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Abstract: Many non-natural amino acids can be incorporated by biological systems into coded
functional peptides and proteins. For such incorporations to be effective, they must not only be
compatible with the desired function but also evade various biochemical error-checking mechanisms.
The underlying molecular mechanisms are complex, and this problem has been approached previ-
ously largely by expert perception of isomer compatibility, followed by empirical study. However,
the number of amino acids that might be incorporable by the biological coding machinery may be
too large to survey efficiently using such an intuitive approach. We introduce here a workflow for
searching real and computed non-natural amino acid libraries for biosimilar amino acids which may
be incorporable into coded proteins with minimal unintended disturbance of function. This workflow
was also applied to molecules which have been previously benchmarked for their compatibility
with the biological translation apparatus, as well as commercial catalogs. We report the results of
scoring their contents based on fingerprint similarity via Tanimoto coefficients. These similarity
scoring methods reveal candidate amino acids which could be substitutable into modern proteins.
Our analysis discovers some already-implemented substitutions, but also suggests many novel ones.

Keywords: amino acid libraries; structural similarity; molecular fingerprint; Tanimoto coefficient;
multi-dimensional scaling

1. Introduction

Modern biology uses 20 canonical coded amino acids (CAAs); however, there are
occasional coded substitutions (e.g., selenocysteine and pyrrololysine [1], and many other
non-canonical amino acids have been engineered or otherwise substituted into proteins [2].
It is believed that early organisms used simpler and more promiscuously coded amino acid
sets, and that the tolerance of biological proteins and the processes that makes them into
dissimilar coded amino acids has changed over time [3–5]. Since tRNA amino acid charging
is accomplished and error-checked by proteins, this reduction in ambiguity occurred in
tandem with the development of the biological machinery which accomplishes it. This
machinery developed in the context of the compounds present in evolving organisms, and
there are a great number of possible isomers of any given amino acid, many of which are
real metabolites. Indeed, organisms have evolved various secondary metabolite amino acid
analogues which can interfere with protein biosynthesis in predators or competitors and
are not recognized by their own translation machinery [6].
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Proteins, and other biological macromolecules, can tolerate multiple xenobiological
monomer substitutions (see, for example, Marlière et al. [7], Malyshev et al. [8]). This is
mainly due to the way in which biological information is communicated in molecules, e.g.,
a combination of shape and surface electron density interactions between macromolecules
and small molecules governs the strength of molecular interaction [9]. For this reason,
drugs are effective modulators of enzymatic activity, and molecular similarity is a powerful
tool for finding them [10].

Biological information encoding, which entails the reliable connection of structural
interaction and kinetic information with downstream biological “meaning,” is mediated
by several processes involved in translation, including the interactions of amino acids and
aminoacyl-tRNA synthetases during tRNA charging and the interactions of aminoacyl-
tRNAs with the ribosome during translation. Furthermore, as it is likely that the genetic
code has evolved over time [3,5], this interfacial “language” has had to adapt to the ways
that the incorporation of new structural elements enabled new coding dynamics over time.

Organic chemical structure space is vast [11]. This has implications for why biology
uses the compounds it does [12]. Biology’s choice of components is directed and constrained
by its composition at any given point in time [13,14]. This is analogous to the development
of languages and syntaxes: initially poorly constrained relational systems which interact
by feedback with mechanisms which enforce their existence can rapidly reinforce canonical
encodings [15]. However, such analyses are likely blind to interfering noise which does not
exist in the learning system during its development. Such noise can be introduced later
into such systems and potentially tolerated well. This dynamic likely lies at the heart of
biological evolution.

As an example of a non-engineered incorporation of a non-canonical amino acid into
biological proteins, it has been shown that norleucine (norleu) can substitute for methionine
(M) in proteins due to their molecular similarity [2]. The CH2CH2CH3 structural motif in
norleu is apparently similar enough to M’s CH2SCH3 motif that this compound evades
protein synthesis error-correction mechanisms and becomes incorporated in biological
proteins using the same coding mechanisms. However, norleu is not a major intermediate
in any known biosynthetic pathway, and thus, most cells never experience situations in
which they must carefully distinguish between M and norleu. In this case, norleucine may
be functionally substitutable, tolerably substitutable with reduced function, or a complete
poison for any given protein, but this situation rarely arises.

Compounds which are structurally compatible because their functional groups do not
interfere with normal biological interactions are known as bioisosteres [16]. Bioisosteres
may be rather common in chemical space; this study aims to provide a novel method to
find them.

Amino acids are especially attractive targets for bioisostere exploration because of
their fundamental roles in biochemistry. In addition to amino acid analogues which may
serve as enzyme agonists or antagonists, coded amino acid analogues can modulate coded
protein function [17], and amino acids are important intermediates in many biosynthetic
pathways as well as important neurotransmitters (e.g., GABA, glutamic acid (E), aspartic
acid (D), serine (S), glycine (G) [18]). There have been a few reported screens examining
the promiscuity of the translation apparatus, which examined scores of purchasable amino
acids, including α-, β-, and α,α-substituted amino acids [19,20].

Introducing new monomers in biopolymers often depends on finding compounds
with similar shape and electrotopological properties. This could be especially informative
in the case of coded amino acids used in biopolymers which may have multiple levels at
which their compatibility is proofread by biological processes. For amino acid incorporation
in proteins, amino acids must be recognized by tRNA synthetases, then be tolerated by
the ribosomal machinery, and finally not interfere too strongly with the resulting protein’s
folding and function. While incorporation of a single residue stochastically at any given
site in a protein sequence may be tolerable, multiple or complete substitution may not be.
Some sites may also be more sensitive to substitutions than others, or particular types of
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substitutions may be problematic for many reasons. In the case of amino acids present
in the growth medium, there must also be mechanisms for importation of the molecules
inside the cell. Thus, substitution can fail at many levels.

There are multiple computational methods already developed for performing such
searche [21–23]. Our approach is novel in its use of the combination of structure enumera-
tion and similarity metrics, and its application to amino acid structures. The similarity and
biocompatibility of amino acids are important to analyze to understand possible prebiotic
interactions between peptides and other molecules. In a previous study [24], we generated
virtual libraries of amino acids using MOLGEN 5.0 structure generation software [25,26].
These sets were designed starting from molecular formulas and sub-formulas of the 20
CAAs using lists of implausible substructures to exclude sterically and energetically unsta-
ble molecules. This resulted in a virtual library surrounding the chemical space defined by
the 20 CAAs. This dataset was primarily developed for exploration of the evolution of the
genetically encoded amino acids [13,14,27,28]) and we use it here to search for potentially
biocompatible amino acids.

2. Results and Discussion
2.1. Composition of the Library

After removal of duplicate structures, applying the procedure described in the Section 3,
we arrived at a total of 11,302 structures. Table 1 contains the sizes of each set, and Figure 1
shows a Venn diagram of the overlap of EAAs, GAAs, and PAAs, which underscores
the notion that this space has not been extensively explored to date. The SI contains a
comma-separated value (.csv) file with SMILES representations of all 11,302 AAs in the
rows and columns indicating the set memberships of each structure.

Table 1. Abbreviations, short descriptions, references or definition, and sizes of the sets of amino
acids (AAs) used in this study.

Abbreviation Description Reference/Definition Size

CAAs Canonical AAs
(standard code) e.g., Cleaves (2010) [5] 20

EAAs Experimentally
evaluated AAs

Josephson et al. (2005) [19]
Hartman et al. (2007) [20] 105

GAAs (computationally)
Generated AAs Ilardo et al. (2015) [13] 1913

PAAs Purchasable AAs www.emolecules.com 9518

AAAs All AAs EAA ∪ GAA ∪ PAA 11,302

XAAs Xeno AAs AAA\CAA 11,282
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2.2. Tanimoto Coefficients

TCs are stored in a square matrix of 11,032 rows and columns, which we call the
similarity matrix. This matrix is symmetric because, for two AAs X and Y, we have
TC(X, Y) = TC(Y, X), and there are entries of 1 on the main diagonal, because TC(X, X) = 1.
In Figure 2, which shows the block structure of the similarity matrix, this is depicted
by entries of 1 on the main diagonal, and arbitrary entries in the upper triangle matrix
represented by asterisks. We will focus on this triangle matrix to avoid counting TCs of
the same pair of AAs twice. This triangle matrix has 11,302 · 11,301/2 = 63,861,951 entries.
The black stroke curve of Figure 3 shows cumulative relative frequencies of these entries;
Figure S1 (bottom left) of the SI shows the distribution as a histogram, and the last column
of Table 2 reports key statistical parameters for these TCs.
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Table 2. Statistical parameters of TCs for CAAs, CAA × XAA, XAAs, and AAAs.

Parameter CAA Pairs CAA × XAA XAA Pairs AAA Pairs

Number of TCs 190 225,640 63,636,121 63,861,951

Minimum 0.11111 0.06579 0.06173 0.06173

First quartile 0.25767 0.13793 0.12500 0.12500

Median 0.32129 0.17647 0.15385 0.15385

Third quartile 0.38844 0.22642 0.19118 0.19149

90% quantile 0.46321 0.28125 0.23214 0.23214

99% quantile 0.61389 0.40000 0.33333 0.33333

Maximum 0.65000 0.75000 1.00000 1.00000

Mean 0.32803 0.18964 0.16369 0.16379

Std. deviation 0.11054 0.06860 0.05301 0.05309

Focusing on the CAA block of the similarity matrix, the upper triangle matrix has
20 · 19/2 = 190 entries. These entries are highlighted in red in Figure 2; cumulative relative
frequencies are depicted in the red curve in Figure 3. A histogram of these TCs among
pairs of CAAs is shown in the top left panel of Figure S1, and key statistical parameters are
reported in column CAA of Table 2.

Of particular interest for this study is the top right block of the similarity matrix, with
entries colored in turquoise in Figure 2. This block contains all TCs of pairs composed of a
CAA and an XAA. It has 20 · 11,282 = 225,640 entries; cumulative relative frequencies are
depicted by the turquoise curve in Figure 3, and histograms are shown in the right panels
of Figure S1. We refer to these TCs as CAA × XAA, denoting that here, the similarity for all
pairs of the Cartesian product of CAA and XAA are covered.

Comparing the cumulative relative frequencies of Figure 3, we notice that TCs of
AAAs are tendentially slightly lower than those of CAA × XAA, while those of CAAs
are in turn somewhat higher than those of CAA × XAA. This can, as well, be seen by
comparing the histograms of Figure S1, and is also numerically confirmed in Table 2. The
first and the third quartiles, as well as the reported quantiles, median, and mean are lowest
for AAA and highest for CAA TCs. It is also interesting to note that the AAA TCs have a
maximum value of 1, meaning there must be pairs of structures with identical fingerprints
among our AAs (cf. SI section Choice of Fingerprints and Figure S2).

Table 3 shows a detailed view of all TCs for CAAs. Columns and rows are sorted
with respect to increasing molecular weight and labeled with one-letter CAA abbreviations.
Table cells are color-coded by a red–yellow–green scale, with red corresponding to low,
and green to high, TC. The red colors in the row and column P indicate the low similarity
of proline with all other CAAs, which can be explained by P’s unique cyclic amino acid
backbone. Looking for further regions of low similarity, we see that the low-weight AAs G,
alanine (A), valine (V), and threonine (T) have low TC, with the high-weight AAs histidine
(H), phenylalanine (F), arginine (R), tyrosine (Y), and tryptophan (W), resulting in orange-
colored, rectangular-shaped areas in the upper right and lower left corners of the CAA
similarity matrix. This pattern is only interrupted by some yellow-colored cells in the row
and column of serine (S). The maximum TC of 0.65 among CAAs is met by V and Y. We
will use this value of 0.65 later as a threshold for presenting the most similar XAAs for each
CAA. Further highly similar pairs of CAAs are A and V, with TC(A, V) = 0.611; asparagine
(N) and aspartic acid (D), with TC(N, D) = 0.636; and glutamine (Q) and glutamic acid (E),
with TC(Q, E) = 0.607. Figure S3 shows cumulative relative frequencies of TCs for each of
the 20 CAAs as color-coded curves, and in SI section TC Outliers and Choice of TC Threshold,
we show an outlier analysis of TCs of CAA × XAA with respect to the 20 CAAs using box
plots (Figure S4). We find that there are a total of 566 extreme outliers at the high TC end,
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which would be promising candidates for experimental evaluation. Below, we identify
structures of the highest similarity with each CAA.

Table 3. Tanimoto coefficients for CAA. Table cells are colored by a red–yellow–green scale, with red
indicating low TC, and green high TC.

G A S P V T C I L N D Q K E M H F R Y W
G 1.000 0.333 0.350 0.208 0.286 0.273 0.333 0.280 0.292 0.318 0.381 0.259 0.286 0.320 0.241 0.242 0.206 0.194 0.200 0.152
A 0.333 1.000 0.450 0.192 0.611 0.579 0.429 0.478 0.500 0.409 0.409 0.333 0.310 0.346 0.357 0.265 0.265 0.250 0.257 0.196
S 0.350 0.450 1.000 0.172 0.391 0.375 0.571 0.370 0.500 0.545 0.545 0.444 0.414 0.462 0.414 0.353 0.353 0.333 0.343 0.261
P 0.208 0.192 0.172 1.000 0.172 0.167 0.167 0.147 0.152 0.161 0.161 0.139 0.132 0.143 0.132 0.143 0.116 0.111 0.114 0.111
V 0.286 0.611 0.391 0.172 1.000 0.650 0.375 0.542 0.440 0.360 0.360 0.300 0.281 0.310 0.323 0.243 0.243 0.231 0.237 0.184
T 0.273 0.579 0.375 0.167 0.650 1.000 0.360 0.520 0.423 0.346 0.346 0.290 0.273 0.300 0.313 0.237 0.237 0.225 0.231 0.180
C 0.333 0.429 0.571 0.167 0.375 0.360 1.000 0.357 0.480 0.522 0.522 0.429 0.400 0.444 0.400 0.382 0.343 0.324 0.333 0.255
I 0.280 0.478 0.370 0.147 0.542 0.520 0.357 1.000 0.414 0.345 0.345 0.294 0.278 0.303 0.314 0.275 0.275 0.233 0.268 0.212
L 0.292 0.500 0.500 0.152 0.440 0.423 0.480 0.414 1.000 0.462 0.462 0.387 0.364 0.400 0.452 0.316 0.316 0.300 0.308 0.240
N 0.318 0.409 0.545 0.161 0.360 0.346 0.522 0.345 0.462 1.000 0.636 0.519 0.387 0.429 0.387 0.333 0.333 0.351 0.324 0.250
D 0.381 0.409 0.545 0.161 0.360 0.346 0.522 0.345 0.462 0.636 1.000 0.414 0.387 0.481 0.387 0.371 0.371 0.316 0.361 0.277
Q 0.259 0.333 0.444 0.139 0.300 0.290 0.429 0.294 0.387 0.519 0.414 1.000 0.412 0.607 0.412 0.293 0.293 0.375 0.286 0.226
K 0.286 0.310 0.414 0.132 0.281 0.273 0.400 0.278 0.364 0.387 0.387 0.412 1.000 0.424 0.389 0.279 0.310 0.425 0.302 0.241
E 0.320 0.346 0.462 0.143 0.310 0.300 0.444 0.303 0.400 0.429 0.481 0.607 0.424 1.000 0.424 0.300 0.300 0.350 0.293 0.231
M 0.241 0.357 0.414 0.132 0.323 0.313 0.400 0.314 0.452 0.387 0.387 0.412 0.389 0.424 1.000 0.279 0.279 0.326 0.273 0.218
H 0.242 0.265 0.353 0.143 0.243 0.237 0.382 0.275 0.316 0.333 0.371 0.293 0.279 0.300 0.279 1.000 0.395 0.265 0.386 0.333
F 0.206 0.265 0.353 0.116 0.243 0.237 0.343 0.275 0.316 0.333 0.371 0.293 0.310 0.300 0.279 0.395 1.000 0.292 0.564 0.385
R 0.194 0.250 0.333 0.111 0.231 0.225 0.324 0.233 0.300 0.351 0.316 0.375 0.425 0.350 0.326 0.265 0.292 1.000 0.286 0.213
Y 0.200 0.257 0.343 0.114 0.237 0.231 0.333 0.268 0.308 0.324 0.361 0.286 0.302 0.293 0.273 0.386 0.564 0.286 1.000 0.327
W 0.152 0.196 0.261 0.111 0.184 0.180 0.255 0.212 0.240 0.250 0.277 0.226 0.241 0.231 0.218 0.333 0.385 0.213 0.327 1.000

2.3. Ranking

Using the Tanimoto coefficients, we can sort the structures corresponding to decreasing
similarity for each CAA. Figure 4 shows a selection of highly ranked, i.e., very similar,
XAAs for each CAA. The following selection rules were applied:

• Report for each CAA the most similar XAA.
• Show further highly ranked XAAs for each CAA with TC greater than 0.65.

For more reasoning behind these rules, the reader is referred to the SI section TC
Outliers and Choice of TC Threshold.

The structures of Figure 4 have labels composed of a one-letter CAA abbreviation and
one or two numbers, e.g., G1 is the highest ranked XAA for glycine and correspondingly A1
for alanine. Table 4 lists, for each CAA, the highest TCs, the corresponding XAA (or CAA)
with its abbreviation (ID) from Figure 4, and its set memberships, e.g., G1 has a rather
low TC of 0.45 with G. It is included in GAAs, but not in EAAs nor PAAs. For alanine,
the highest TC of 0.611 is achieved twice, by A1 and V (omitted in Figure 3, as the CAA
structures are generally known). For serine, we again have just a unique highest ranked
XAA, S1, with a TC of 0.6. Proline has several analogs with rather high TCs (see Figure S4).
The three highest ranked XAAs are labeled P1, P2, and P3 in Figure 4. For V, we have four
AAs with TC values above the threshold of 0.65. The highest-ranked structure is labeled,
as usual, with V1. The second highest-ranked is identical with A1, i.e., label V2 does not
appear in Figure 4 or Table 4. The next highest-ranked structures both have the same TC of
0.667 and thus have labels V3.1 and V3.2 to indicate that both achieve rank three. For T,
we have, three times, TC above 0.65, achieved by T1 and the equally scoring T2.1 and T2.2.
For cysteine (C), the highest TC is 0.619, i.e., below the threshold of 0.65. Thus, only the
highest ranked XAA for C, C1, is depicted in Figure 4. The highest-ranked structure for
isoleucine (I) is I1, with a TC of 0.667, and there are no further AAs with TC above 0.65.
The most similar AA for leucine (L) is L1, with a TC of 0.643. The highest-ranked structure
for N is D and vice versa. We therefore depict the second highest-ranked D2 and N2 in
Figure 4. The situation is similar with Q and E, leading to Q2 and E2 shown in Figure 4.
The highest-ranked structure for lysine (K) is K1, with a rather high TC of 0.714, and there
are no further similar AAs for K with TC above 0.65. The highest-ranked structures for
M, H, and F are all below the threshold, and are labeled M1, H1, and F1. For R, the four



Int. J. Mol. Sci. 2024, 25, 12343 7 of 14

highest TCs are above 0.65, and the corresponding structures are shown as R1, R2, R3, and
R4 in Figure 4. Finally, for Y and W, the highest-ranked AAs again have TCs below 0.65,
and the corresponding structures have labels Y1 and W1 in Figure 4.
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Table 4. Tanimoto coefficients and set memberships of the most similar amino acids for each CAA.

CAA TC ID EAA GAA PAA CAA TC ID EAA GAA PAA

G 0.450 G1 x N 0.636 D x x x
A 0.611 A1 x x 0.583 N2 x x

0.611 V x x D 0.636 N x x x
S 0.600 S1 x x 0.609 D2 x
P 0.750 P1 x x Q 0.607 E x x x

0.680 P2 x 0.581 Q2 x
0.654 P3 x K 0.714 K1 x x

V 0.700 V1 x E 0.607 Q x x x
0.684 A1 x x 0.586 E2 x
0.667 V3.1 x M 0.606 M1 x
0.667 V3.2 x H 0.590 H1 x

T 0.714 T1 x F 0.610 F1 x
0.682 T2.1 x R 0.737 R1 x
0.682 T2.2 x 0.676 R2 x

C 0.619 C1 x x 0.667 R3 x
I 0.667 I1 x 0.658 R4 x
L 0.643 L1 x Y 0.649 Y1 x

W 0.623 W1 x

We note that ornithine (K1) and 1, 3-diaminopropionic acid (S1) are, meanwhile,
known to be poor bioisosteres (see e.g., Frenkel-Pinter et al. [29], and Makarov et al. [30]).
However, it is not the subject of the present study to review negative experimental results
on potential bioisosteres, and we refer to [31] for a comprehensive review of non-canonical
tRNA synthetase substrates.

We see in Table 4 that the vast majority of this small selection is commercially available
and has not yet been studied experimentally. The SI contains TCs for each CAA, with the
entire library as a .CSV file. Further suggestions on how to evaluate AAs with respect to
decreasing similarity to a given CAA, and to visualize the most similar analogs, are also
offered in the SI. This gives access to a potentially rich set of easily accessible AAs, which
may be promising candidates for experimental evaluation.

2.4. Projection

Figure 5 shows a 2D projection of our AA chemical space using classical MDS with
Tanimoto distances as input. We see the smallest CAA, G, taking a central position in this
mapping. P is located in the top right region, quite distant from all other CAAs. This again
reflects the special structure of P, which we have already noted before when inspecting the
matrix of TCs for the CAAs in Table 3. On the left, we see the group of the four aromatic AAs
marked by an ellipse. F and Y are located very close to each other, with H also nearby, and
W, the largest CAA, a bit further away, at the top left corner of this group. The remaining
14 CAAs are located close to each other in an area marked by a rectangle in Figure 5. The
inset at the bottom left corner zooms into this densely populated area. Here, we see closely
located pairs of CAAs, such as V and Y (their high TC was mentioned above), C and S
(which differ only in their OH/SH group), or the pair of isomers L and I. However, we note
that such a projection cannot reflect all similarity relationships perfectly. For instance, N is
the most similar CAA for D, but appears at a relatively large Euclidean distance to D in this
figure, whereas R, with its rather low TC(R, D) = 0.316, has the shortest Euclidean distance
to D among all CAAs in this MDS. There are multiple reasons for these imperfections,
particularly the fact that this MDS is calculated to optimize Euclidean distances for all pairs
of AAAs, and CAAs are only a tiny subset of AAAs. We present a deeper analysis of the
MDS quality in the corresponding SI section. Despite these imperfections, this 2D projection
offers a useful alternative to the 1D approach realized by ranking with respect to single
CAAs. For instance, using this method, XAAs can be discovered that are not among the
top-ranked ones by using the 1D approach, but which are nevertheless interesting due to
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relatively high simultaneous similarities with multiple CAAs. Another advantage of the 2D
projection could be the discovery based on diversity, and to inspect regions not yet covered
by EAAs. To simplify access to the structures of XAAs in this projection, we included
their 2D coordinates in the .csv file (see SI file AASS.csv). Further recommendations on
software to open this .csv file, reproduce the 2D layout, zoom into interesting regions, and
display selected structures of interest are also given at the end of the SI section on Detailed
Results. The quality of our 2D layout is further discussed in the SI section MDS Quality and
Tables S1–S3 included there.
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3. Materials and Methods

The set of computationally Generated Amino Acid (GAA) structures used in the present
study contains 1913 real and hypothetical compounds, including the 20 CAAs of the standard
genetic code, as described in [13]. Additionally, we imported the amino acids tested by
Hartman et al. [20] and Josephson et al. [19] via their annotated Chemical Abstracts Service
(CAS) number entries as listed on SciFinder Scholar. We refer to this set as Experimentally
evaluated Amino Acids (EAAs). We also downloaded amino analogue structures with the
HNCCOOH substructure motif under 200 amu from Emolecules (https://www.emolecules.
com/ accessed on 2 April 2024) as an .sdf file, and we call this set Purchasable Amino
Acids (PAAs).

The further processing is sketched in Figure 6. In a standardization step, the PAA set
was cleaned of salts, and stereochemical information was removed using the KNIME [32]
Chemical Identifier Resolver (CIR) node (AlvaScience, Lecco, Italy). Then, all sets were
converted to canonical SMILES using OpenBabel [33]. These were copied into one file and
sorted lexicographically, and duplicates were removed. Set memberships of each compound
were stored in a table with five columns—SMILES—and columns representing the four
sets CAA, EAA, GAA, and PAA. Boolean entries true or false in these columns indicate

https://www.emolecules.com/
https://www.emolecules.com/
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whether a compound belongs to the set. For this step and all forthcoming computations,
we used R version 4.3.1 [34].
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Compounds were scored for structural similarity using 2D molecular fingerprints
and Tanimoto Coefficients (TCs). For compound representation, we computed Extended
Connectivity FingerPrints of diameter 6 (ECFP6s), [35]. ECFP6s are circular fingerprints that
encode atom-type information and bond connectivity up to a depth of six non-hydrogen
atoms, intending to capture precise atom environment substructural features. The reason
for selecting diameter 6 is exposited in the Supplementary Information (SI) section Choice
of Fingerprints. Fingerprints were computed using the rcdk package (version 3.8.1, [36])
starting from SMILES-level representations and resulting in 1024-bit bit-vectors.

TCs [37] were computed among the fingerprint representations with the same R
package. They were used as similarity scores and stored in a symmetrical matrix called
the similarity matrix. For more mathematical background on TCs, the reader is referred to
the SI section Tanimoto Coefficients. We sorted the data such that the first rows and columns
correspond to CAAs and the latter to non-canonical AAs, which we call Xeno Amino Acids
(XAAs). This imposes a block structure to the similarity matrix, which is discussed in
detail in Section 2.2. Different blocks of the similarity matrix representing TCs among
CAAs, TCs of CAAs with XAAs, and TCs among all amino acids (AAAs) were analyzed
using standard statistical parameters (minima, maxima, means, quantiles, etc.). Structures
were sorted by decreasing similarity with each of the 20 CAAs. Distributions of TCs were
determined using the R function ecdf (see Table S2 for the most important R functions used
in this study, together with their R package names and version numbers). We conducted
an outlier analysis of XAAs based on TCs with CAAs, and the highest-ranked XAAs
were determined.

To visualize similarities among AAs, we used classical Multi-Dimensional Scaling
(MDS, [38–41]). MDS algorithms take a distance matrix as input and calculate n-dimensional
coordinates for each object, i.e., AAs, such that Euclidean distances in n-dimensional space
optimally represent the input distances. We chose n = 2 to represent AAs as a 2-dimensional
scatterplot. We used the R function cmdscale, which provides the method of Gower [40].
This method is also known as principal coordinate analysis [42]. To convert our similarity
matrix given by TCs into a distance matrix, we used the general relationship between
similarity and distance [43], i.e., similarity = 1/(1 + distance), and calculated the Tanimoto
Distances (TD) as TD = (1—TC)/TC.

We note that TC is always greater than zero in our similarity matrix, so we do not have
to face the problem of denominators being zero in this equation.
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4. Conclusions

These results suggest that there remain numerous untested XAAs that could be substi-
tuted into contemporary proteins using the modern translation apparatus. Our original
study [24] was limited to amino acids that were most similar to modern biological amino
acids, for example, those containing only the elements CHNOS. Many alterations of struc-
ture not originally considered in the constructed set are possible, and more nuanced sets
could be produced for this sort of comparison [44]. This can be done simply by adapting
our previously developed workflow [24]); thus, the current study should be considered a
preliminary proof of concept. The inclusion of purchasable AAs in this study sheds some
light as to the compositional search space that could be explored (for example, by inclusion
of other chemical elements or other formula ranges).

Biological component substitutability likely correlates with both depth of evolutionary
biological embeddedness and the permittivity of structure space. For small amino acids,
fewer substitutions are possible, simply because the search space is small.

This methodology can likely usefully screen bioactive compounds. Typically, in drug
screening, many millions of compounds must be searched to find an active molecule [45].
The CAAs are unlike drugs “in general” in significant ways, and we have screened a much
smaller set of compounds than is usually explored in modern drug screening (see for
example, The Atomwise AIMS Program [46]).

Amino acids are largely synthesized by organisms themselves, though many higher-
trophic-level organisms, including humans, have incomplete amino acid biosynthesis
capabilities. This kind of nested interdependency is a common phenomenon among
cofactors and primary metabolites [47]. The use of the CAAs likely reflects this dependency.
The CAAs also share a common co-evolutionary history (possibly extending back billions
of years [3,5]) that has depended on and constrained the types of molecular interactions
that were allowed among them as proteins evolved. The CAAs appear to have been
evolutionarily selected to be both biosynthetically and functionally “minimal” [5], meaning
that they are not only among the lowest-molecular-weight compounds (and therefore have
relatively few isomers, as the number of possible isomers grows exponentially with the
number of atoms in a molecule [24]) that contain any given functionality, but they are
also among the biosynthetically simplest and energetically least costly. Given these deep
constraints, it might be surprising if there are many CAA analogues that can be found that
can be easily substituted into modern proteins without violating these concepts.

The methodology presented here may also offer a way to screen for mechanisms
by which biology arrived at its monomer usage, as compatible bioisosteres or otherwise
electrotopologically similar compounds may not be synthetically easily reachable via
feasible metabolisms. Thus, there may be an underlying structure to chemical space which
guides biology to select certain molecules, e.g., once biology uses a set of compounds, it
is predisposed to use similar ones and avoid dissimilar components. If this is true, we
might expect biology elsewhere in the universe to be very similar to terrestrial biology,
especially as there may be certain general entry points for environmentally common C, N
or S-containing raw materials (e.g., CO2, CH4, N2, NH3, H2S, SO2, etc.) into the network of
chemically allowed biotransformations.

The canonical AAs, if they cluster according to definable properties such as electro-
topological metrics, may then represent a built-in teleological endpoint for evolution, in that
the evolution of pathways for their formation also shapes their synthesis during biology’s
exploration of fitness landscapes.

We note that there are possible relationships of the present study with the concept of
substitution matrices [48,49], and a systematic exploration of these relationships may be a
promising starting point for future work.

We presented here, for the first time, and for a very large dataset of XAAs, methodolo-
gies and results to select candidates for CAA substitutions in proteins based on structural
similarity. The provided data can significantly refine the selection process of non-canonical
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amino acids for various applications in protein engineering (see SI section Applications of
Xeno Amino Acids).
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