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Introduction:  Since February 18th, 2021, two 

Raman instruments have been successfully deployed 

and operated on the surface of Mars, contributing to the 

characterization of the rocks in Jezero crater and the 

completion of the scientific goals of the Mars2020 

mission [1-4]. These two instruments, SHERLOC [5] 

(not discussed further) and SuperCam [6,7], are the first 

Raman instruments to be used beyond Earth.  

The SuperCam instrument enables remote 

analysis of rocks in a radius of several meters around the 

rover. SuperCam Raman uses a frequency-doubled 

Nd:YAG laser, firing 532 nm, 4 ns, 9 mJ pulses on a 

~1 cm diameter spot on the targets. The light is collected 

with a Cassegrain telescope, coupled into a 6 m long 

optical fiber plugged into a transmission spectrometer 

equipped with a iCCD camera. The light is collected 

during a 100 ns window centered on the laser pulse. 

Raman spectra are generally acquired on 3 to 10 

different points on a target, accumulating 100 – 400 

laser shots. The spectra processing includes wavelength 

calibration, despiking, dark removal, IRF correction and 

denoising.  

The dataset:  During the first 950 sols of the 

Mars2020 mission, spectra were acquired on 502 points 

on ~60 geologic targets. Manual inspection of each 

spectrum led to the identification of six main 

independent signals in the dataset (Figure 1): 

1) A contribution, informally called fiber bump, 

from the amorphous silica of the optical fiber between 

the telescope and spectrometer, excited by laser light 

backscattered of the sample’s surface, of which only 

~96% is filtered before injection into the fiber. It 

consists of a main band below 500 cm-1, with additional 

contributions around 600 cm-1 and 800 cm-1, and is 

observed in about half the spectra acquired on Mars. 

2) The Raman signature of olivine, characterized by 

a doublet around 820 and 850 cm-1, observed in more 

than 70 spectra [8].  

3) The Raman signature of Ca-sulfate, characterized 

by the main 𝜈1 Raman mode at ~1017 cm-1, and in 

particular some spectra of anhydrite type II identified 

based on multiple distinguishable Raman modes. Ca-

sulfates were identified in about 15 points [9]. 

4) Continuum signal, observed as an upwards slope 

in the 600 – 2000 cm-1 range, the origin of which is still 

under discussion, and which was observed in ~10 

spectra [10].  

5) The Raman signature of Na-perchlorate mainly 

identified by the 𝜈1 mode at 954 cm-1. One point 

exhibits this mode clearly (together with weaker modes) 

while it appears weakly in about 5 other points [2,11].  

6) The Raman 𝜈1 mode of carbonate – identified as 

Fe-Mg carbonate with the other SuperCam techniques – 

around 1090 cm-1, observed in about 20 spectra [12]. 

Motivation: In multiple spectra, the contribution from 

the fiber, high noise, and low signals make mineral 

identification challenging. We are aiming to decompose 

the data into the individual signal-bearing spectra with 

statistical strategies to enable an improved and 

automated characterization of the corresponding 

mineral phases. 

Identifying the different signals in the dataset 

with unsupervised machine learning methods: We 

compare two techniques: independent component 

analysis (ICA) and non-negative matrix factorization 

(NMF). ICA is a classical method for blind source 

separation, that is identifying independent signals mixed 

linearly in a dataset [13]. We use the FastICA algorithm 

(sickit learn, Python) [14]. NMF is a dimensionality 

reduction technique, based on matrix decomposition, 

using matrix with only positive values [15]. These 

techniques are both considered to provide more 

physically-meaningful components than, for example, 

principal component analysis (PCA), as the former rely 

on source identification and the latter on variance 

modelling. For both techniques, we used six 

components, as this is the expected number of 

independent signals in the dataset. 

First model (Spectral range: 200 – 1400 cm-1; 6 

components): We first developed models on the typical 

Raman range (200 – 1400 cm-1). We observe in Fig. 1A-

B that the ICA and NMF components are very similar. 

Four components can be interpreted based on the 

loadings for both techniques: the fiber, olivine, Ca-

sulfate and continuum signal. The interpretation of the 

other two components is not straightforward, but they 

are comparable with both techniques; moreover, the 

signature of neither perchlorate nor carbonate was 

identifiable in these components. 

We observe that the contribution of the optical fiber 

is visible not only in the “Fiber” component (1st row in 

Fig. 1A), but also to some extent in other components. 

Furthermore, it appears to induce amplified noise below 

500 cm-1, where the fiber signal is strongest. 
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Second model (Spectral range: 650 – 1400 cm-1; 6 

components): We then applied both techniques on a 

reduced spectral range, to limit the contribution of the 

fiber bump. In addition to components related to olivine, 

Ca-sulfate and the continuum signal, we then get 

components corresponding to perchlorate and carbonate 

(Fig. 1C-D). Once again, the ICA and NMF results are 

very similar, and the scores overall correlated. For both 

perchlorate and carbonate components, we observe 

points with higher NMF scores compared to the trend, 

that were not manually identified as either carbonates or 

perchlorates. No unexpected signature was identified. 

Discussion: Overall, the results of ICA and NMF are 

consistent, identifying most to all expected spectral 

contributions and features. However, we observe some 

differences, which we will investigate to determine the 

best strategy to use these techniques to characterize the 

Raman spectra acquired with SuperCam on Mars.  

Using manually assigned labels, we confirmed that 

the highest scores for both techniques are overall 

consistent with the actual mineral signatures for each 

component. For weaker signatures, the ICA scores are 

more correlated with our identification. The scores can 

thus be used to characterize the intensity of a specific 

feature in the Raman spectra, or look for mineral phase 

associations. In particular, Ca-sulfates, perchlorates and 

carbonates were mostly found in distinct points, 

whereas carbonates and olivine are often detected 

together. However, for weak signatures, like the 

carbonates, it is not straightforward to determine the 

presence of the mineral based solely on the scores; a 

careful analysis of the spectra is still required (peak 

position, width, shot to shot data, etc.).  

Conclusion: We tested unsupervised machine-

learning approaches to characterize the mineral 

signatures in the Raman dataset acquired on Mars with 

SuperCam. We show preliminary results highlighting 

how ICA and NMF can be used to extract the signals 

present in the dataset, and characterize their distribution. 
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Figure 1 - ICA and NMF models trained (A-B) on the typical Raman range (200 – 1400 cm-1) and (C-D) on a reduced spectral 

range (650 – 1400 cm-1) using 6 components. The loadings – normalized to the mean – are shown in columns A & C and the scores 

in columns B & D. The loadings present the characteristic features of our signals of interest: (A) from top to bottom, the fiber 

bump, olivine, anhydrite, continuum signal; the bottom 2 components don’t show clear signatures; (B) from top to bottom, the 

olivine, anhydrite, continuum signal, perchlorate and carbonate; the component at the bottom doesn’t show clear signatures. In 

columns B & D, we compare the scores of the corresponding ICA and NMF components; the spectra manually identified as bearing 

the signal of interest are shown in blue. 
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