds promise for applications in energy 
system models, particularly ABM. Moreover, in the bottom row, where 

the train-test split is 75 % and 25 %, the results are similar compared to 
the middle row, where the split is reversed at 25 % and 75 %.

Additionally, we can observe that MAE generally exhibits a down-
ward trend as onshore wind capacity increases, except for the segment of 
high wind power capacity, which lacked sufficient training data, as 
indicated in the top row of plots in Fig. 4. A similar trend is also evident 
when considering different error metrics like RMSE.

The histograms in Fig. 5 illustrate the distribution of errors for 
training with 30 and 90 scenarios. It can be observed that an increased 
number of training scenarios leads to a superior fit when MAE is 
employed as the error metric. However, the addition of future covariates 
– a common practice in such forecasting problems (Ozyegen et al., 2022) 
– improves the accuracy in our analysis even more than the quantity of 
available training data. Specifically, with such covariate data, MAE 
remain consistently below 1.40 EUR/MWh.

5. Discussion

As suggested in Haugen et al. (2024), the formation of electricity 
prices in energy market models represents a significant factor influ-
encing the analysis of actors’ behaviour, ranging from the operation of 
flexibility options to investment decisions. The use of simulated and 
synthetic data as a complement to historical data is an attractive 
approach, particularly given its current deployment in the context of 
creating energy generation and load profiles (Mayer et al., 2023). 
Consequently, the presented methodology in this paper contributes 
valuable insights to the currently limited field of such day-ahead elec-
tricity price forecasting in high RE penetration scenarios. However, 
given the inherent complexity and non-linearity of energy markets 
(Castilho Braz et al., 2024), it is essential to consider that our general 
conclusions should not be interpreted as individual predictions on 
market results. Rather, they should be regarded as projections contrib-
uting towards a better understanding of potential market dynamics in 
systems with high shares of RE. Despite the presentation of a compre-
hensive range of potential scenarios, uncertainty remains to scenario 
definition and model formulation. Future research should investigate 

Table 2 
Descriptive statistics on simulated electricity prices in the four scenarios.

Year 2018 2019

Scenario No Flex Little Flex Mid Flex High Flex No Flex Little Flex Mid Flex High Flex

Metric

Std. dev. 15.48 13.56 11.95 11.07 15.27 13.75 12.07 11.17
Minimum − 35.21 − 22.11 − 17.18 0.00 − 63.51 − 52.49 − 37.73 0.00
Maximum 115.96 103.38 95.16 94.78 116.83 102.15 96.33 96.33

Table 3 
Mean absolute error (MAE) in EUR/MWh of forecasts in four different scenarios.

Scenario No 
Flex

Little 
Flex

Mid 
Flex

High 
Flex

Metric

Naïve t1 (1) 9.29 7.78 6.76 6.45
Naïve t24 (2) 8.57 7.54 6.27 5.91
Exponential Smoothing (3) 8.06 6.70 5.73 5.46
N-BEATS (Oreshkin et al., 2019) 7.15 6.24 5.38 5.12
TFT (Lim et al., 2021) 4.11 3.90 3.20 3.26
TFT with future covariates (Lim 
et al., 2021)

3.12 3.45 3.26 2.86

Fig. 3. Exemplary forecasted prices for the next 24 hours (green) by the TFT model in “Mid Flex” with 168 hours of past covariates plotted against actual pri-
ces (black).
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the influence of changes in market and policy design, unforeseen events 
with significant impact on energy markets, and the manner in which 
market actors respond to forecast uncertainty. In addition, we wish to 
highlight the following limitations.

In the realm of analyzing various flexibility option shares in Section 
4.1, it is important to acknowledge a potential limitation related to 
model training. A possible enhancement lies in the inclusion of a more 
diverse set of training data to refine the robustness of our models. The 
analysis of RE expansion in Section 4.2 underscores the considerable 
impact of the training data selection on results. Future analyses should 
therefore diligently consider this important aspect. Similarly, within the 
analysis of RE expansion scenarios in Section 4.2, a notable limitation 
lies in the missing variability of weather conditions. Periods of low wind 
and solar generation may substantially impact results, particularly as RE 
capacity increases. The use of NN with future covariates (as demon-
strated in Fig. 4) might mitigate this impact since the network is aware 
of the short-term residual load. However, without these future cova-
riates, variations in weather years could exert a greater influence on the 
results. To ensure that our results are easily transferable and 

understandable, our presented scenarios assume no variation in pa-
rameters aside from wind and PV capacity. As already described in 
Section 3.2, this assumption does not fully capture the real-world dy-
namics of the energy transition missing the evolution of flexible demand 
and generation capacity. It is evident that additional markets, which are 
currently under discussion but not yet implemented, such as capacity or 
flexibility markets, would influence market dynamics and necessitate 
further analysis. However, an examination of these points is beyond the 
scope of the present manuscript.

Beyond these specific limitations, broader considerations should be 
mentioned. The computational resources and training data allocation 
significantly affect the time required for training NN. While the initial 
effort to train models and optimize hyperparameters is substantial, 
transitioning to the utilization of pre-trained models with optional fine- 
tuning in production settings could significantly alleviate this workload. 
When experimenting with a wider array of input features, the explain-
able feature of TFT could help identify the most influential factors 
governing forecast accuracy. Additionally, the incorporation of TFT’s 
capability to provide probabilistic forecasts holds the potential to 

Fig. 4. Simulation of PV and onshore wind expansion scenarios (marked by white ’x’ markers) using AMIRIS. Values in between are interpolated using a cubic 
method. The left column represents the training data, while the other two columns illustrate forecasting accuracy in terms of Mean Absolute Error (MAE) in EUR/ 
MWh. The middle column shows the accuracy based on past covariates alone, whereas the right column includes additional future covariates to the forecasting 
procedure. Note: Scenarios are considered as parameter variations and shall not be interpreted as definitive and complete future electricity systems, see also Sec-
tion 3.2.
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broaden the applications within energy market simulation models.
In terms of our findings, they align with existing literature as follows: 

Lago et al. (2021) conducted an extensive review of day-ahead elec-
tricity price forecasting, also concluding that deep neural NN, such as 
TFT, tend to outperform Lasso Estimated AutoRegressive methods, 
albeit with increased computational costs. Fraunholz et al. (2021) found 
that NN outperform regression and naïve benchmarks when applied in 
an ABM. However, the choice of specific architecture significantly in-
fluences the results of the ABM, underscoring the need for a careful 
assessment. Trebbien et al. (2023) presented an analysis of day-ahead 
electricity prices from 2017–2020, identifying load, wind, and solar 
generation as key features for an explainable ML model, aligning with 
our findings regarding input data selection. While our study focuses on 
TFT networks in a similar domain, it is worth noting that they are often 
employed in forecasting load (Nazir et al., 2023) or renewable energy 
generation (López Santos et al., 2022). In contrast to the original 
N-BEATS architecture (Oreshkin et al., 2019), which does not allow 
future covariates, the N-BEATSx (Olivares et al., 2023) offers this 
extension.

Numerical test results show MAE of around 3.30 EUR/MWh on his-
torical German market data. Azam and Younis (2021) conduct load and 
price forecasting using a novel hybrid deep learning approach demon-
strating achieving MAE of around 5.20 USD/MWh on the ISO New En-
gland energy market in 2018 and 2019. In Ziel and Weron (2018), 
twelve distinct historical datasets of day-ahead electricity prices are 
evaluated, revealing a MAE in the German market zone of approxi-
mately 5 EUR/MWh. Fraunholz et al. (2021) perform a scenario analysis 
of ten interconnected market zones in Europe from 2020 to 2050 with 

MAPE forecasting errors between 0.10 and 0.39.

6. Conclusion

The findings of our study demonstrate a powerful approach that 
combines agent-based electricity market simulation and time series 
forecasting based on machine learning to provide forecasts for energy 
transition scenarios. Past and present market data, which are widely 
used in forecasting studies today, do not account for the novel price 
dynamics of future highly renewable electricity markets. In contrast, we 
explicitly incorporate foreseeable changes in energy systems resulting 
from the ongoing energy transition. In particular, we investigate energy 
transition scenarios with significant expansion of flexibility options and 
renewable energies, which are used to train and test different forecasting 
methods. We then use an open state-of-the-art agent-based electricity 
market model and open data to generate market results in these sce-
narios that differ significantly from today’s energy system. We then 
assess the accuracy of different electricity price forecasting methods in 
the context of these widely varying scenarios. In our assessment, 
comprehensive machine learning methods, namely Temporal Fusion 
Transformers, demonstrate superior forecasting accuracy for future 
electricity markets compared to naïve benchmarking methods. Mean 
absolute errors decrease by approximately one order of magnitude when 
future covariates are accessible and understandable to the model. In 
addition to the demonstrated precision, even in environments charac-
terized by significant change, the examined methodologies offer several 
key advantages over conventional forecasting techniques. Some ma-
chine learning-based methods, including Transformers, are capable of 

Fig. 5. Distribution of mean absolute error (MAE) in EUR/MWh for different training sets and TFT configurations. Note: Different scaling of x-axis for runs with 
future covariates.
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handling disparate input data configurations, thereby facilitating their 
adaptation to evolving settings. Moreover, scaling is readily achievable 
from simple proof-of-concepts to comprehensive modelling suites. In 
order to apply our results to other electricity market simulations, mod-
elers need to apply their domain knowledge when defining training data 
and selecting input features. As machine learning-based methods can be 
computationally expensive, adequate resources are required, at least 
during the initial training stage. Our results are relevant not only to 
agent-based electricity market modelling but also to the broader field of 
electricity price forecasting. The presentation of quantitative results on 
forecasting accuracy contributes valuable insights to the general un-
derstanding of modeling electricity markets affected by the energy 
transition. Furthermore, they can be employed to supplement existing 
assessments of investment decisions within the industrial sector. From a 
technical perspective, modular, open, and comprehensive software 
packages facilitate the transferability of our approach to other applica-
tions and more in-depth analyses. Future research may address broad-
ening the scenario space, with specific attention to the incorporation of 
diverse storage agents, varying technological considerations, the influ-
ence of potential market powers, and the impact of different agents’ 
operational strategies. It would also be valuable to investigate the un-
certainty of future electricity market scenarios in terms of market design 
and agent behaviour. Furthermore, the presented forecasting technique 
could also be applied to additional markets, such as Intraday markets. 
This would facilitate a more comprehensive analysis of the interplay 
between multiple markets.
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Fig. 6. Schematic overview of the agents and their connections in the agent-based electricity market model AMIRIS (Schimeczek et al., 2023a).

Data Availability

All code used to run this analysis is openly available in Schimeczek 
et al. (2023a), Nitsch et al. (2023b), Nitsch (2023). The data is based on 
Nienhaus et al. (2023). 
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López Santos, M., García-Santiago, X., Echevarría Camarero, F., Blázquez Gil, G., 
Carrasco Ortega, P., 2022. Application of temporal fusion transformer for day-ahead 
PV power forecasting. Energies 15 (14), 5232.

Makkonen, S., Lahdelma, R., 2006. Non-convex power plant modelling in energy 
optimisation. Eur. J. Oper. Res. 171 (3), 1113–1126.

Martin, A., Müller, J.C., Pokutta, S., 2014. Strict linear prices in non-convex European 
day-ahead electricity markets. Optim. Methods Softw. 29 (1), 189–221.

.Maurer, F., Nitsch, F., Kochems, J., Schimeczek, C., Sander, V., Lehnhoff, S., 2024. Know 
Your Tools - A Comparison of Two Open Agent-Based Energy Market Models. In: 
2024 20th International Conference on the European Energy Market (EEM). 
〈https://ieeexplore.ieee.org/document/10609021〉. IEEE, p. 1–8.
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