Airborne lidar observations of tropospheric and lower stratospheric H₂O demonstrate the potential of a space-borne DIAL (to create future CDRs)

Andreas Schäfler, Andreas Fix, Silke Groß, Konstantin Krüger, Martin Wirth and many colleagues from our lidar department Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

ESA Water Vapour Climate Change Initiative - 2nd user workshop - FZ Jülich, 14-16 Oct 2024

The airborne DIAL WALES The instrument

2007: WALES airborne demonstrator developed for ESA EarthExplorer mission proposal for an H_2O differential absorption lidar (DIAL) in space.

 $\rightarrow 4\lambda\text{-}\text{DIAL}$ to measure H_2O from the ground to the UTLS

2017: option to measure O_3 and H_2O profiles

1064 nm \rightarrow 532 nm \rightarrow ~935 nm $\lambda_{off}, \lambda_{on}$ 1064 nm \rightarrow 532 nm \rightarrow 305/315 nm $\lambda_{off}, \lambda_{on}$

(Wirth et al. 2009, Appl. Opt., Fix et al. 2019, Appl. Opt.)

The airborne DIAL WALES Deployment

Measurement example from NAWDEX 2016

- Arctic: NARVAL (2014), POLSTRACC (2016), Cirrus-HL (2021), HALO-AC³ (2022)
- Midlatitudes: ML-Cirrus (2014), NAWDEX (2016), WISE (2017)
- Tropics: NARVAL (2013), NARVAL II (2016), EUREC⁴A (2019), PERCUSION (2024)

The airborne DIAL WALES Scientific focus

• Cirrus cloud studies:

- RH in Arctic and midlatitude cirrus (Dekoutsidis et al. 2022, ACP and 2024, ACP)
- Optical properties of midlatitude cirrus (Groß et al. 2022, ACP) and effects of aviation-induced cirrus (Urbanek et al. 2018, GRL)
- Cirrus life cycles (Urbanek et al. 2017, AMT)
- Radar-lidar synergies
 - Cloud microphysical properties (Ewald et al. 2021, AMT)
- Aerosol
 - Saharan dust transport (Gutleben et al. 2022, ACP)
 - and its radiative effect (Gutleben et al. 2019, GRL & 2020, ACP)

- EarthCARE validation (Groß et al. 2015, ASL)
- Atmospheric dynamics and transport studies
 - H₂O transport in warm conveyor belts (Schäfler et al. 2010, JTECH & 2011, QJ; Schäfler and Harnisch, 2014, QJ)
 - H₂O lidar profile data assimilation (Harnisch et al. 2011, QJ)
 - UTLS mixing of H₂O and O₃ (Schäfler et al. 2021, ACP & 2023, ACP)
 - LS moist bias (Krüger et al. 2022, ACP)

DFG Transregional Collaborative Research Center (2015-2024): *Model error and uncertainty at the midlatitude tropopause*

LS moist bias in ERA5 Scientific background

Moist bias (e.g., Woiwode et al., 2020) \rightarrow cold bias in LS (Bland et al., 2021)

- Vertical structure of the LS moist bias?
- Origins of the LS moist bias?

LS moist bias in ERA5 Approach

- 2013-2021: 41 midlatitude HALO flights, ~210.000 km, ~33000 WALES profiles
- Comparison against 1-hourly ERA5 ML analyses

- Independent high precision and accuracy data \rightarrow not assimilated by NWP models
- Capturing strong vertical gradients at the tropopause

LS moist bias in ERA5 Statistical evaluation: vertical structure

- Robust signal of decreasing bias 1.5 km above TP
- Stronger moist bias in summer (by factor of 2-3)

LS moist bias in ERA5 Origin of the bias

 $H_2O - O_3$ data for 4 flights

Future campaigns: Individual mixing processes, seasonality, data assimilation

Outlook

North Atlantic Waveguide, Dry Intrusion, and Downstream Impact Campaign (NAWDIC)

Collocated H_2O , O_3 and wind lidar observations to derive horizontal and vertical moisture fluxes in the PBL (post-frontal moisture sources) and UTLS

Spaceborne H₂O DIAL The right time

- Broad applicability of airborne DIAL observations in process studies from ground to the UTLS and inside and outside clouds
- **Technological innovation** in the past decades and the recent success with operating European **space lidars** (EarthCARE, Aeolus)
- Long standing **gap in the observing system**: little precise information on the vertical distribution of (tropospheric) WV
- Global circulation on weather and climate time scales largely depends on the H_2O distribution and impact it, weather and climate modelling relies on H_2O data

 \rightarrow QLEO for monitoring global H₂O

11

Spaceborne H₂O DIAL QLEO characteristics

- Active optical DIAL technique, basic characteristics from WALES
 - 4 λ at 935 nm H_{2}O absorption band
 - Eff. vertical res.: 0.5 (PBL) to 1.5 km (10-16 km)
 - Horizontal res.: 25 (PBL) to 200 km (10-16 km)
 - Dynamic range: 0.005-25 g kg⁻¹
 - Precision: <10 %, accuracy (bias): <5%
 - Lifetime: 3-4 years, from low Earth orbit satellite
- High resolution H_2O profiles in clear and cloudy regions +
 - Boundary layer depth, structure and humidity
 - Vertical aerosol profiles and aerosol optical depth estimates
 - Cloud boundaries
 - Optical depth of cirrus and optically thin mid-level clouds
- Retrieval free of a priori information

Spaceborne H₂O DIAL QLEO challenges

- Submission to ESA EE11 and EE12 calls failed despite
 - Components are modifications of space missions (AEOLUS, EarthCARE, MERLIN)
 - Cost optimization options: Reduced power consumption (lower horizontal resolution) and number of emitted wavelengths (focus on defined layers)
- Lidar missions remain expensive and technologically demanding
- Future ESA activities to increase technology readiness level would be appreciated
- Benefits of ESA's 5th EE Aeolus to European stakeholders and society: 3.5 billion €

Spaceborne H₂O DIAL QLEO expected achievements

Enhance our understanding of the H₂O distribution with <u>focus on the troposphere</u>:

- **Tropics:** coupling of deep convection to its environment, influence on tropical cyclones
- **Subtropics**: control on shallow cumulus distribution, cloud feedbacks and climate sensitivity
- Extratropics: predictability of weather on a variety of scales, control on high impact weather related to storms and connection to long-range moisture transport
- Globally: quantification of the surface energy budget, land-atmosphere and oceanatmosphere interactions, moisture sources
- NWP: origin of biases, improvement through usage of range-resolved H₂O information

WV_cci community: reference data for vert. resolved CDRs

- QLEO limited life time, limited spatial resolution in UTLS
- But: low systematic error, identification of UTLS biases in NWP
- \rightarrow WV_cci project highlights the need of H₂O profile data for climate applications