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Paralysis of the muscles controlling the hand dramatically limits the quality of life for individuals living with spinal 
cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI indivi-
duals (C5–C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with re-
sidual neural pathways.
In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand 
movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to 
individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual 
hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of free-
dom (opening and closing the hand and index flexion/extension).
These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under 
voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of 
motor neuron changes after the injury and has the potential to promote movement restoration when integrated with 
assistive devices.
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Introduction
Impaired hand function is arguably one of the most severe motor 
deficits in subjects with spinal cord injury (SCI), especially when bi-
lateral.1 There are currently no effective treatments for regaining 
hand control after muscle paralysis. Hand surgery is established, 
although not possible in every case, and with several challenges, 
such as reconstruction of intrinsic hand function and requiring pre-
cise diagnostics and planning.2 Restoration of hand function has so 
far been achieved by neural interfaces recording the activity of the 
motor cortex,3 either through closed-loop electrical stimulation of 
the muscle4 or by controlling external devices.5 However, besides 
the relatively poor control, invasive cortical implants are also an 
option limited to a small proportion of patients because of the sur-
gical risks and long-term stability of the implant. Other neural in-
terfaces involve the delivery of electrical stimulations in the 
spinal cord that indirectly target the activity of the alpha motor 
neurons.6

The neural information most directly associated with behaviour 
is the activity of spinal alpha motor neurons, representing the final 
neural code of movement. The activity of spinal motor neurons 
generates movement through a simple transformation (the dynam-
ics of the twitch forces of the muscle units), and therefore, move-
ment intent can be decoded directly. Almost all SCIs are due to 
contusions of the spinal cord, which could leave some spared con-
nections above and below the level of the injury.7 While this spared 
neural activity is insufficient to drive muscles to generate detect-
able forces, it can be used to infer motor intent and, therefore, to de-
code movements. Accordingly, as a case study, we have recently 
reported in a single motor-complete SCI (C5–C6) individual the 
presence of a significant number of task-modulated motor units en-
coding the flexion and extension of individual fingers through a 
wearable, non-invasive neural interface.8 That case study was a 
proof of concept in a single patient, and it was limited to offline ana-
lysis without any demonstration of patient-in-the-loop control. 
Here, we support previous evidence of voluntarily controlled spinal 
motor neurons in eight SCI individuals (injury levels ranging from 
C5 to C6).7-10 Through the decomposition of the high-density sur-
face electromyogram (HDsEMG),11-13 we identified active motor 
neurons in all tested patients (Fig. 1). These motor neurons encoded 
the movements of the paralysed hand during synergistic and indi-
vidual digit movements. The discharge patterns of the motor neu-
rons were similar to those observed in non-injured young adults. 
The motor neurons followed precise recruitment and discharge 
rate patterns that closely matched the movements of the virtual 
hand. This study shows that even many years after chronic SCI, 
there are still spared motor neurons that receive functional inputs 
modulated by voluntary intent.

Materials and methods
Participants

Eight participants with SCI were recruited for this study (seven in-
dividuals with chronic motor complete SCI and one with motor in-
complete SCI—Fig. 2 and Table 1). The inclusion criteria were: 
(i) injury level C4–C6; (ii) aged between 18 and 60 years old; and 
(iii) absence of voluntary movement of one hand or both hands. 
Two participants (Subjects S6 and S7) had functional left hands.

In Table 1, we report information from standard clinical exam-
inations of the SCI group regarding clinical classification of injury 
according to the American Spinal Injury Association (ASIA) impair-
ment scale; spasticity assessment through the modified Ashworth 
scale and testing of upper limb stretch reflexes (biceps, triceps and 
brachioradialis tendon reflexes). In Supplementary Fig. 1, we pro-
vide T2-weighted MRI images from the SCI group’s medical history 
to depict the location and diversity of the injuries.

Additionally, we recruited 12 healthy, uninjured subjects (con-
trol group, age 27.1 ± 3.4 years, two females) for comparison.

All participants gave their written informed consent to take part 
in the study. The study was conducted in agreement with the 
Declaration of Helsinki and was approved by the Friedrich- 
Alexander-Universität Ethics Committee (applications 22-138-Bm 
and 21-150-B).

Study overview and experimental protocol

This study was conducted in two sessions. In the first session, we 
asked the participants to attempt the movements displayed by vid-
eos of a virtual hand. At the same time, we recorded HDsEMG signals 
from their forearm muscles. For the second session, six participants 
from the SCI group returned after 3–5 months of the first session 
(Subjects S1–S4, S6 and S8), in which a regression model (based on 
global EMG) and/or an online decomposition method was used to 
decode movement intention, according to their HDsEMG signals.

In the first session, according to their forearm circumference, 
we placed 256 or 320 HDsEMG electrodes on the forearm of the par-
ticipants’ dominant hand (Subject S7 was paralysed only on the 
non-dominant hand). The electrodes covered the forearm muscles 
and the wrist. We chose this placement to maximize the number of 
electrodes and, thus, improve the accuracy of HDsEMG decompo-
sition since we can also detect far-field electrical potentials at the 
wrist.14 For the SCI group, after placing the electrodes, we asked 
the subjects to stay in a comfortable position with their arms 
(Figs 1A and and see later). For the control group, the participants 
were standing with their dominant elbows flexed (this setup was 
previously described15). To both groups, we showed the same video 
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of a virtual hand performing different tasks on a computer monitor 
and instructed the participants to attempt the movements accord-
ingly. The tasks lasted 42 s each and included flexion and extension 
of the individual digits at two speeds (0.5 and 1.5 Hz), grasp, two- 
finger pinch, three finger pinch, and wrist flexion and extension 
(0.5 Hz). Two trials were performed for each movement (only for 
the SCI group). We only analysed data from slow (0.5 Hz) move-
ments as the subjects reported difficulty performing the fast ones.

In the second session, we tested a real-time EMG decomposition 
approach (brief offline decomposition followed by online decom-
position, see later). We used 128 HDsEMG electrodes to assess if 
the subjects would be able to follow a digital trajectory with their 
motor units smoothed cumulative discharge rate. First, during 
the offline decomposition, we recorded HDsEMG data while the 
participants attempted a maximum flexion of the digits (10 s per 
task). These data were decomposed as described in the ‘Online de-
composition’ section in the Supplementary material, and we stored 
the decomposition results for the online task.

Subsequently, in the online decomposition step, we instructed 
the subjects to follow a periodic rectangular waveform trajectory 
shown on a monitor, with 10 s periods (5 s of rest in between), for 
60–120 s. The trajectories had two different activation levels, 20% 
and 30% of maximum neural activation, i.e. of the maximum dis-
charge rate obtained during the brief offline decomposition step. 
These activation values should not be confused with the maximal 
voluntary force obtained in healthy individuals. It could be impos-
sible for a person to modulate the discharge rate of a specific motor 
unit up to its maximum for a prolonged time. This is because of the 
non-linear behaviour of motor units due to the spike frequency 
adaptation and the discharge rate modulation due to intrinsic mo-
tor neuron properties.16-18

The subjects attempted flexion and extension of the same digits 
for two consecutive periods as performed in the offline decompo-
sition with 20% maximum neural activation. The motor unit firings 
detected with this method (smoothed motor unit firings) were 
shown as feedback to the subjects. Lastly, we tested whether the 

Figure 1 Overview of experimental setup and motor unit data analysis. (A) Experimental setup consisting of 320 surface electromyogram (EMG) elec-
trodes placed in the forearm muscles. The movement instructions were guided by a virtual hand video displayed on a monitor in front of the subject. 
(B) A few example electrodes show raw high-density surface EMG (HDsEMG) signals while the subject attempts a grasp task (flexion and extension of 
the fingers, 0.5 Hz). (C) Example of spatial mapping based on the root mean square (RMS) values of the motor unit action potential (MUAP). (D) Raster 
plot of motor unit firings (colour-coded) identified during 10 s of a grasp task. (E) Neural modules extracted for the same task, using factorization ana-
lysis. (F) Pearson correlation values (r) of the individual motor units with the two neural modules. (G) Neural modules’ power spectra, showing a peak at 
the movement frequency (0.5 Hz). (H) Coherence between cumulative spike trains of motor units across all tasks of Subject 6 (S6), highlighting alpha 
and beta bands. (I) Coherence peak across all tasks of Subject S6 for delta (1–5 Hz), alpha (6–12 Hz), beta (15–30 Hz) and gamma (31–80 Hz) bandwidths. 
The dashed line in red in H and I indicates the coherence threshold (average coherence between 100–250 Hz).
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Figure 2 Number of detected motor units and residual high-density surface electromyogram signals. (A) Example of raw high-density surface electro-
myogram (HDsEMG) signals for both groups, spinal cord injury (SCI; left) and control (right). The signals are shown in time windows of 20 and 1 s. 
(B) Number of detected motor units across subjects for both groups, SCI and control (the dots are colour-coded for the subjects of the SCI group). 
(C) Number of detected motor units across all tasks (the dots represent the tasks). (D) Distribution of the total number of motor units across groups, 
SCI (left) and control (right). (E) Example of EMG channels from both SCI and control groups overlayed with the reconstructed EMG. (F) Root mean square 
error (RMSE) between EMG and reconstructed EMG, representing the residual EMG activity for both groups. ***P < 0.001.
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participants could modulate their discharge rate and progressively 
recruit motor units by increasing the height of the ramp to 30% 
maximum neural activation and alternating between the two acti-
vation levels (Supplementary Video 1).

Also, an EMG-to-activation regression model was generated in 
the second session using the same electrode configuration as in 
the first visit. During this session, we asked the subjects to indicate 
which tasks from the first session they could perform with the least 
effort. These tasks were, therefore, selected to build the model. For 
that, the subjects were asked to attempt the maximal/full flexion of 
these tasks (e.g. the selected task was index movement; thus, they 
had to perform an index maximal flexion to build the model). These 
EMG signals were acquired and associated to the synthetic ground 
truth representing maximal activation for the relevant degrees of 
freedom (df). After that, the participants attempted the flexion 
and extension of the digits according to their chosen tasks. The pre-
dicted activation was shown in real-time through a virtual hand 
interface (‘predicted hand’; see later and Supplementary Video 2). 
We used a virtual hand showing a predefined movement (referred 
to here as ‘control hand’; see later) to help the subjects to perform 
the movements and for further analysis.

For complete information about the recordings and data ana-
lysis, see the Supplementary material.

Results
To assess the extent of spared motor unit activity in SCI partici-
pants, we analysed the number of identified motor units, the recon-
structed HDsEMG signals (motor unit action potential shapes 
convolved with motor unit firings), discharge rate and coherence 
area values. We compared these measures to those of the control 
group. Additionally, we evaluated the outcomes of the real-time de-
composition and virtual hand control.

Figure 1 shows an overview of the offline experiments. We 
asked the subjects to match the visual cue displayed through a vir-
tual hand (hand opening and closing, two and three finger pinch 
and flexion and extension of individual digits at 0.5 Hz movement 
velocity). Figure 1A shows the experimental setup, with 320 electro-
des placed on the proximal and distal forearm muscles and tendons 
(wrist). Figure 1B and C illustrates six EMG channels and a motor 
unit waveform superimposed on a heat map based on the root 
mean square activity. In all tested patients, we observed clear mo-
tor unit action potentials with high signal-to-noise ratio (>26 dB19). 
We then looked at how these motor units were controlled by study-
ing the association between motor unit activation times (Fig. 1D) 
and the attempted movement by looking at the trajectories of the 
digit tip of the virtual hand (grey curve in Fig. 1D). The raster plot 
in Fig. 1D shows a clear grouping of motor units encoding flexion 
and extension movements during a grasping task. As in our 
previous experiment,8 we used a factorization method to retrieve 
the motor dimension (flexion and extension of the motor units; 
Figs 1E and F). For all tested individuals, we consistently identified 
some motor neurons that were controlling the flexion and exten-
sion movements (Supplementary Figs 2–9). From the power spec-
trum of the neural modules (Fig. 1G), we found a peak at the 
movement frequency 0.5 Hz and lower frequencies. Figure 1H and I
shows the coherence values across all tasks of Subject S6 (mean) and 
the coherence peak for the delta (1–5 Hz), alpha (6–12 Hz), beta (15–30 
Hz) and gamma (31 −80 Hz) bandwidths.

Table 1 and Supplementary Fig. 1 show a summary of all sub-
jects and tasks, including a description of the SCI through 
T2-weighted MRI. Details regarding the sensory level of the injury, T
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stretch reflexes and spasticity are also presented in Table 1. We pro-
vide a comparison between raw EMG signals of SCI and control 
groups in Figs 2A and 6. For all the tasks (Fig. 2C and Table 1), we 
identified a specific subpopulation of motor units that encoded 
that particular movement, with an average of 9.8 ± 6.0 motor units 
per task across all SCI subjects. We also identified unique motor 
units for each task (Table 1). In Fig. 2B, we show the number of mo-
tor units across all tasks for each subject for SCI and control groups. 
Across tasks of the same subject, the variability in the number of 
motor units was low, with a standard deviation (SD) of between 
1–2 motor units for all subjects except Subject S6 (SD = 4). For the 
control group, we observed an average of 8.0 ± 4.1 motor units per 
task across all participants. The groups present similar median va-
lues (Fig. 2D), with no significant difference regarding the number 
of decomposed motor units [generalized linear mixed-effects: β =  
0.007, t(144) = 1.10, P-value = 0.27]. This information showed that 
the SCI subjects still presented a relatively high number of motor 
units.

Due to the similar number of identified motor units between the 
groups, we conducted an additional analysis to determine whether 
the HDsEMG data detected most of the active motor units in the SCI 
group. It is important to note that the number of detected motor 
units is not directly related to the total number of motor units, as 
many methodological factors influence it (see Del Vecchio et al.20

and Oliveira et al.21 for more information). First, we extracted the 
motor unit action potential shapes from the decomposed 
HDsEMG signals and convolved these shapes with the motor unit 
firings to reconstruct the EMG signal. We then calculated the root 
mean square error (RMSE) between the original and reconstructed 
EMG signals to measure the residual EMG activity (see the 
Supplementary Material, ‘Methods’ section). This value serves as 
an index of the undecomposed motor units and the total number 
of active motor units for a given task. Interestingly, as shown in 
Fig. 2E and F, we found significantly lower RMSE values in SCI 

(20.3 ± 16.7 µV) in comparison to the control (41.0 ± 18.8 µV) [β =  
−33.7, t(144) = −4.5, P-value = 1.6 × 10−5]. These lower values indi-
cate that we are decomposing a higher proportion of motor units 
in SCI and that there are fewer active motor units for a specific task.

In Fig. 3A and B, we present the average discharge rate in 
pulses per second (pps) calculated across tasks and subjects. We 
observed that the variation in discharge rate is subject-specific 
(Fig. 3A), with Subjects S1–S3 presenting higher median discharge 
rates. Comparing the data across subjects of both groups (average 
discharge rate of SCI = 11 ± 3.2 pps and control = 12.8 ± 2.1 pps per 
task across all subjects), we identified Subjects S4–S7 with the lower 
discharge rates, and Subjects S2, S3 and S8 with similar values to 
the control group. Overall, we observed no significant difference 
between the groups [β = −0.002, t(144) = −1.64, P-value = 0.10] 
(Fig. 3C).

In Fig. 4, we show the average coherence across all subjects and 
tasks and the area of each frequency bandwidth across subjects. 
For the delta band, the median area values did not differ across sub-
jects apart from Subjects S1 and S6 (delta) with higher values. We 
found that Subjects S1 and S6 were significantly different from 
Subjects S3, S4 and S7 (Kruskal–Wallis’s test: H = 40.8, df = 7, 
P-value = 8.7 × 10−7). For the alpha band, only Subject S1 presented 
a higher median, being significantly different from Subjects S2, S4, 
S6 and S7 (H = 25.2, df = 7, P-value = 0.0007). For beta and gamma 
bands, Subjects S1, S3 and S5 presented higher coherence areas 
in comparison to the other subjects, the distributions from these 
subjects are significantly higher than Subject S2 (beta band, H =  
27.9, df = 7, P-value = 0.0002). For gamma, we found Subject S3 to 
have the highest median, significantly different from Subjects S2, 
S4, S6 and S7; also, Subject S1 was significantly different from 
Subject S4 (H = 35.4, df = 7, P-value = 9.5 × 10−6). When comparing 
between groups, only the beta and gamma bands were significantly 
higher in the SCI group—and this was only when we considered the 
tasks as a fixed effect in our generalized linear mixed-effects model 

Figure 3 Discharge rate. (A) Average discharge rate across subjects for both groups [the dots are colour-coded for the subjects of the spinal cord injury 
(SCI) group]. (B) Average discharge rate across all tasks (the dots represent the tasks). (C) Distribution of the total number of motor units across groups, 
SCI in pink and control in blue.
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(beta band: β = 2.14, t(151) = 2.38, P-value = 0.018; gamma band: β =  
0.73, t(151) = 2.75, P-value = 0.007).

Overall, because of the number of motor units detected, we 
could identify unique units virtually in all recorded tasks (>2 motor 
units/task, except for Subject S3—Table 1), which allowed an ac-
curate and precise classification for all these motor dimensions. 
Therefore, after years of cervical SCI leading to motor complete 
paralysis (ranging from 5.0 to 24.2 years; Table 1), these subjects 

still had spared connections from the motor cortex, impinging 
the activity of spinal motor neurons. This was evidenced by the 
fact that some motor units showed high voluntary modulation 
that matched with the kinematics of the virtual hand videos 
(Fig. 5A). Figure 5A shows all the identified motor units for all tasks 
of one individual. These previous results were based on the num-
ber of motor dimensions from the offline decomposition of the 
HDsEMG.

Figure 4 Coherence. (A) Average coherence across all participants and all tasks for both groups, spinal cord injury (SCI) in pink and control in blue. The 
black dashed line represents the coherence threshold (average coherence between 100–250 Hz). Each curve in grey represents the coherence for one 
subject. (B–E) Area under coherence curve across all subjects and groups for delta (1–5 Hz), alpha (6–12 Hz), beta (15–30 Hz) and gamma (31–80 Hz) bands, 
respectively (the dots represent the tasks and are colour-coded for the subjects of the SCI group). For each frequency band, we also show the group 
distribution of the coherence area values across all tasks and subjects. *0.01 < P < 0.05, **0.001 < P < 0.01.
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Figure 5 Real-time control of motor units and virtual hand. (A) Raster plot for all motor units identified for Subject S6 (S6) during the respective task 
(colour-coded) and the virtual hand movement trajectories (grey line). Note the task-modulated activity of the motor unit firing patterns that encoded 
flexion and extension movements. (B) Real-time tasks for two participants (Subjects S1 and S6). (C) The participants were asked to follow a trajectory on 
a screen (green line) by attempting a grasp movement. The motor units were decomposed online and the cumulative smoothed discharge rate (yellow 
line) was used as biofeedback. After a few seconds of training (D), the subjects could track the trajectories with high accuracy and at different target 
levels (C). (E) Cross-correlation coefficient (R) between the smoothed discharge rate and the requested tasks for four subjects. (F) After the online motor 
unit decomposition, we used a supervised machine learning method to proportionally control the movement of a virtual hand. Four of six subjects were 
able to proportionally open and close the hand (G–I) and proportionally control in both movement directions (flexion and extension) the index finger (H 
and I). These subjects were able to control four degrees of freedom (DoFs) that corresponded to hand opening, closing, index flexion and extension. 
These subjects were able to control four DoFs that corresponded to hand opening, closing, index flexion and extension.
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In a second experiment, on average 3–5 months after the first 
session, we tested six subjects again (Subjects S1–S4, S6 and S8) 
with a similar experimental procedure but tuned for real-time con-
trol. We asked the subjects to proportionally control a moving cur-
sor on a screen based on the real-time decoding of the discharge 
timings of motor neurons (Fig. 5C and D). Moreover, these indivi-
duals also controlled a virtual hand (Fig. 5F–I and Supplementary 
Video 2), demonstrating full voluntary control of the decoded neur-
al activity.

We developed a real-time mapping of the discharge timings of 
motor neurons so that the patients could control a cursor on the 
screen with the motor unit discharge activity and a virtual hand 
with the HDsEMG signals (Fig. 5 and Supplementary Video 1). 
After a few seconds of training (Fig. 5D), the subjects were able to 
control the motor unit firing patterns and progressive recruitment 
of motor units at different target forces and with high accuracies, 
i.e. high cross-correlation values between the requested trajectory 
and the smoothed cumulative motor unit discharge rate (Fig. 5C 
and D). In this experiment, we also used a supervised machine 

learning algorithm to control a virtual hand (Fig. 5F–I and 
Supplementary Video 2).

Supplementary Video 1 shows a subject controlling the activity 
of groups of motor units in real time, modulating the recruitment 
and discharge rate to proportionally match two different target le-
vels of activation. The motor neuron discharge times were summed 
and normalized in real time to the number of active neurons so that 
the patients could modulate a moving object (yellow cursor; Fig. 5C 
and D) by increasing/decreasing the discharge rates. Figure 5C
shows the proportional control of two target levels mediated by 
both the concurrent recruitment of additional units (grey raster 
plot) and higher discharge rates. Figure 5D shows a complete re-
cording set that lasted 120 s. Note that just after 50 s of training, 
the subject was able to move the cursor on relatively high levels 
of normalized motor unit activity. The scaling of the motor unit ac-
tivity is based on an equation that considers the maximal motor 
unit discharge activity and the highest number of motor units iden-
tified during an offline calibration trial that lasted 10 s for each 
trained task.

Figure 6 Examples of raw high-density surface electromyograph (HDsEMG) signals and spatial amplitude maps. We report examples of EMG signals 
for all subjects of the spinal cord injury (SCI) group (S1–S8) during index and grasp tasks. The normalized signals from the three EMG channels with 
higher root mean square (RMS) values (in black) are presented over 5 s, together with the virtual hand kinematics (in grey). For each subject, we 
show a spatial map based on the RMS values of each EMG channel. For brevity, we only present data from eight control group participants for 
comparison.
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We then trained the subjects to move a virtual hand that was 
displayed on a monitor and to match the movement of a control 
hand (Fig. 5F–I and Supplementary Video 2). After this training, 
the subjects could proportionally and repeatedly open and close 
the hand, when compared to the control hand instructions (Fig. 5I
and Supplementary Video 2). Most of the participants were able 
to proportionally flex and extend the index finger (2 df) and open 
and close the hand (2 df). Figure 5F shows the subject’s view: the 
monitor displayed two hands, a control hand (white colour) and a 
second hand controlled by a regression-based machine learning al-
gorithm. Four of six subjects (Fig. 5G) were able to control f4 df, con-
sisting of proportional control of index flexion and extension 
and hand opening and closing (Fig. 5H and I and Supplementary 
Video 2).

Discussion
The results above confirm previous evidence of voluntarily con-
trolled spinal motor neurons in subjects with SCI (motor complete 
ranging from C5 to C6) that have been paralysed for decades.7-10 We 
observed the presence of active modulation of motor neuron activ-
ity in all tested patients, with motor units associated with flexion or 
extension of movements of the paralysed hand digits. This associ-
ation was evidenced by the real-time proportional control of the 
spinal motor neurons, complex movements of the virtual hand 
and the factorization analysis results, in which two modules (flex-
ion and extension) explained most of the variance for the move-
ments of each subject. Although the power spectrum of the 
extracted neural modules shows a peak at the movement fre-
quency, these modules seem to be relatively out of phase and/or de-
layed for some tasks. These offline results agreed with our previous 
single-case study.8

Although there was variability in the number of identified motor 
units across subjects, this number was statistically comparable to 
the number of motor units found in the control group. For several 
reasons, we hypothesized that more motor units would be detected 
for the SCI group. First, the decomposition of HDsEMG signals relies 
on the total number of active motor units, so the higher this num-
ber, the more complex it is for the algorithm to separate the individ-
ual motor units20,21 (for example, in healthy individuals, we detect 
more motor units at 10% of maximal force than at 50%, due to a 
higher superimposition of higher, larger-threshold motor units). 
Second, the algorithm works best when there are minimal muscle 
movements (due to the gearing of the muscle) below the recording 
electrodes. In the SCI group, due to paralysis, this condition was 
guaranteed as there was no visible movement or force during the 
attempted hand movements. Moreover, because of the spinal le-
sion, the number of motor units that the SCI individuals could vol-
untarily recruit was low, leading to low background noise on the 
EMG. In contrast, the control group was likely to have a higher 
number of motor units recruited. Consequently, from a computa-
tional perspective, this would allow better detection of motor units 
by decomposition algorithms. Although we found a high number of 
motor units for two subjects (Subjects S1 and S6; Table 1) with dif-
ferent characteristics (e.g. age, injury), this was not observed for the 
rest of the SCI group. This might indicate a lower number of active 
motor units for the other subjects of this group.

We further conducted an analysis comparing the filtered- 
original EMG and the reconstructed EMG. By reconstructing the 
EMG using the decomposed motor units, we could estimate the re-
sidual EMG activity, which is related to the motor units that are not 
decomposed. As anticipated, we found that the SCI subjects 

showed smaller RMSE values than the control group, suggesting 
that we likely decomposed the majority of the spared motor units 
present in the EMG signal.

The discharge rate was highly variable across subjects and 
tasks, with three participants presenting a higher median dis-
charge rate than the others. The discharge rate across tasks varied 
from 7–21 pps, and it was comparable with our control group. Even 
though the absence of visible movement, the motor unit discharges 
were still within the range for voluntary contractions in non- 
injured healthy young adults.22 This finding supported the idea 
that the discharge rate can be applied as user feedback for control-
ling the proposed interface.

The coherence values indicated that the motor neurons shared 
common synaptic inputs, and therefore, a few active motor neu-
rons can be representative of a large pool of motor neurons and 
used for decoding. In the SCI group, we did not observe a clear pat-
tern of coherence area across subjects. Some subjects presented 
concurrently higher beta and gamma coherence than others, in-
fluencing the comparison across groups, with beta and gamma 
being higher than in the control group. Previous literature de-
scribes a possible decrease in beta, with reduced corticospinal 
input after SCI, and an increase in gamma coherence as 
compensatory.23-26 However, a few potential limitations should 
be considered. First, our results should be validated by a larger 
number of participants. Second, the coherence values included 
both intramuscular and intermuscular coherence. Therefore, we 
were not able to distinguish the motor units from specific motor 
pools. Last, we could not perform motor-evoked potential mea-
surements, and further electrophysiological measurements are 
necessary to assess the function and integrity of corticospinal 
pathways.

Despite that, beta coherence was significantly associated with 
cortical control since peripheral beta coherence has been shown 
to be correlated with EEG cortical beta during voluntary move-
ments.27 In addition, beta activity has also been shown to be vol-
itionally modulated through neurofeedback, which could be 
applied in training SCI participants.27 Future experiments, includ-
ing motor-evoked potentials28,29 and other experimental para-
digms30,31 could highlight potential differences in descending 
pathways from the cortex and brainstem in controlling flexors 
and extensor motor units.

Additionally, we did not observe any specific relationships be-
tween the behaviour of the active motor units (discharge rate, coher-
ence) and the spasticity level, stretch reflex and sensory level of the 
injury obtained from clinical examinations. However, this may be at-
tributed to the variability between subjects and the relatively low 
number of tested patients (n = 8). Since we have no more information 
on the residual sensory and motor pathways, we are limited to un-
derstanding which characteristics could be related to this residual 
voluntary control. This should be examined in future studies.

Regarding the number of motor units for each task, overall, we 
found at least two unique motor units per task, except for Subject 
S3 (Fig. 2 and Table 1). The unique motor units were defined as mo-
tor units that are recruited only during one attempted movement. 
Once they are activated, we can be sure that the SCI individual is at-
tempting a specific movement. This finding confirmed that the mo-
tion intent of individuals with SCI can be decoded through our 
non-invasive interface. According to our real-time tests and previ-
ous work,8 at least one to two unique motor units per task are ne-
cessary for our detection approach and to be able to decode more 
complex movements. The number of detected motor units for 
each task is crucial for the neural interface performance. The number 
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of unique motor units influences the classification of specific motor 
dimensions (e.g. index versus middle finger tasks) and the stability 
of the control over time. It is important to note that a decreased error 
in the control is observed with more decoded units due to the aver-
aging effects caused by a large number of motor units firing 
synchronously.32

Finally, given the number of specific task-modulated motor 
units found, we developed a real-time mapping of the discharge 
timings of motoneurons so that the patients could control a cursor 
on a monitor and a virtual hand, through an EMG-to-activation re-
gression model. The tested patients performed both cursor and vir-
tual hand tasks accurately and proportionally, demonstrating full 
voluntary control of the decoded neural activity with the ability to 
modulate the motor units’ discharge rate. Interestingly, all the pa-
tients could proportionally control the cursor to 20% and 30% of 
maximal activation. For the control of a prosthetic device, the pro-
portional control of a motor unit firing activity from 1% to 30% 
would be sufficient to obtain a large output of forces that could be 
controlled with, for example, a brushless motor. Therefore, this 
relatively low range should not indicate a problem in the method 
but rather a strength of the approach.

Regarding the virtual hand control, this approach is based on a 
linear regressor model, including an adaptive filter,33 that learns 
and maps combinations of EMG activity into the movement of the 
virtual hand. To build the regressor model, we defined artificial la-
bels associated with the movements. Therefore, independent of the 
capabilities of the user, there is a possible linear superposition of 
the output labels used during the training of the machine learning 
model due to the similarity between EMG patterns related to the 
different movements. Consequently, some accessory movements 
of the virtual hand might occur. For this reason, the virtual hand 
control performance was evaluated simply by task completion.34,35

Moreover, it is important to note that no extensive training was 
required from the subjects when performing the tasks. Each experi-
ment across all patients did not last more than 3 h, and we used 
most of this time to place the electrodes and explain the tasks. 
Although we did not measure the time it took for the subjects to 
control the virtual hand and 2D cursor control, we estimate less 
than 30 min, even for the individuals with the highest level of wrist 
and hand paralysis. This time can be further improved once the 
subjects are trained with the tasks. A critical aspect of neural inter-
faces is the training time and intuitive use. The fact that the sub-
jects learned the tasks in a short training time and were not 
under fatigue conditions demonstrates the feasibility of the pre-
sented approach.

Our results indicated that motor- and sensory-complete SCI in-
dividuals maintain relevant neural activity as the output of the 
spinal cord circuits below the lesion and that they can accurately 
control this activity to regain hand function. Wearable muscle sen-
sors are accessible, non-invasive and have the potential to enhance 
the neural control of assistive devices and increase the use of these 
devices. Therefore, this technology may compete in terms of clinic-
al viability and efficacy with current invasive brain or spine im-
plants for restoring hand function in complete SCI patients. While 
we cannot directly compare these approaches and further tests 
are needed, our results are similar in task achievement and per-
formance for tasks such as grasping and other hand movements 
without requiring any surgery and complex models.36-38 Previous 
surveys have shown that a considerable number of tetraplegic 
and paraplegic patients are reluctant to have cortical im-
plants.3,39,40 Therefore, we argue that the proposed non-invasive 
approach might have the potential to be a clinically superior 

solution for the purpose of hand function restoration in SCI com-
pared with current invasive brain and spinal neural interfaces.

One important constraint of our approach is that it is inherently 
linked to spared motor unit activity. Although we found spared motor 
units in all SCI individuals that were classified as motor complete, this 
technology may not be effective for subjects with higher levels of com-
plete lesions (C1–C2) and muscles far from the level of the injury. A se-
cond constraint is that we calibrate our real-time sessions in an offline 
decomposition step by decoding the activity during a predefined task. 
This implies that the online decomposition is limited by the number 
of motor units recruited during this first step. Therefore, it is possible 
that motor units recruited during real-time tasks cannot be detected 
by our algorithms. This could be further improved by implementing 
algorithms that work in parallel with the real-time feedback of motor 
unit data to the patients. Importantly, for the classification of the dif-
ferent hand digit movements, our method is inherently bound to the 
number of unique motor units that can be found in a task. 
Furthermore, spasticity could also affect the efficiency of our ap-
proach. We observed that some motor units persist in firing even 
when the voluntary intent stops, and this should also be considered 
for the development of future algorithms.

Limitations

This study focused on HDsEMG measurements, motor unit behav-
iour and real-time control of motor unit activity. Therefore, this lim-
ited the investigation of the mechanisms underlying the residual 
voluntary activity found in SCI subjects. As spinal motor neurons 
execute the final motor commands, we have limited information 
on the spinal and supraspinal inputs that determine the volitional 
recruitment and modulation of motor unit firings in SCI. 
Additional electrophysiological and clinical tests, such as stimula-
tion of the brain and spinal cord, might help to infer some of the cor-
tical and spinal pathways involved. Consequently, with the current 
dataset, we cannot hypothesize about the origins of the synaptic 
inputs impinging on spinal motor neurons. Future tests should 
include further medical examinations concurrent with electro-
physiological testing at the central and peripheral levels and 
evoked electrical and magnetic stimulation measurements.

Conclusion
In summary, our results confirmed that SCI subjects can voluntarily 
control residual motor neuron activity. This activity provides en-
ough information to decode the movement intent of fine hand 
tasks. We demonstrated that the presented non-invasive technol-
ogy could provide intuitive and effective control of the paralysed 
hand, even many years after the injury. Our findings could be help-
ful in the investigation of movement control and recovery mechan-
isms after SCI through the tracking of the same motor unit across 
interventions. Therefore, this neural interface has a direct clinical 
translation for home and hospital use to restore and monitor the 
spared connections after traumatic SCI. Further work will focus 
on improving the online control based on motor unit activity re-
lated to the different movements and integration with assistive 
technologies such as exoskeletons and prosthetics.
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