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Abstract— In this paper, we propose a model predictive
control (MPC) that accomplishes interactive robotic tasks, in
which multiple contacts may occur at unknown locations. To
address such scenarios, we made an explicit contact feedback
loop in the MPC framework. An algorithm called Multi-
Contact Particle Filter with Exploration Particle (MCP-EP)
is employed to establish real-time feedback of multi-contact
information. Then the interaction locations and forces are
accommodated in the MPC framework via a spring contact
model. Moreover, we achieved real-time control for a 7 degrees
of freedom robot without any simplifying assumptions by
employing a Differential-Dynamic-Programming algorithm. We
achieved 6.8kHz, 1.9kHz, and 1.8kHz update rates of the
MPC for 0, 1, and 2 contacts, respectively. This allows the
robot to handle unexpected contacts in real time. Real-world
experiments show the effectiveness of the proposed method in
various scenarios.

I. INTRODUCTION

Physical interaction capabilities are crucial in interactive
robotic tasks. Especially for collaborative robots, which are
designed to share a workspace with humans, there is an
increased need for effective handling of physical interactions.
For example, table polishing requires the robot to accomplish
hybrid motion-force control. Moreover, human-robot collab-
oration scenarios may involve multiple unknown contacts,
which need to be safely managed in such a way that the
interaction force is maintained below a dangerous level.

There have been a number of attempts to enable robots to
perform such interactive tasks. For example, a hybrid control
method that simultaneously realizes both motion and force
control has been proposed in [1]. Additionally, to ensure safe
interaction, compliant behavior of robots through impedance
or admittance control has been implemented in [2]–[8].

With recent advancements in optimization techniques,
there have been attempts to address interactive robotic tasks
using model predictive control (MPC). By utilizing the MPC,
such interaction tasks can be accomplished through cost
function designs [9], while imposing constraints on the state
and input variables [10]–[12].
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Fig. 1. The simultaneous accomplishment of hybrid motion-force control
at the end-effector (yellow and magenta colored arrows) and safe handling
of unexpected contact caused by human interaction (blue colored arrow).

To use the MPC framework for interaction tasks, a contact
model should be defined to predict the contact-involved robot
motion in the prediction horizon. While approaches based on
kinematic constraints show promising results [13], [14], other
types of contact models are also being explored. Particularly,
a spring contact model, in which force feedback can be
incorporated, is often employed [15]–[23]; e.g., interaction
tasks are realized via admittance or impedance behavior of
the robot with constraints on the contact force and robot state
[15]–[17], and studies in [19]–[23] have reported successful
results for hybrid motion-force control.

Nevertheless, the aforementioned methods are valid based
on a common assumption that the contact occurs at a single
and known location, typically at the end-effector where a
force/torque (F/T) sensor is installed. This assumption seems
reasonable in a well-structured workspace because all con-
tacts can be planned in advance. However, in an unstructured
workspace, such assumptions clearly have limitations. For
example, in scenarios that involve physical interaction with
humans or with unknown obstacles, unexpected contact may
occur at multiple locations on the robot.

To tackle the problems of unknown contacts, algorithms
that simultaneously estimate the contact location and force
have been proposed [24]–[26]. Some studies have presented
control methods that can safely handle a single contact using
those algorithms [27], [28]. For example, authors in [27] use
a kinematic constraint-based contact model, to generate a
path that maintains the contact force below the pre-specified
value, and in [28], a collision avoidance path is generated
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along the force direction. Moreover, the safe handling of
multiple contacts has been demonstrated using tactile sensors
[29], [30]. For example, authors in [31], [32] utilize tactile
sensor feedback to minimize resulting multiple contact forces
in contact-rich environments. However, it is not straightfor-
ward how to handle unknown multiple contacts, occurring
outside the tactile sensor, although such capability is crucial
in accomplishing complex interaction tasks.

Accordingly, this paper proposes a contact-feedback MPC
framework that addresses complex interaction tasks in which
multiple contacts may occur at arbitrary locations (see, e.g.,
Fig. 1). To the best of our knowledge, this is the first
attempt that embeds multiple unknown contacts in the MPC
framework. The multi-contact feedback is provided through
our previous work called Multi-Contact Particle Filter with
Exploration Particles (MCP-EP) [26]. This method is capable
of simultaneously estimating multiple contact locations and
forces, regardless of the contact links. The outline of this
algorithm is described in Section II-B.

Compared to the prior work, the proposed multi-contact
feedback MPC framework offers several advantages: (i) By
making an explicit contact feedback loop using MCP-EP,
force control can be accomplished even in scenarios with
multiple contacts regardless of contact locations1. (ii) By
employing the Differential Dynamic Programming (DDP)
algorithm, the proposed MPC operates in real-time for a 7
degrees of freedom (DOF) manipulator without any simpli-
fying assumptions on the robot model, which are common
in literature [16]–[20], [27], [28], [31], [32]. For example,
some of the time derivatives are assumed to be constant
over the prediction horizon in [19], [20], and [27] employs
a quasi-static robot assumption. Additionally, a linearized
robot model is employed in [17], [32], and the robot joints
are assumed to be perfectly velocity controlled in [16], [28],
or position controlled in [31]. In fact, we were able to achieve
6.8kHz, 1.9kHz, and 1.8kHz when there are 0, 1, and 2
contacts, respectively. This feature enables the handling of
multiple contacts in real-time, as illustrated in Fig. 1.

This paper is organized as follows. Section II presents
the robot system and contact model. The proposed contact-
feedback MPC framework is presented in Section III. In Sec-
tion IV, the proposed MPC framework is validated through
real-world experiments with a DLR-KUKA LWR IV+.

II. SYSTEM AND CONTACT MODELING

To predict the robot’s motion over the prediction horizon
of the MPC, the system model is given as

ẋ(t) = f(x(t),u(t),λ(t)), x(0) = x̃, (1)

where x(t) ∈ Rnx is the state of the system, f is the contact-
involved robot dynamics, u(t) ∈ Rnu is the control input,
and •̃ represents the initial value of •, while λ(t) represents
k contact forces, i.e., λ(t) = {λ1(t), . . . ,λk(t)} ∈ R3×k, of

1To avoid misunderstanding, it should be mentioned that the MCP-EP
algorithm can estimate up to one contact per link.

which the ith element can be expressed as follows:

λi(t) = g(x(t);θi), θi = h(r̃c,i, λ̃i), ∀i = {1, 2, . . . , k}, (2)

where the subscript i denotes the index of k contacts, g is
the spring contact model, θi is the parameter required for
the spring contact model, rc,i(t) ∈ R3 is the position vector
of the ith contact point, and h represents the procedure of
computing θi based on the ith contact feedback (r̃c,i and λ̃i).
For clarity, rc,i(t) and λi(t) are represented with respect to
the world frame, if not specified otherwise.

We point out that the contact model (2) does not depend on
the control input. This type of contact model allows the MPC
framework to incorporate contact force feedback by avoiding
an algebraic loop between λi(t) and u(t) [13]. Details of the
contact model are described in Section II-C. For the sake of
brevity, the time argument of quantities is omitted in the
following.

A. Contact-involved robot dynamics

Consider the following articulated multi-body dynamics:

M(q)q̈ +C(q, q̇)q̇ + g(q) = τc + τext, (3)

where q ∈ Rn is the joint variable, M(q) is the inertia
matrix, C(q, q̇) is the Coriolis/centrifugal matrix, g(q) is the
gravity vector, τc is the commanded joint torque, and τext
is the external joint torque caused by the contact forces.

Since we consider scenarios with k contacts, the external
joint torque τext is given as

τext =

k∑

i=1

JT
i (q, rc,i)λi, (4)

where Ji(q, rc,i) ∈ R3×n is the associated positional Jaco-
bian matrix at the ith contact point. Using (3) and (4), we
can express the contact-involved robot dynamics of (1) by
setting x = (q, q̇) and u = τc.

B. Multi-contact feedback

The initial states of the multiple contacts (r̃c,i and λ̃i)
are required for the contact model in (2). Accurate real-
time estimation of these variables is essential to handle
unexpected contacts. In our previous work [26], we proposed
a contact estimation algorithm, MCP-EP. This algorithm can
estimate the multiple contacts in a robot manipulator using
proprioceptive sensors, e.g., an F/T sensor mounted at the
base and joint torque sensors (JTSs). MCP-EP is suitable
for providing contact feedback for the following reasons: (i)
The run-time of MCP-EP is 2200Hz for single-contact and
600Hz for dual-contact; (ii) The average root mean squared
error (RMSE) of the contact location is 0.16cm, and that
of the contact force is 0.01N, for single-contact. For dual-
contact, these values are 1.08cm and 2.00N, respectively.
These numbers are based on a quantitative evaluation of
the algorithm in a simulation. Given these capabilities, in
the remainder of this paper, we consider r̃c,i and λ̃i to be
available.

It is worth noting that the proposed MPC does not strictly
rely on MCP-EP, while one can employ any method as long
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Fig. 2. Red and blue colored arrows indicate the x and z axes, respectively,
of the frame. (a) The ith contact frame {Ci} is obtained using the contact
feedback r̃c,i and λ̃i. (b) {Ci}renv,i is computed using (7) within the
contact frame. (c) renv,i and Kenv,i are calculated by transforming
coordinates from {Ci} to {W}. (d) rc,i is fixed on the robot surface (see
the orange dot representing rc,i). The predictive contact force is derived
from λi = g(x;θi).

as multi-contact information is provided in real time. The
remaining step is to define the contact model and θi in (2)
using the contact feedback.

C. Spring contact model
We use the following simple spring model, in which the ith

contact force is determined by the stiffness and deformation
of the environment:

λi = Kenv,i∆ri, (5)

where Kenv,i ∈ R3×3 and ∆ri = renv,i − rc,i ∈ R3

are the ith environment stiffness matrix and deformation,
respectively, and renv,i is the ith environment location. The
variables associated with the environment are defined as
θi = {Kenv,i, renv,i}.

The procedure of computing θi is illustrated in Fig. 2. As
shown in Fig. 2(a), the ith contact frame {Ci} is obtained
using r̃c,i and λ̃i. The origin of the {Ci} coincides with
r̃c,i, and by convention, its z-axis aligns with λ̃i. In the
following, variables expressed in {Ci} are denoted with a left
superscript. We define the ith environment stiffness matrix
with respect to the contact frame by

{Ci}Kenv,i = diag(0, 0, kenv,i), (6)

where diag(·) represents a diagonal matrix with the given
values on its diagonal, and kenv,i ∈ R+ is the ith environment
stiffness. Since only z-directional stiffness exists in (6), any
movement of the contact point within the xy-plane of the
contact frame does not change the force. This implies that
an unconstrained motion can be achieved in the tangential
direction of the contact force. Subsequently, as shown in
Fig. 2(b), {Ci}renv,i is obtained using

{Ci}renv,i =
{Ci} K−1

env,i
{Ci}λ̃i. (7)

Lastly, θi is derived from the coordinate transformation
from the ith contact frame to the world frame (see Fig.
2(c)). Given that Ri represents the rotation matrix for such
transformation, θi = {Kenv,i, renv,i} can be obtained as
follows:

Kenv,i = Ri
{Ci}Kenv,iR

T
i , (8)

renv,i = r̃c,i +Ri
{Ci}renv,i. (9)

With this setup, when rc,i = r̃c,i, the contact force computed
with (5) and θi is the same as λ̃i.

The remaining step is to determine the update law for the
contact point (rc,i). As depicted in Fig. 2(d), rc,i is fixed on
the robot surface, i.e., rc,i(0) = r̃c,i, and it is updated with
the robot’s forward kinematics.

In summary, when the contact feedback is received, θi is
computed with (6)-(9), rc,i is updated with robot’s forward
kinematics, and then the contact force is computed using (5).

III. CONTACT FEEDBACK MODEL PREDICTIVE CONTROL

Based on the robot system and contact model discussed
in Section II, this section presents the proposed contact-
feedback MPC.

A. Optimal control problem

The proposed contact-feedback MPC is based on iter-
atively solving the following discretized optimal control
problem (OCP) with the time step ∆t:

[X∗,U∗] = argmin
X,U

T−1∑

t=0

L(x[t],u[t]) + Lf (x
[T ]) (10a)

s.t. x[t+1] = F (x[t],u[t],λ), x[0] = x̃, (10b)

λ
[t]
i = g(x[t];θi), (10c)

θi = h(r̃c,i, λ̃i), ∀i={1,2,...,k}, (10d)

x[t] ∈ X , ∀t={0,1,...,T}, (10e)

u[t] ∈ U , ∀t={0,1,...,T−1}, (10f)

where X and U denote the state and control input tra-
jectories, e.g., X = {x[0],x[1], . . . ,x[T ]} and U =
{u[0],u[1], . . . ,u[T−1]}, the superscript ∗ indicates that the
variable has been optimized, L and Lf are the discretized
running and terminal cost functions, respectively, and T is
the prediction horizon length. Here, (10b) is Euler discretiza-
tion of (1), (10c) and (10d) are the spring contact model
described in Section II-C, and the state and control input
constraints are considered in (10e) and (10f), respectively.
Particularly, in our case, the joint angle, velocity, and control
input limits are considered.

Equation (10) is solved iteratively, and the first element
of the optimal control input trajectory, i.e., u[0]∗ , is used
as a command for a torque-controlled robot. A diagram
illustrating the proposed contact-feedback MPC framework is
shown in Fig. 3, and more details are described in Section IV.



Contact-Feedback MPC

Using (3) and (4), we can express the contact-involved
robot forward dynamics of (1) by setting x = (q, q̇) and
u = ⌧c.

B. Multi-contact feedback

The initial state of the multiple contacts (r̃c,i and �̃i)
are required for the contact model in (2). Accurate real-
time estimation of these variables is essential to handle
unexpected contacts. In our previous work [26], we proposed
an algorithm called MCP-EP. This algorithm is able to
estimate the multiple contacts for robotic arms using sensing
redundancy (a F/T sensor mounted at the base and joint
torque sensors (JTSs)). MCP-EP is suitable for providing
the contact feedback for the following reasons: (i) The run-
time of MCP-EP is 2200Hz for single-contact and 600Hz
for dual-contact. (ii) The average root mean squared error
(RMSE) in contact location and force are 0.16cm and 0.16N
for single-contact. For dual-contact, these values are 1.08cm
and 2.00N. Given these capabilities, in the remainder of this
paper, we will assume that r̃c,i and �̃i are available. The
remaining step is to define the contact model and ✓i in (2)
using the contact feedback.

C. Spring contact model

We use the following simple spring model, in which the ith

contact force is determined by the deformation and stiffness
of the environment:

�i = Kenv,i�ri, (5)

where Kenv,i 2 R3⇥3 and �ri = renv,i � rc,i are ith envi-
ronment stiffness matrix and deformation, respectively, and
renv,i is ith environment location. The variables associated
with the environment are defined as ✓i = {Kenv,i, renv,i}.

The whole procedure of computing ✓i is demonstrated
in Fig. 2. As shown in Fig. 2(a), the ith contact frame
{Ci} is obtained using r̃c,i and �̃i. The origin of the {Ci}
coincides with r̃c,i, and by convention, its z-axis aligns with
�̃i. Initially, the ith environment stiffness matrix with respect
to the contact frame is defined as

{Ci}Kenv,i = diag(0, 0, kenv,i), (6)

where diag(·) represents a diagonal matrix with the given
values on its diagonal, and kenv,i 2 R+ is the ith environment
stiffness, which can be obtained offline or online [16], [31].
With this setup, when the contact point moves within the
xy-plane of the contact frame, the force remains unchanged.
This implies that an unconstrained motion can be achieved
in the tangential direction of the contact force. Subsequently,
using (6), one can calculate {Ci}renv,i with

{Ci}renv,i ={Ci} K�1
env,i

{Ci}�̃i, (7)

where {Ci}�̃i is the ith initial contact force represented in
the contact frame (see Fig. 2(b)). The last procedure of
computing ✓i is the coordinate transformation from the ith

contact frame to the world frame (see Fig. 2(c)). Given that

Fig. 3. Our setup includes a 7-DOF robotic arm equipped with JTSs and
a F/T sensor mounted at the base. Using the sensor measurements (⌧j from
the JTSs, Wb from the base F/T sensor), MCP-EP [26] can estimate multiple
contacts (r̃c,i and �̃i). Utilizing the robot states and contact information as
feedback, the contact-feedback MPC (10) calculates the optimal state and
control input trajectory (X⇤ and U⇤) based on the provided cost functions.
Then, the first element of the control input trajectory (u[0]⇤ ) is commanded
to the torque-controlled robot.

Ri represents the rotation matrix for such transformation,
✓i = {Kenv,i, renv,i} can be obtained as follows:

Kenv,i = Ri
{Ci}Kenv,iR

T
i , (8)

renv,i = r̃c,i + Ri
{Ci}renv,i. (9)

Lastly, as shown in Fig. 2(d), it is assumed that the contact
point (rc,i) is fixed on the robot surface, e.g., rc,i(0) = r̃c,i,
and it is updated with the robot’s forward kinematics.

In summary, when the contact feedback is received, ✓i

is derived from (6)-(9), r̃c,i is updated with robot’s forward
kinematics, and then the contact force can be computed using
(5).

III. CONTACT FEEDBACK MODEL PREDICTIVE CONTROL

Based on the robot system and contact model discussed in
Section II, this section present the proposed contact-feedback
MPC.

A. Optimal control problem

The proposed contact-feedback MPC is based on iter-
atively solving the following discretized optimal control
problem (OCP) with the time step �t:

[X⇤,U⇤] = argmin
X,U

T�1X

t=0

L(x[t], u[t]) + Lf (x[T ]) (10a)

s,t x[t+1] = F (x[t], u[t]), x[0] = x̃, (10b)

�
[t]
i = g(x[t];✓i), (10c)

✓i = h(r̃c,i, �̃i), 8i={1,2,...,k}, (10d)

x[t] 2 X , 8t={0,1,...,T}, (10e)

u[t] 2 U , 8t={0,1,...,T�1}, (10f)

where X and U denote the state and control input
trajectory, e.g., X = {x[0], x[1], . . . , x[T ]} and U =
{u[0], u[1], . . . , u[T�1]}, and superscript ⇤ indicates that the
variable has been optimized, and L(x[t], u[t]) and Lf (x[T ])
are the discretized running cost function and terminal cost
function, respectively, and T is the prediction horizon length.
Here, (10b) is Euler discretization of (1), (10c) and (10d)
are the spring contact model described in Section II-C, and
state and control input constraints are considered in (10e)

MCP-EP

1kHz

3kHz

Base F/T 
sensor

Low-level 
torque controller

Fig. 3. τj and Wb are the JTSs and base F/T sensor measurements,
respectively, and red arrows represent real-time communication. Utilizing
the robot states (x̃) and contact information (r̃c,i and λ̃i), the contact-
feedback MPC (10) calculates X∗ and U∗. Then, u[0]∗ is commanded to
the torque-controlled robot.

B. Numerical solution of OCP

As highlighted in Section I, we use the DDP algorithm
for (10) to achieve a real-time MPC. Specifically, we im-
plemented the method of Box-FDDP [11] to incorporate
the spring contact model described in Section II-C. This
algorithm allows us to impose box-constraints on the control
input, e.g., umin ≤ u[t] ≤ umax. As a result, (10f) can
be treated as hard constraints, whereas (10e) cannot. To
address this limitation, we adopted a penalization approach
for (10e). For example, when elements in x[t] exceed the
state constraints (xmin,xmax), a steeply increasing quadratic
cost is added. This prevents exceeding the joint and velocity
limits during operation.

Additionally, since the DDP algorithm is based on the
gradient method, partial derivatives of the cost functions
and the contact-involved robot dynamics (f ) are required.
For faster computation, we derive these analytically rather
than using finite-difference or auto-diff methods. Since rc,i
is fixed on the robot surface, the partial derivatives of the
contact model (5) with respect to the state and control input
are

∂λi

∂q
= −Kenv,iJi(q, rc,i),

∂λi

∂q̇
=

∂λi

∂u
= 0. (11)

Consequently, the partial derivatives of f can be analytically
derived by combining (11) with the partial derivatives of the
robot forward dynamics that exclude the contact model [33].

C. Cost function design

In this subsection, we present our cost functions used
in (10) with which the proposed MPC framework is able
to accomplish interaction scenarios. For brevity, c• ∈ R+

represents the gain of each cost in the following. Consider
the running and terminal cost functions defined by

l(x,u) = lm(x) + lc(λi) + cu∥u− u0∥2, (12)
lf (x) = lm(x) + lc(λi), (13)

where l and lf are continuous time version of L and Lf in
(10), and ∥u−u0∥2 is the penalization term for the control
input. Here, lc and lm represent the costs for contact force
and motion control, respectively.

1) Motion control: We use the following cost function to
penalize the joint velocity and regulate the end-effector of
the robot to the desired position and orientation:

lm(x) = cv∥q̇∥2 + cp∥pee(q)− pdes∥2
+ cr∥Ree(q)⊖Rdes∥2,

(14)

where pee(q) and Ree(q) represent the position and orien-
tation of the end-effector, respectively. Similarly, pdes and
Rdes represent the desired position and orientation, and
⊖ denotes the difference in SO(3). In particular we used
R1 ⊖R2 = log(RT

1 R2).
2) Contact force control: The cost for contact is designed

to allow for defining different tasks on different links (e.g.,
contact force regulation on link 7 while force barrier on the
other links). To this end, for notational convenience, the ith

contact link is denoted as γi ∈ {1, 2, . . . , n}.
To regulate the ith contact force to the desired value

(λi,des ∈ R3), the following cost function is used:

lc,reg(λi, γset) =

{
cλ∥Ad(λi − λi,des)∥2 if γi ∈ γset

0 otherwise
, (15)

where γset is the set of link indices used to indicate that this
cost is activated, and Ad ∈ R3×3 determines the direction of
the force control. For example, only the x-directional force
is controlled with Ad = diag(1, 0, 0).

For safe handling of unexpected contacts, we limit the
allowed contact force. To this end, the following force barrier
with quadratic function is considered:

lc,bar(λi, γset)

=

{
cλ(∥λi∥ − λi,max)

2 if ∥λi∥ > bλi,max and γi ∈ γset

0 otherwise
, (16)

where b ∈ (0, 1) is the scale factor to smooth the constraint.
As a result, the total cost for the contact lc(x) is set as a
combination of (15) and (16) depending on the applications.

IV. EXPERIMENTS

The proposed multi contact-feedback MPC is validated in
experiments on the DLR-KUKA LWR IV+ torque-controlled
robot. The low-level torque controller runs at a rate of 3kHz.
We use all seven joints of the robot, i.e., nx = 14 and
nu = 7. To employ the MCP-EP algorithm that estimates
contact locations and forces, an ATI Omega F/T sensor
is mounted at the base of the robot. We implemented the
proposed contact-feedback MPC in C++, and it operates at
approximately 6.8kHz, 1.9kHz, and 1.8kHz when there are
0, 1, and 2 contacts, respectively. Since the contact-feedback
MPC, MCP-EP, and low-level torque controller operate at
different rates, each program is run with the latest available
data. Additionally, the update rate of u[0]∗ to the low-level
torque controller and that of the sensor measurements (x̃,
JTSs, base F/T sensor) are consistently set as 1kHz using
the real-time setting (see Fig. 3).



Fig. 4. Scenario #1: The current end-effector position is represented as
a red dot, and the desired end-effector position trajectory is given by linear
interpolation, as indicated by a yellow arrow. While tracking the trajectory,
the robot’s body makes contact with the obstacle.

A. OCP parameter selection

1) Prediction horizon length: In the following experi-
ments, we use a relatively short planning horizon 125ms
with T = 5 and ∆t = 25ms. It is well known that a
longer planning horizon would improve control performance
unless it significantly reduces the control frequency. Despite
the fact that, in scenarios involving unexpected contacts, a
long planning horizon would not be advantageous. This is
because, as soon as contact occurs, the OCP (10) should
be modified to include lc in the cost function (10a) and
to include the spring contact model in (10b). This change
requires solving an entirely new OCP, distinct from the prior
iteration. This can be problematic for the DDP algorithm,
which relies on using the previous step’s output as an initial
value to enable warm-start. Specifically, with a long planning
horizon, the state trajectory might deviate from the initial
state. This can result in extremely large contact forces in the
prediction horizon, leading to numerical issues.

2) Environment stiffness: When kenv,i has a small value,
the robot needs to move significantly within the prediction
horizon to control the force. This can lead to large motion
for the actual robot, potentially causing vibrations in practice.
In contrast, when kenv,i is too large, each MPC step causes
small motion for the actual robot, which may result in
too slow convergence of the force. Finding an appropriate
balance between these two is crucial. In our implementation,
we used kenv,i = 3500N/m for all experiments.

Notice again that we have no pre-knowledge about the
contacts; instead, the proposed MPC handles the unexpected
contacts in real-time. In the following, two experimental sce-
narios are presented. All the experimental videos, including
two additional experiments, can be found in the attached file
(also see [34]).

B. Comparative study: with and without contact feedback

In scenario #1, we demonstrate the effectiveness of the
contact feedback. To this end, for comparison purposes, we
implemented the MPC without contact feedback, in which
the OCP (10) does not include λ and lc. For both cases
(i.e., with and without contact feedback), the cost for motion
control consists of the end-effector position regulation cost
and the joint velocity penalization term; i.e., cp > 0, cv > 0
and cr = 0 in (14).
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Fig. 5. Scenario #1: The region is shaded when the contact exists. Top:
The magnitude of the contact force (∥λ̃1∥). Bottom: The actual and desired
end-effector trajectories (pee and pdes).

The experimental setup is illustrated in Fig. 4. The robot
tracks a desired end-effector position trajectory (pdes) in the
environment where an unknown obstacle is located close to
the robot. pdes is set in such a way that the robot cannot
reach due to the obstacle. During the trajectory tracking, a
contact occurs on the 3rd link at 5.2s.

Fig. 5 shows the contact force (∥λ̃1∥), the actual end-
effector position (pee(q)), and the desired one (pdes). As can
be seen in the figure, when there is no contact feedback, the
magnitude of the contact force increases as the end-effector
position error increases. The maximum contact force was
65.87N.

To maintain the interaction force small, the proposed
method was implemented using (16):

lc(x) =

k∑

i=1

lc,bar(λi, γset), (17)

where γset = {1, 2, . . . , 7}, and the upper limit of the contact
force (λi,max) is set to 15N. With the contact feedback, the
contact force was maintained below this limit. Over the entire
time span, the maximum contact force was 14.74N.

C. Hybrid motion-force control under multi-contact

In scenario #2, the proposed MPC demonstrates hybrid
motion-force control, while handling an unknown interac-
tion. The experimental scenario is sequentially described
in Fig. 6. The robot makes contact with the environment
by moving the end-effector along the x-direction (see Fig.
6(a),(b)). As shown in Fig. 6(c), hybrid motion-force control
is performed at the end-effector: the contact force in the
x-direction is regulated to 20N while tracking a circular
trajectory in yz-plane. In addition to the hybrid motion-force
control at the end-effector, a human operator applies force
on the robot, as shown in Fig. 6(d).

In this scenario, the proposed method is expected to handle
unknown contact safely, while maintaining 20N at the end-
effector. To this end, the cost for the contact is defined as



(a) (b)

(c) (d)

Fig. 6. Scenario #2: (a) The initial configuration of the robot, not in
contact. (b) The robot moves in the x-direction and makes contact with
the environment. (c) Hybrid motion-force control is performed at the end-
effector. (d) While performing hybrid motion-force control, an additional
contact is applied by a human.

follows:

lc(x) =

k∑

i=1

lc,bar(λi, γset,1) + lc,reg(λi, γset,2), (18)

where γset,1 = {1, 2, . . . , 6}, λi,max = 15N, γset,2 = {7},
Ad = diag(1, 0, 0), and the first element of λi,des is 20N.

To track the desired trajectory, a high gain was set for cp,
while a slightly lower value was allocated to the orientation
part cr. The joint velocity penalization term was also used;
i.e., cv > 0. Note that with the contact model presented in
Section II-C, robot motion can be achieved in the uncon-
strained tangential direction of the contact force, allowing
for hybrid motion-force control.

Similar to the previous, Fig. 7 shows the first contact force
(λ̃1), the second contact force (∥λ̃2∥), the end-effector’s
actual position (pee(q)), and the desired position (pdes).
At 3s, the end-effector makes contact with the environment.
From 5.9s to 18.4s, only the hybrid motion-force control at
the end-effector is performed without human interaction. In
this case, the RMSE of the end-effector position was 0.86cm,
and that of the contact force was 0.58N.

On the other hand, while tracking the second circular
trajectory (from 19.4s to 31.9s), additional contact force (λ̃2)
is applied to the 3rd link by a human. As shown in Fig. 7, the
robot immediately reacts to maintain the contact force below
15N. At the same time, the motion-force control at the end-
effector performs reasonably. Specifically, at the end-effector,
the RMSE for the position was 1.14cm and for the contact
force was 0.89N.

Finally, from 33.5s to the end, the force regulation control
is performed with a constant desired pose. The RMSE values
for the end-effector position and contact force were 0.20cm
and 0.10N, respectively.
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Fig. 7. Scenario #2: When there are two contacts, the region is shaded
more intensely. Top: The contact force at the end-effector (λ̃1). Middle:
The magnitude of the contact force at the robot’s body (∥λ̃2∥). Bottom:
The actual and desired end-effector trajectories (pee and pdes).

V. CONCLUSION AND FUTURE WORK

In this work, we propose a contact-feedback MPC that
accomplishes interactive robotic tasks in which multiple con-
tacts may occur at unknown locations. To accomplish such
scenarios, we adopt a spring contact model to predict the
contact-involved robot motion over the prediction horizon of
the MPC. Here, the multi-contact information, that initializes
the spring contact model, is provided by our previous work
called MCP-EP. To the best of our knowledge, this paper
presented the MPC that explicitly handles unknown multiple
contacts for the first time. Furthermore, since the proposed
method achieves fast enough runtime for a 7-DOF robot
(update rate was 1.9kHz for the single-contact, and 1.8kHz
for the dual-contact), the robot is able to handle unexpected
contacts swiftly. The effectiveness of the proposed method is
validated through the real-world experiments using a 7-DOF
DLR-KUKA LWR IV+.

Although our approach has shown promising results, there
remains room for improvement. When the contact feedback
is received, the contacts remain throughout the entire pre-
diction horizon of the OCP. However, since this contact
model is derived from the contact feedback, its validity is
limited only locally. For example, when employing a long
horizon length, the issue with extremely high contact force
can arise as discussed in Section IV-A.1. Moreover, the
spring contact model used in this paper does not account
for instances where the contact might vanish. Considering
these issues could allow a longer prediction horizon in the
OCP, potentially improving overall controller performance.
Furthermore, to truly address the unexpected contacts, online
determination of kenv,i is essential, and therefore, this would
be our future work as well.
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