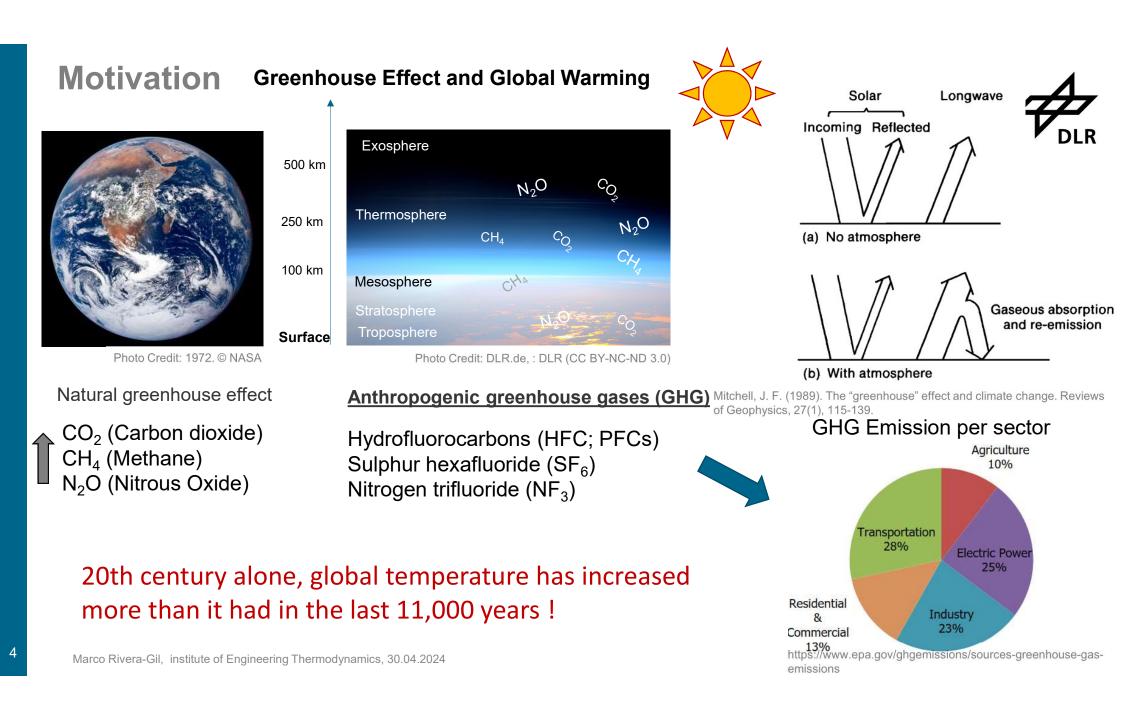
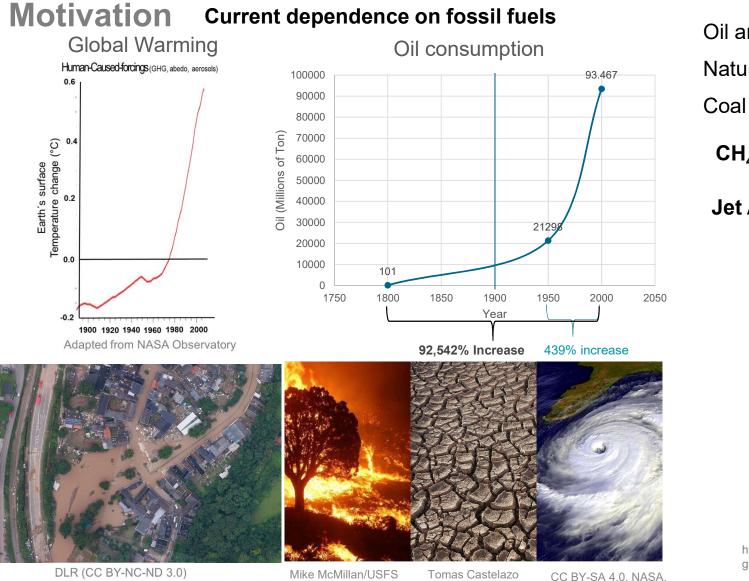

THE POTENTIAL ROLE OF PLASMA SPRAYING IN THE FUTURE OF HYDROGEN PRODUCTION: EXPERIENCES AND CHALLENGES

M.A. RIVERA-GIL, R. REIßNER, A.S. GAGO, K. A. FRIEDRICH

Outline

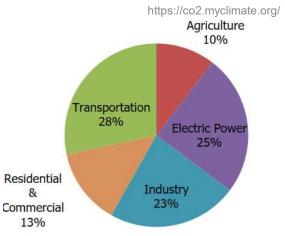



- 1. Introduction.
- 2. Motivation for water electrolysis development
- 3. Experiences on the development of plasma sprayed functional coatings for alkaline water electrolysis.
- 4. Challenges of plasma spraying on the field of water electrolysis

Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

3

Wikimedia Commons


Oil and derivatives Natural gas (Methane)

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_2$

Jet A – Aircraft fuel (C9–C16)

FRA $\leftarrow \rightarrow$ JFK 1,9 Ton CO₂ (Economy) 9,1 Ton CO₂ (First)

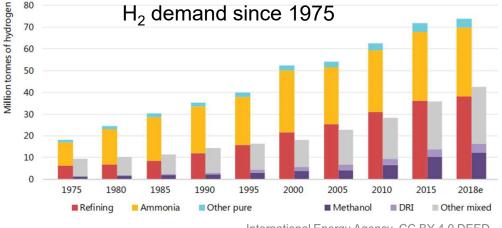
https://www.epa.gov/ghgemissions/sources-greenhousegas-emissions

Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

5

Motivation Hydrogen

Most industrial sectors and human activities relate to fossil fuels


Most energy and useful work used in human activities rely on the **combustion** of fossil fuels

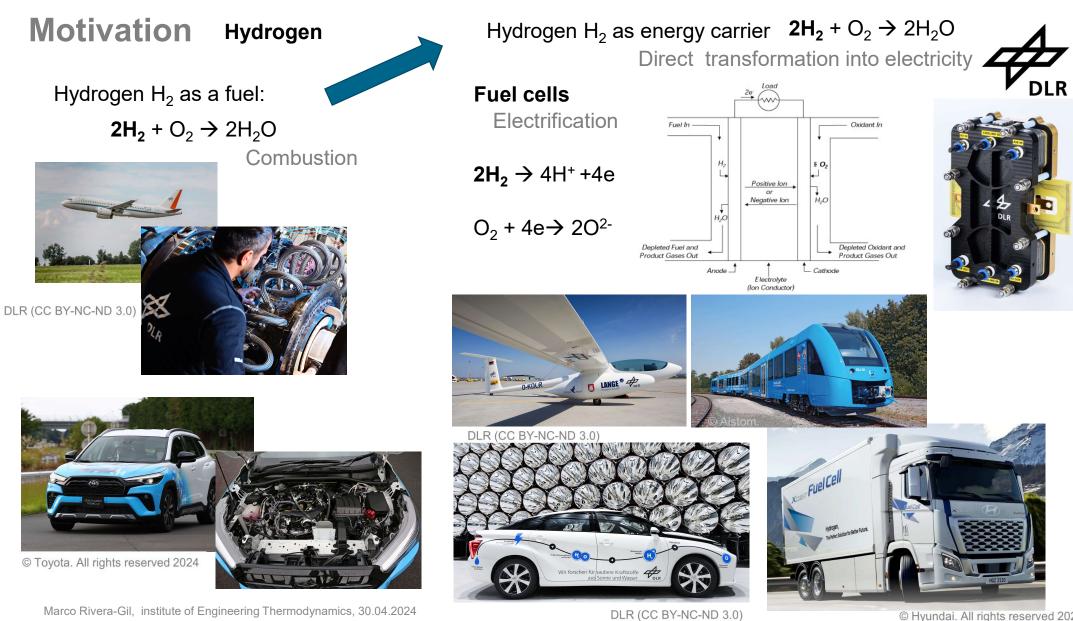
Fossil fuel economy

Alternative Fuels?

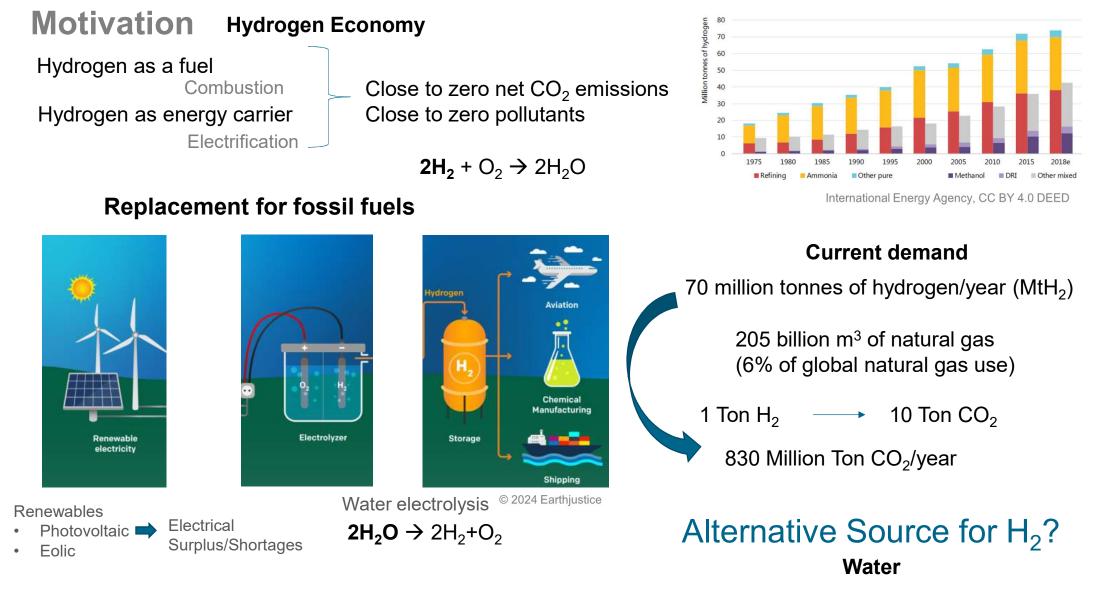
Hydrogen, H₂ chemical

70 million ton per year (MtH₂/yr)

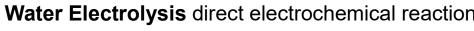
International Energy Agency, CC BY 4.0 DEED

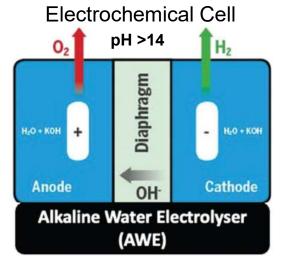

Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

Hydrogen H_2 as a fuel:

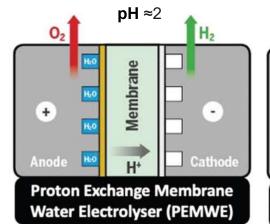

- Light
- Storable
- Reactive
- High energy content
- No green house gases
 emissions

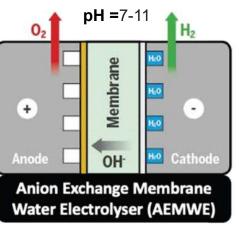
 $\mathbf{2H_2} + \mathrm{O_2} \rightarrow \mathrm{2H_2O}$




© Hyundai. All rights reserved 2024

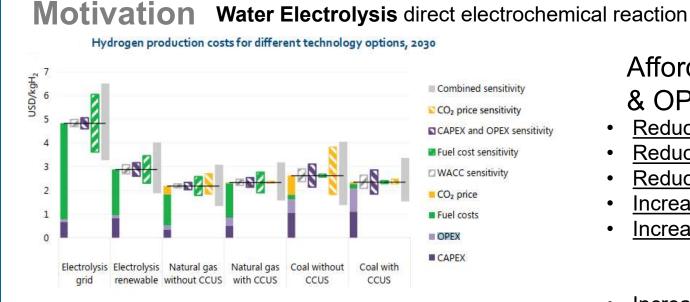
8

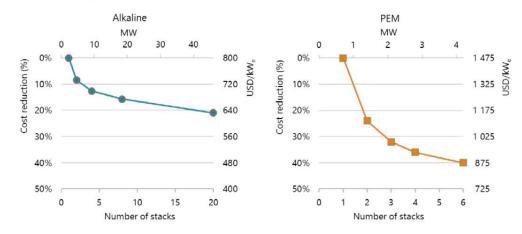




- 1. Electrolyte
- Cathode (HER) 2.
- 3. Anode (OER)

 $KOH \rightarrow K^{+}_{(aq)} + OH^{-}_{(aq)}$ **2H₂O+2e⁻→** H₂+2OH⁻ $2OH \rightarrow \frac{1}{2}O_2 + H_2O + 2e^{-1}$ $2H_2O \rightarrow 2H_2 + O_2$

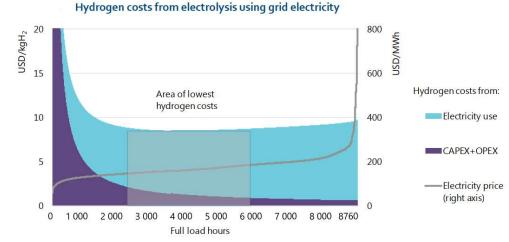



Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

hemical rea	ction	$2H_2O \rightarrow 2H_2 + O_2$	
C 2H ₂ O	Fazming	eei et. al. 2021. https://doi.org/10.	2H2 2H2
	AWE	PEMWE	AEMWE
Operating temperature	70–90 °C	50-80 °C	40-60 °C
Operating pressure	1-30 bar	<70 bar	<35 bar
Electrolyte	Potassium hydroxid	e PFSA membranes	DVB polymer support with
Separator	(KOH) 5–7 mol L^{-1} ZrO ₂ stabilised with mesh	PPS Solid electrolyte (above)	KOH or NaHCO ₃ 1 mol L^{-1} Solid electrolyte (above)
Electrode/catalyst (oxygen side) Electrode/catalyst (hydrogen side) Porous transport layer anode Porous transport	Nickel coated perfor stainless steel Nickel coated perfor stainless steel Nickel mesh (not al present) Nickel mesh	rated Platinum nanoparticles of carbon black	Nickel foam
layer cathode Bipolar plate anode	Nickel-coated stainl	or carbon cloth	cloth
Bipolar plate	Nickel-coated stainl	ess Gold-coated titanium	Nickel-coated stainless
cathode Frames and sealing	steel PSU, PTFE, EPDM	PTFE, PSU, ETFE	steel PIFE, silicon

Chatenet et al. Chem. Soc. Rev., 2022, 51, 4583

. Expected reduction in electrolyser CAPEX from the use of multi-stack systems


Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

Affordability: Reduce CAPEX **P**LR & OPEX

 $2H_2O \rightarrow 2H_2 + O_2$

- Reducing material costs
- <u>Reducing fabrication costs</u>
- <u>Reducing operation and maintenance costs</u>
- Increasing efficiency
- Increasing durability

Increasing Renewables availability

International Energy Agency, 2019 CC BY 4.0 DEED

Thermal spraying?

Razmjooei et al. 2020 https://doi.org/10.1016/j.joule.2021.05.006

Thermal Spraying processes

- (Relatively) low cost
- Flexible
- Scalable
- Versatile

Control through processing parameters

- Porosity
- Thickness
- Microstructure

German Aerospace Center, DLR.

Schiller et al, 1995. Vacuum Plasma Spraying of High-Performance Electrodes for Alkaline Water Electrolysis. https://doi.org/10.1007/BF02646111

- Raney nickel Ni-Al-Mo and Raney nickel /Co₃O₄
- Activated coatings show enhanced porosity
- Coated electrodes show better performance than uncoated Ni
- Unwanted phases formed during plasma processing

Wang et al 2019. High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. https://doi.org/10.1021/acsaem.9b01392

- Explored the applicability of APS and VPS for Ni, Ni/C, and Ni-Al-Mo coated electrodes on SS
- Attained performance similar to PEMWE.
- Durability issues require further attention.

Razmjooei et al, 2019. Highly Active Binder Free Plasma Sprayed **Non-Noble Metal** Electrodes **for Anion Exchange Membrane** Electrolysis at Different Reduced KOH Concentrations. doi.org/10.1149/09208.0689ecst

- APS NiAl, NiAlMo coated coponents
- Study alternate cell configuration
- Investigate KOH concentration
- Relates microstructural and structural features with plasma processing conditions

German Aerospace Center, DLR.

Razmjooei et al, 2020. Improving plasma sprayed Raney-type **nickel–molybdenum** electrodes towards high-performance hydrogen evolution in **alkaline medium**. https://doi.org/10.1038/s41598-020-67954-y

- APS NiAl, NiAlMo coated components
- Study the influence of total gas flow and plasma power
- Observations regarding structural, microstructural and chemical changes
- Implementation of in/situ particle monitoring
- Correlation of processing parameters and coating characteristics with performance and durability

Razmjooei et al. 2020. Increasing the performance of an **anion exchange membrane** electrolyzer operating in pure water with a nickel-based microporous layer. https://doi.org/10.1016/j.joule.2021.05.006

- Studied Ni-C APS coatings for MPL
- Novel approach to cell configuration with multifunctional liquid gas diffusion layers
- Operation of AEMWE with pure water
- Analysis and correlation of porosity and processing parameters with cell performance

Birry and Lasia 2004, Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes https://doi.org/10.1023/B:JACH.0000031161.26544.6a

- Alkaline water Electrolysis
- Use of VPS to produce NiAlMo coated electrodes
- Study of **different Ni/Al/Mo composition** in the plasma feedstock
- NiAlMo coated electrodes show better performance than corresponding bulk materials
- No observations regarding structural or microstructural characteristics

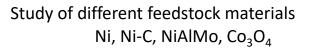
University of Strathclyde, UK

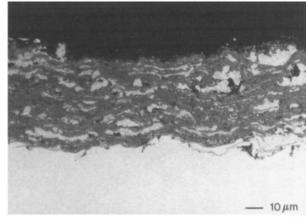
Universite de Sherbrooke, Canada 4

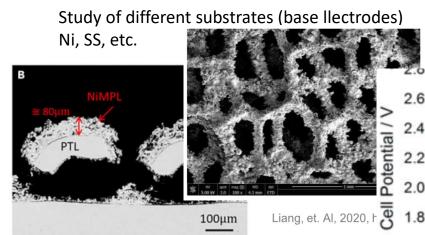
Chade et al. 2013. Evaluation of Raney nickel electrodes prepared **by atmospheric plasma spraying** for **alkaline water electrolysers** https://doi.org/10.1016/j.joule.2021.05.006

- NiAl coated electrodes
- Study of the thickness' influence in the performance of AWE
- No cross section or microstructural details are given

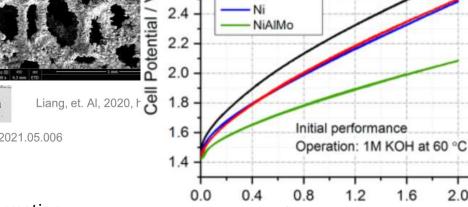
Korea Institute of Energy Research

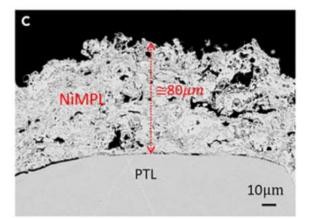

Kim et al. 2019, Electrochemical characterization of Raney nickel electrodes prepared by **atmospheric plasma spraying** for **alkaline water electrolysis** https://doi.org/10.1016/j.jiec.2018.10.010


- Alkaline water Electrolysis
- Use of APS to produce NiAl coated electrodes
- Proposes H₂ reduction method to leach remnant
- Does not provide discussion around processing parameters or microstructure

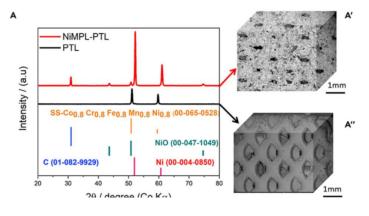

Guangxi University of Science & Technology, China

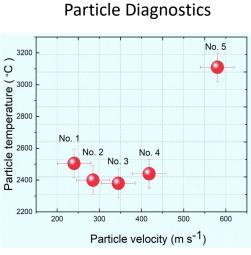
Liang et al. 2020. Preparation of NiAl coated Nickel foam cathode for **Alkaline Water Electrolysis using Atmospheric Plasma Spraying** https://doi.org/10.20964/2020.06.61


- NiAl coated electrodes
- Study the performance of APS coatings on Ni foam electrodes
- No cross section or microstructural detail is given



azmjooei et al. 2020 https://doi.org/10.1016/j.joule.2021.05.006




Schiller et. al. 1995. https://doi.org/10.1007/BF02646111

Thickness

Porosity and phase transformation

Performance

Ni/Graphite

NiAl

DLR

1.6

2.0

Iviarco Rivera-Gil, Institute of Engineering I nermodynamics, 30.04.2024

Experiences Water Electrolysis and thermal spraying

Plasma spraying (APS, and VPS) is a suitable and effective process to produce low cost components for water electrolysis

- Alkaline Water Electrolysis
- Anion Exchange Membrane Water Electrolysis

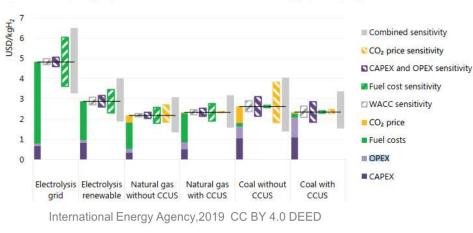
German Aerospace Center, DLR Korea Institute of Energy Research University of Strathclyde, UK Universite de Sherbrooke, Canada Guangxi University of Science & Technology, China

Thermal spraying (APS, VPS, HVOF, HVAF and CGS) is a suitable and effective family of process to produce low cost components for proton exchange membrane water electrolysis **PEMWE**.

- German Aerospace Center. APS and VPS
- RWTH Aachen, Germany . CGS, HVAF and HVOF ITSC 2024 abstract 7905, 29.04.2024
- RWTH Aachen, Germany, HVOF, abstract 7909, 30.04.2024

Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

17

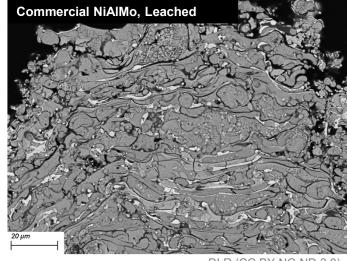

DLR (CC BY-NC-ND 3.0)

Challenges

Water Electrolysis

Some WE challenges

- Increase Efficiency.
- Increase durability.
- Increase reliability.
- Decrease CAPEX/OPEX.
- Decrease dependence of critical raw materials (e.g. Ir, Rd, Pt).
- Increase H₂ production capacity.
- Integration with renewables.
- Others


Hydrogen production costs for different technology options, 2030

Marco Rivera-Gil, institute of Engineering Thermodynamics, 30.04.2024

Thermal spraying

- Increased and controlled open porosity.
- Control of phase transformation.
- Increase durability (e.g. mechanical properties)
- Develop effective, cost affordable and flexible processes.

DLR (CC BY-NC-ND 3.0)

- Inherent porosity of thermal-sprayed coatings
- Compromise of process temperature with phase transformation
- Compromise of porosity with mechanical characteristics

Thank you for your attention!

German Aerospace Center Dr. Marco Rivera-Gil

Marco.RiveraGil@dlr.de

Institute of Engineering Thermodynamics Department of Electrochemical Energy Technology

http://www.DLR.de