
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01209-6

REGULAR PAPER

A system-theoretic assurance framework for safety-driven systems
engineering

Alexander Ahlbrecht1 · Jasper Sprockhoff1 · Umut Durak1

Received: 20 November 2023 / Revised: 1 August 2024 / Accepted: 2 August 2024
© The Author(s) 2024

Abstract
The complexity of safety-critical systems is continuously increasing. To create safe systems despite the complexity, the
system development requires a strong integration of system design and safety activities. A promising choice for integrating
system design and safety activities are model-based approaches. They can help to handle complexity through abstraction,
automation, and reuse and are applied to design, analyze, and assure systems. In practice, however, there is often a disconnect
between the model-based design and safety activities. At the same time, there is often a delay until recent approaches are
available in model-based frameworks. As a result, the advantages of the models are often not fully utilized. Therefore, this
article proposes a framework that integrates recent approaches for system design (model-based systems engineering), safety
analysis (system-theoretic process analysis), and safety assurance (goal structuring notation). The framework is implemented
in the systems modeling language (SysML), and the focus is placed on the connection between the safety analysis and
safety assurance activities. It is shown how the model-based integration enables tool assistance for the systematic creation,
analysis, and maintenance of safety artifacts. The framework is demonstrated with the system design, safety analysis, and
safety assurance of a collision avoidance system for aircraft. The model-based nature of the design and safety activities is
utilized to support the systematic generation, analysis, and maintenance of safety artifacts.

Keywords MBSE · Safety · STPA · SysML · GSN

1 Introduction

As safety-critical systems continue to evolve, they are
increasingly characterized by interconnected components
and software-defined functions [1]. The resulting complex-
ity opens up risks for design errors and safety issues. To
tackle the complexity, adapted approaches are necessary that
enable a systematic integration of design and safety activ-

Communicated by Juergen Dingel.

Jasper Sprockhoff and Umut Durak have contributed equally to this
work.

B Alexander Ahlbrecht
alexander.ahlbrecht@dlr.de

Jasper Sprockhoff
jasper.sprockhoff@dlr.de

Umut Durak
umut.durak@dlr.de

1 Institute of Flight Systems, German Aerospace Center (DLR),
Lilienthalplatz 7, 38108 Brunswick, Germany

ities for modern safety-critical systems. A current trend in
dealing with complexity is the extensive use of models for
system design, safety analysis, and safety assurance [2–5].
This is also visible in the related approaches.

A recent approach for system design is model-based sys-
tems engineering (MBSE) [6]. MBSE uses the formalized
application of modeling to guide the system development
throughout all life cycle phases [7]. For the safety analysis
of complex systems, the System-Theoretic Process Analy-
sis (STPA) [8] has gained relevance by focusing on system
interactions and specification errors [9]. Finally, for safety
assurance, the creation of safety cases in Goal Structuring
Notation (GSN) [10] has proven its suitability.

Recent literature highlights the benefits of integrating
these recent approaches for system design (MBSE), safety
analysis (STPA), and safety assurance (GSN) [11–14]. A
promising solution would be a model-based integration of
these approaches. However, current model-based frame-
works only cover the integration of the system design with
traditional safety analyses [4, 5]. Hence, this article comple-
mentswith amodel-based integration of recent approaches in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01209-6&domain=pdf
https://orcid.org/0009-0004-6646-776X
https://orcid.org/0009-0005-5725-0726
https://orcid.org/0000-0002-2928-1710


A. Ahlbrecht et al.

form of a system-theoretic assurance framework. Particular
focus is placed on the connection of the safety analysis and
safety assurance activities. The framework is implemented
in an MBSE tool and used to highlight the advantages of
a model-based integration. For instance, it is elaborated and
demonstrated how safety activities such as the generation and
assessment of a safety case can be supported.

To elaborate the framework, the article is structured in the
following manner. First, background information and related
work are introduced in Sect. 2 and 3. Then, the resulting
framework is elaborated in Sect. 4. Subsequently, the appli-
cation of the framework is demonstrated in Sect. 5. Finally, a
discussion is provided in Sect. 6, while a conclusion follows
in Sect. 7.

2 Background

2.1 Model-based system design

To design complex systems, systematic approaches are nec-
essary. MBSE is a development paradigm that uses modeling
to guide the system development throughout the whole sys-
tem life cycle [7]. It builds on the systematic nature of
Systems Engineering (SE) and formalizes its application.
To effectively apply MBSE, a suitable method, language,
and tool are required [15]. In terms of the method, multiple
frameworks are available and help to support the system-
atic application of the MBSE paradigm. Examples include
MagicGrid [16], Arcadia [17], and OOSEM [6]. In terms of
languages, the systems modeling language (SysML) is one
of the most common. SysML is a graphical modeling lan-
guage that currently builds on the unified modeling language
(UML) [18]. In the second SysML version1 that is currently
under development [19], the language will receive its own
meta-model and include extended features such as a textual
representation. Using a semi-formal language like SysML,
automation can be implemented through scripting languages
in various MBSE tools [20]. Moreover, it is possible to
extend SysMLmodeling capabilities by creating stereotypes.
Stereotypes, allow the integration of domain-specific model-
ing extensions or other model-based approaches (e.g., GSN
and STPA) into MBSE environments.

2.2 Model-based safety analysis

In addition to the systematic design, adapted analyses are
necessary to determine the safety of complex and software-
intensive systems. Accordingly, STPA targets to identify
software-related issues such as incomplete specifications or
inadequate system interactions [9]. Because of its adjusted

1 https://github.com/Systems-Modeling/SysML-v2-Release.

Fig. 1 Steps (left) and relations (right) of STPA

focus, it is also incorporated as a method in the appendix of
the recent ISO 21448 standard, which focuses on assuring
Safety Of The Intended Functionality (SOTIF) [21]. More-
over, a guidance describing how STPA can be applied during
the typical aviation safety process is in development [22]. In
the following, STPA’s top-down analysis approach is elabo-
rated in accordance with the left side of Fig. 1.

Initially, the purpose of the analysis is defined by speci-
fying the system, its boundary, and the environment. Com-
plementary, losses that should be prevented are selected and
the corresponding hazards derived. In the next step, a control
structure of the system is modeled that describes the com-
ponents, their control hierarchy, and related interactions in
the form of control actions (CA) and feedback. This con-
trol structure is then used to identify potential unsafe control
actions (UCA) that can cause a hazardous system state. To
uncover UCAs, CAs are analyzed in various scenarios that
help to identify if the CA can pose a risk by being executed
inadequately or not being executed. After identifying UCAs,
the goal is to determine loss scenarios (LS) and their con-
tributingCausal Factors (CF) thatwould lead to the execution
of a UCA. Finally, mitigations (M) are derived for each LS
to prevent their occurrence during system operation. Ms can
require adjustments of the architecture or further analyses to
increase the confidence in the system design. A detailed elab-
oration of the process is given in the STPA-Handbook [8],
while the lessons learned are discussed in the SAE-J3187
Guidance [23]. Recently, the SAE-J3307 development was
initiated which targets the development of a STPA standard
[24].

In previous work by the authors, it was demonstrated
how this process can be integrated into an MBSE envi-
ronment by using a SysML profile [25]. The integration
allows for advanced supporting functionality such as auto-
mated coverage indications [26] and STPA-related change
impact considerations [27]. Another advantage of using a
model-based STPA is that a traceability between the result-
ing artifacts can be established. Accordingly, in [26], it was
shown how a STPA-related summary can be automatically
generated including the elements and relations displayed on
the right side of Fig. 1.

123

https://github.com/Systems-Modeling/SysML-v2-Release


A System-Theoretic Assurance Framework...

2.3 Model-based safety assurance

Following the topics of design and safety, a model-based
approach to assurance in form of assurance cases is intro-
duced. Assurance cases are used to justify a claim of the
system under consideration with a systematic argument
based on created evidence [28]. In this article, the focus is
on arguing the safety of the system with an assurance case.
An assurance case with this specific focus is also referred
to as a safety case. The argument is created by thoroughly
breaking down an overarching goal into smaller sub-goals
until justification with appropriate evidence is feasible.

A popular choice for constructing and visualizing safety
cases is GSN. It is important to mention that there are
alternative approaches such as the structured assurance case
metamodel (SACM) [29]. The recent GSN standard [10]
defines multiple elements such as goal (G.), strategy (S.),
context (C.), assumption (A.), and justification (J.), which
are connected by defined relationships. The definitions are
as follows. Goal “presents a claim that forms a part of
the argument”. Strategy “describes the inference that exists
between a goal and its supporting goal(s)”. Context “presents
a contextual artifact. This can be a reference to contextual
information, or a statement”. Assumption “presents an inten-
tionally unsubstantiated statement”. Justification “presents a
statement of rationale” [10].

Because safety cases exist for multiple decades, tool sup-
port has been established as summarized in [30]. Although
safety cases provide a systematic way of structuring an assur-
ance argument, they should only be viewed as a framework
and do not guarantee safety [31]. Ultimately, the dedication
and effort of the safety activities determine the meaningful-
ness of the safety case.

3 Related work

In recent literature, possibilities and advantages when inte-
grating thepresented approaches are highlighted. For instance,
[11] presents an approach to combine SysML with STPA
to enable a systematic development and verification of sys-
tems. Moreover, [12] combines STPA with a safety case
to target the assurance of an automotive perception system.
Complementary, [13] discusses how the STPA can be linked
to certification through a GSN-based safety case pattern.
Finally, the risk analysis and assessment modeling language
(RAAML) [14] proposes a standardization for the usage of
both STPA and GSN within SysML.

Even though the related work already builds a founda-
tion to integrate the approaches, the model-based integration
is currently limited. For instance, RAAML proposes an
integration, but does not provide any guidance on how to
systematically apply the model-based approaches together.

Fig. 2 Framework overview

At the same time, the related work shows that a model-based
integration can be very valuable to assist the complex system
development and verification tasks. Prominent examples are
AdvoCATEandOpenCERT,which not only provide a frame-
work, but also tool support to integrate safety and assurance
activities [5, 32]. Thesemodel-based frameworks also use the
model-based nature of the approaches to provide automated
assistance in activities such as the construction and main-
tenance of safety cases [5]. However, similar to [4], these
frameworks are currently focusing on traditional safety anal-
yses and do not cover novel safety analysis approaches such
as the STPA.
Considering the related work, a suitable baseline for the
envisioned integration of system design, safety analysis, and
safety assurance is available. However, there is no related
work that covers a model-based and end-to-end integration
of the recent approaches.

4 Assurance framework

In this article, valuable concepts of the related work are com-
bined into a model-based end-to-end framework for system
design, safety analysis, and safety assurance as shown in
Fig. 2.

4.1 Framework overview

To establish an efficient integration for the development of
complex safety-critical systems, the possibility for assisting
automation is essential. Hence, a sufficient traceability and
formality is required that enables the use of automation. For
this reason, explicit traceability relationships between ele-
ments are defined throughout the framework as highlighted
in Fig. 3. The model-based fashion and traceability in the
framework enable the implementation of assisting automa-
tion that will be explained in more detail in Sect. 4.2. In the
following, the structure of the framework will be elaborated.

123



A. Ahlbrecht et al.

Fig. 3 System-theoretic assurance framework for system design, safety analysis, and safety assurance

4.1.1 System design

For the system design, it is recommended to follow a
systematic development approach according to an MBSE
framework. For the proposed assurance framework displayed
in Fig. 3, SysML was selected as the MBSE language. Rea-
sons are the extensive utilization in research and industry
[33], the possibility for different views on the system [18],
and continuous improvements of the language [19].

In the assurance framework, all four pillars of SysML
(requirements, structure, behavior, and parametrics [18])
are utilized to provide a holistic overview of the devel-
oped system. Requirements are derived by considering the
use cases that are relevant for the respective stakeholders.
These stakeholder requirements are then translated into sys-
tem requirements and serve as the baseline for the design.
Afterward, the system structure is defined and refined over

time. Complementary, the system behavior is modeled as
well as the parameters characterizing the system. By utilizing
a model-based approach for the system design, a traceability
throughout the system development can be established. From
the systemmodel, requirement reports or system design doc-
uments can be generated.

4.1.2 Safety analysis

In addition to the system design activities, a parallel consid-
eration of the system’s safety is proposed in the assurance
framework. Consequently, it is shown in Fig. 3 how a simul-
taneous safety analysis (STPA) can be established and linked.
To correctly execute the STPA, the corresponding guidance
documents [8, 23] serve as an input.

In Fig. 3, it is shown how all four steps of the STPA are
linked through the related artifacts. At the same time, a trace-

123



A System-Theoretic Assurance Framework...

ability is established to the corresponding parts of the system
model. For instance, losses and hazards can be derived with
the help of the stakeholder needs.Moreover, the control struc-
ture represents the system structure and builds the baseline
for the safety analysis. Similarly, the behavior of the sys-
tem is integrated into the findings of the safety analysis. In
the end, Ms are derived and refine the system requirements
with a safety perspective. For readability purposes, this rela-
tionship is not displayed in Fig. 3. Overall, the traceability
between system design and safety analysis activities allows
for a safety-driven design process [27].

4.1.3 Safety assurance

Even with a systematic safety analysis, it is not guaranteed
that every aspect is fully covered. To improve the confidence
in the safety analysis and thus the system design, each part
of the analysis is examined from an assurance point of view.
Accordingly, it is shown inFig. 3 howall safety artifacts of the
STPA are traced to a corresponding layer in the safety case.
To be able to consistently refer to a layer in the safety case,
the term safety case level is used throughout this article. The
levels are abbreviated with Lx where x ∈ {1, 2, 3, 4, 5, 6}.
All safety case levels are based on GSN elements and repre-
sent the following argument.

The overarching goal is to build a safe system that does not
trigger any losses (G.1). In the STPA, the idea is to mitigate
all system hazards to prevent the loss occurrence (G.2). To
mitigate the hazards, noUCA should be executed. Hence, the
STPAanalyzes eachCA to identify if it could be unsafe (G.3).
If aUCA is identified, it should be assured that theUCA is not
executed during system operation (G.4). Consequently, LSs
leading to the UCA execution have to be prevented (G.5).
If the M for the LS is implemented and verified (G.6), the
corresponding argument branch is completed.

In addition to the basic breakdown of the safety argu-
ment through goals and strategies, context, assumption, and
justification elements are utilized. With context elements,
references to the elements of the safety analysis are estab-
lished. At the same time, each safety case level makes use
of assumptions and justifications to establish a valid safety
argument. For instance, if the analysis focuses on the preven-
tion of losses to ensure the system’s safety (G.1 in Fig. 3), it
is important that every loss is identified. Hence, an assump-
tion (A.1 in Fig. 3) is derived and traced to a justification
(J.1 in Fig. 3) that enforces a rigorous review of the loss
identification process.

4.2 Framework implementation

Because the integration of the system design and safety anal-
ysis activities were elaborated, implemented, and demon-
strated in previous work by the authors [25, 27, 34], the

focus of the implementation and demonstration in this arti-
cle is on the model-based integration of the safety analysis
and safety assurance activities. The goal is to enable an auto-
matic generation of a safety case baseline and to support the
assessment through the model-based nature and traceability
of all approaches.

4.2.1 Modeling concepts

To implement the automated safety case generation, a suf-
ficient integration of MBSE, STPA, and GSN is required.
Hence, appropriate modeling concepts are necessary. For
demonstration purposes, the idea was to establish a proof-
of-concept implementation using SysML to integrate all
approaches. In previous work, it was demonstrated how
STPA and MBSE can be integrated allowing for automated
creation and validation of analysis tasks [25]. Moreover, the
RAAML provides guidance on how to model safety cases
in a SysML model using stereotypes for the GSN elements
and relationships. However, the RAAML [14] implemen-
tation of the GSN standard can benefit from application-
specific adjustments. For instance, for each safety case level
addressed by the concept, specific element references are
always required. At the safety case L1, a reference to the
loss elements of the system under consideration establishes
a clear baseline for the safety assessment. Hence, the stereo-
types were adjusted to include the appropriate references as
shown in Fig. 4. Specifically, the goal (green) and context
(black) elements were refined for each safety case level and
include a reference to a corresponding STPA element (grey).
Each goal references the element which the corresponding
safety case part addresses. The context elements, however,
reference all related STPA elements, including the element
that is addressed in the next safety case level. An example is
GoalHazardsL2 which references the related hazards, while
the ContextHazardsL2 links the CAs that are addressed at
safety case L3. Overall, the integration of both SysML pro-
files (STPA and GSN) enables the safety case generation and
assessment.

4.2.2 Safety case pattern

Since the goal is to automatically generate the safety case
from a model-based STPA execution, a concrete safety case
pattern is required. Therefore, the pattern defined in [13] was
selected and adapted. A systematic structure of the safety
case is achieved by covering each step of the STPA execu-
tion with a respective segment of the safety case. With this
approach, both the STPA and the safety case benefit from
each other. The STPA provides a safety-driven pattern for the
safety case by explicitly determining the potentially unsafe
parts of the system that must be analyzed. At the same time,
the safety case adds a holistic view and assurance perspec-

123



A. Ahlbrecht et al.

Fig. 4 Safety case stereotypes with references to stereotypes of the STPA profile

tive by demanding a systematic analysis of assumptions and
appropriate justifications for each step of the STPA. The pro-
posed STPA-based safety case pattern is illustrated in Fig. 5.

In comparison with the pattern defined in [13], a separate
layer for the CAs was added. This extension was applied
to represent the typical STPA relationship structure shown
on the right side of Fig. 1. Since CAs are explicitly analyzed
during the STPA process, a separate assurance layer can help
to identify and prevent related mistakes. For instance, this
layer enforces a review of UCAs for each CA and makes
it obvious when the analysis of a CA is forgotten or not
executed with the necessary rigor. Moreover, a justification
was added to the initial pattern of [13] to ensure the validity of
each assumption.At each safety case level, a similar structure
of GSN elements is applied, as depicted in Fig. 5.

First, the goal sets the target for the safety case level. For
instance, the goal G.1 at safety case L1 is that the system is
free of unacceptable risks leading to losses (No Ls). Attached
to the goal, a subsequent strategy defines the approach of how
the goal can be translated into one or multiple supporting
goals. In addition, a context element is attached to the strategy
at each safety case level and provides links to all related
elements of the model-based STPA.

At the same time, each safety case level makes use of
assumptions. Assumptions can be related to verification or
validation of the STPA activities. For instance, a verification-
related assumption is that all relevant losses related to the
system under investigation are identified (A.1.1 in Fig. 5).
In contrast, a validation-related assumption is that a suitable
approach is chosen to mitigate the hazards (A.1.2 in Fig. 5).

The majority of assumptions must only be determined
once and can be reused for future applications.However, each
system is different and therefore may add new assumptions

or invalidate ones that were previously derived. Accordingly,
it is recommended to check each assumption for the sys-
tem under development and adapt and extend them where
necessary. To give an idea of possible activities to justify
assumptions, justification measures are linked via trace rela-
tionships in Fig. 5. The connection between justifications
and assumptions is adapted in comparison with the typical
use in the GSN standard [10] and introduced to enforce a pro-
cess where assumptions and justifications can be explicitly
checked by the modeling tool.

Due to the relevance of assumptions and justifications for
the proposed process, detailing notes are provided in Fig. 5.
For instance, a systematic analysis of the model (A.2.2)
helps to improve the model’s completeness. In general, the
model quality is essential and determines the correctness
and completeness of the related safety analysis findings [35].
Moreover, a thorough review of the analysis findings (A.3.2,
A.4.2) helps to obtain an impression of the analysis depth
and potential weaknesses. Overall, the template of Fig. 5 and
related process adds another analysis dimension to the safety
case pattern of [13].

4.2.3 Safety case generation

After elaborating the overarching approach that combines the
selected approaches, it will now be explained how properties
such as efficiency can be established. A foundation for this
is the model-based and therefore semi-formal nature of all
approaches. This is because it allows the incorporation of
assisting automation. In this article, the focus of automation
is on the systematic generation of the safety case baseline
and the assessment of the safety case properties.

123



A System-Theoretic Assurance Framework...

Fig. 5 Safety case pattern with elements and relations for each safety case level

First, the functionality to automatically create a GSN-
based safety case is elaborated. For this functionality, the
traceability of themodel-based STPA implementation is used
which is established according to the relations depicted in
the safety perspective of Fig. 3. Essentially, a model-based
ST P A Summary2 can be generated and used as an input for

2 Includes all model-based STPA elements (Losses, Hazards, CAs,
feedback, UCAs, LSs, CFs, Ms) as well as their relations.

the safety case generation. In Algorithm 1, the implemen-
tation is shown in pseudo-code. To express a dependency
between two elements in Algorithm 1, a subscript is used.
For instance, UCAca means that only UCAs related to the
respective CA are used. The same principle applies to LSuca
and Mls .

With Algorithm 1, the safety case is generated in a depth-
first manner. Initially, the GSN structure for the safety case

123



A. Ahlbrecht et al.

Fig. 6 Example of generated safety case structure with goals (G), strategies (S), and mitigations (M)

Algorithm 1: Safety Case Generation

Input: ST P A Summary2

Output: Sa f ety Case
createGsnStructureL1(Losses, Hazards);
createGsnStructureL2(Hazards,CAs, Feedback);
connect L1andL2(StrategyL1,GoalL2);
forall the ca ∈ CA do

createGsnStructureL3(ca,UCAca);
connect L2andL3(StrategyL2,GoalL3);
forall the ucaca ∈ UCAca do

createGsnStructureL4(ucaca, LSuca);
connect L3andL4(StrategyL3,GoalL4);
forall the lsuca ∈ LSuca do

createGsnStructureL5(lsuca,Mls);
connect L4andL5(StrategyL4,GoalL5);
forall the mls ∈ Mls do

createGsnStructureL6(mls);
connect L5andL6(StrategyL5,GoalL6);

// If an element already exists (e.g., LS
or M), only the connect function is
applied to link the existing element

L1 is created by the createGsnStructureL1() function. This
means that the goal, strategy, context, assumptions, and justi-
fications are created as well as their relationships (see Fig. 5).
Since theGoalLossesL1 references the losses while theCon-
textLossesL1 references the hazards (see Fig. 4), both losses
and hazards are defined as the inputs for the createGsnStruc-
tureL1() function.When using a model-based safety analysis
approach, it is possible to automatically query the model for
the required elements. In the next step of Algorithm 1, the
safety case L2 is generated in a similar fashion.After creating
the elements of safety case L1 and L2, the safety case levels

are linked by connecting the strategy and goal elements as
defined in Fig. 5. This procedure is repeated until the safety
case is created in a structure similar to Fig. 6. Starting from
safety case L3, the main difference is that each safety case
level can cover multiple elements. For instance, on safety
case L3, the safety case assesses each CA separately. Hence,
the elements defined for safety case L3 in Fig. 5 are created
for each CA. Essentially, this allows the safety case to branch
out and expand in width as visible in Fig. 6.

When an M is used to address multiple LSs, Algorithm 1
would createmultiple instances for the sameM. In Fig. 6, this
possibility is highlighted withG.6.3, which is linked to S.5.3
and S.5.4. This duplication can also happen between safety
case L4 and L5, when one LS involves multiple UCAs. To
avoid duplicates, the algorithm should always check if an
element already exists before creating it. If it already exists,
the corresponding element can be linked and no new one has
to be created. For the implementation of Algorithm 1 in an
MBSE tool, scripting functionality can be used. Therefore,
MBSE tools provide an Application Programming Interface
(API) allowing to search for or create elements. The proof-
of-concept implementation in this article was implemented
with the Cameo Systems Modeler MBSE tool. In Sect. 5, the
safety case generation is demonstrated.

4.2.4 Safety case assessment

Since a complex system will necessitate a large safety case,
only generating the safety case baseline is not sufficient. In
addition, assistance to efficiently work with the generated
safety case is required to enable the handling of complex
systems. Hence, safety case visualization, checking of safety

123



A System-Theoretic Assurance Framework...

properties, and tracking of the safety progress are elaborated
and demonstrated in this article.

Safety case visualization The first way to assist is a
multi-layered depiction of the safety case. Visualization is
important to deal with the size of a safety case for complex
systems and to enable usability. Fortunately, the charac-
teristics of a model support a representation in multiple
ways. In the following, typical views to represent models
are explained.

� Diagram View: Diagrams have their strength at provid-
ing a holistic view of the model by showing elements,
properties, and relationships all at once. They are not
only good at displaying but also for editing and adding
of information.

� Table View: Tables excel at representing large amounts
of information in a compact form. Therefore, they are a
valuable tool to give a holistic overview of elements with
multiple properties.

� Matrix View: Matrices are able to give a quick overview
of the relationships between multiple elements. They can
also be used to modify the relationships as required.

� Relationship Map: Relationship maps are excellent at
giving an overview of the relationships between elements
across multiple levels.

As elaborated, each of these views has its own advantages
and can be used to analyze specific aspects of the safety case.
To demonstrate their application, each view will be used to
highlight parts of the safety case in the demonstration Sect. 5.

Safety case V&V The second way to support engineers in
assessing the safety case is to implement checks that verify
and validate its properties. To give an idea of how such checks
can look like, some examples are provided in the following.

� Check for assumptions without justifications
� Check for justifications that were not executed
� Check for goals without element references
� Check for contexts without element references
� Check for undeveloped goals
� Check for elements without relationships

The first check is related to the statement that it is impor-
tant to justify each assumption for the validity of the safety
case. Moreover, if a justification activity is derived, it should
be ensured that it is executed. Otherwise, the validity would
still be in question. Further checks help to identify goals and
context elements with missing references. Since the safety
case is automatically generated by using the traceability of
the model-based STPA, missing element references indicate
that parts of the STPA were not executed to the full extent or

that links were forgotten. For instance, no LSs references at
the context of safety case L4 would indicate that no LSs were
discovered for the corresponding UCA. Since it is unlikely
that no LS exists for a UCA, the corresponding context ele-
ment should be highlighted. Similarly, an “undeveloped”
annotation on a goal element indicates that there was no fur-
ther refinement. Checking and highlighting such elements
helps to ensure that this refinement is not forgotten, which is
especially helpful in the context of a large safety case for a
complex system. Finally, checks should be implemented to
identify the elements without relationships or traceability.

Implementation of checks is supported by verification lan-
guages such as the object constraint language (OCL) [36] and
scripting languages that are integrated in MBSE tools. Some
tools also allow to specify the severity (information, warning,
error, etc.) of the checks.

Safety case progress tracking The third way to support the
safety case assessment is to provide statistics that indicate
the status of the safety case progression. An exemplary list
of values to collect for the safety case statistics is provided
below.

� Number of goals
� Number of contexts
� Number of strategies
� Number of assumptions
� Number of justified assumptions
� Number of justifications
� Number of executed justifications

By tracking the count of the safety case elements over
time, it is possible to determine how the safety case evolves
throughout the project. At the same time, the state (Justified,
Executed) of the AssumptionGSN and JustificationGSN ele-
ments (see Fig. 4) provides information on the safety case
progress. For instance, the number of justified assumptions
and executed justifications is helpful to obtain an idea of the
necessary effort.

To implement the elaborated functionality, the scripting
ability of MBSE tools can be utilized. For the proof-
of-concept implementation of this article, a function was
implemented that queries the model for each element type
of the safety case and returns the number per element type.

5 Framework demonstration

After elaborating the concept in the previous section, it is
demonstrated in the following. Since the focus is on the func-
tionality to generate and assess the safety case, an in-depth
explanation of the modeling and safety analysis activities is
omitted. Instead, a brief introduction of a system example

123



A. Ahlbrecht et al.

Fig. 7 CAS use case (left) and potential losses and hazards of CAS (right)

Fig. 8 CAS system requirements with traceability to model elements

and the safety analysis results are provided to establish the
context. It is important to note that the example is simplified
and merely serves the purpose of elaborating the approach.

5.1 System design

The considered system is a collision avoidance system (CAS)
envisioned to support the Pilot. In Fig. 7a, an overview of its
main use case is displayed. The main purpose of the CAS is
to avoid traffic collisions. Therefore, it has to be able to cal-
culate and announce advisories to the Pilot of the respective
aircraft. As depicted in the design perspective of Fig. 3, the
use cases and corresponding stakeholder requirements are
used to derive the system requirements. Some of the system
requirements are displayed in Fig. 8. The system require-
ments are traced from the use cases and traced to the elements
of the system model.

In addition to investigating use cases, systematic design
frameworks analyze the system context to identify relation-
shipswith other systems.Accordingly, not only theCAS itself
is modeled in Fig. 9, but also the related systems and context
participants. The CAS can issue an Advisory to inform the
Pilot about dangerous traffic situations. Moreover, it depicts
how the CAS receives feedback in form of the OwnAir-
craftState andOtherAircraftState from the Sensor Unit. This
situation perception is used to identify if an Advisory is nec-
essary. Considering the Advisory, the Pilot is able to adjust
the control of the Aircraft through theManeuverCMD to the
Aircraft Control System.

Fig. 9 Control structure of CAS

5.2 Safety analysis

As described in Sect. 4.1.2, the safety analysis should be
executed in parallel to the design activities. Therefore, the
model-based system design artifacts can be traced to the
safety analysis as highlighted in Fig. 3. For instance, the
stakeholder needs can be helpful in identifying losses and
deriving hazards. Since the goal of the CAS is to prevent
traffic collisions, a related loss would be a Loss of Aircraft
due to a traffic accident. In relation to this loss, a hazard is
that the CAS causes or contributes to a controlled maneuver
into ground. Other examples are shown in Fig. 7b.

After defining losses and hazards for the first step of the
STPA, the control structure has to be modeled in the second
step. When following a systematic design framework, the

123



A System-Theoretic Assurance Framework...

Fig. 10 Safety analysis elements and their relationships for the advisory CA

resulting system model already includes important informa-
tion for the control structure. However, an important addition
from the control structure perspective are the process mod-
els. Adding process models helps to identify more nuanced
LSs later in the safety analysis. Consequently, some process
models are added in form of properties to the Pilot and CAS
in Fig. 9. However, in Fig. 9, only the title for the process
models is shown. For instance, the Model of Dangerous Sit-
uations is a concise representation of all the beliefs that the
CAS uses to classify a traffic situation as dangerous. Another
control structure feature is the categorization of interactions
into feedback and control action.

Using the control structure, the identification ofUCAs and
LSs can be executed in typical STPA fashion. An excerpt of
the results for the Advisory CA is displayed in Fig. 10. It
is important to note that only the names of the CA, UCA,
LS, and CF elements are displayed in Fig. 10 for readability
purposes. In themodel, eachUCAandLS element has amore
detailed description, links to related elements, information
about the analysis status, and information on the analyst [26].

In case of the Advisory, three ways of getting unsafe
(UCAs) are identified and depicted at the first stage of the
graph in Fig. 10. For instance, not providing an Advisory in
the context of a collision course could lead to a minimum
separation violation. Identified reasons in form of LSs are
depicted in the next stage of the graph. The LS LowPilot-
DelayAssumption refers to the situation where the Advisory
is not provided in time due to an inadequate belief of the
Pilot response delay. The Pilot response delay is an impor-
tant parameter during the algorithm design and influences
when advisories are forwarded to thePilot. A highPilot delay
assumption can result in too early advisories while a short

pilot delay assumption can lead to the inability of the Pilot to
react. This is one of the LSs highlighting the importance of
documenting the beliefs in formof processmodels to identify
potential issues later in the analysis. In this case, the related
process model titledModel of Pilot Response Time is linked
as the CF.

Another LS leading to no Advisory is the selection of
a WrongOperationalMode. In this LS, the Pilot selected a
wrong mode of the CAS because he had an incorrect belief
of how the system works and should be used. This is repre-
sented by the presence ofmultiple CFs:ModeChange,Model
of Collision Avoidance Usage, and Operational Mode. This
is only one of many examples that highlight how both the
system specification and human machine teaming affect the
system’s safety. Identifying issues related to these aspects is
one of the strengths of the STPA.

5.3 Safety assurance

As elaborated in Sect. 4.1.3, the confidence in the safety
analysis results can be improved through the assurance per-
spective. Since establishing and analyzing the assurance
perspective manually for a large safety case is time consum-
ing and error-prone, Sect. 4.2 detailed supporting approaches.
First, a safety case baseline can be automatically generated
using the traceability of the model-based safety analysis.
Supplementary, assistance can be provided in various facets
to improve the assessment and extension of the safety case.
Both, the generation and assessment are demonstrated in the
following.

123



A. Ahlbrecht et al.

Fig. 11 Branch of generated safety case

5.3.1 Safety case generation

Using the results of the model-based STPA, a safety case
can be generated according to the safety case pattern and
functionality presented in Sect. 4.2.2 and Sect. 4.2.3. To give
an idea of how a result looks like, a branch of the generated
safety case for theCAS is depicted in Fig. 11. It is important to

note that Fig. 11 only represents one branch of the safety case.
To limit the scope, the focus is set on a branch of the Advi-
sory. For this branch, all safety case levels are displayed to
visualize how the pattern of Fig. 5 was implemented. In con-
trast to the pattern presented in Fig. 5, the context elements
and references to the relevant STPA elements are included.
However, the assumptions and justifications related to the
goals are omitted for readability.

In Fig. 11, it is shown how the safety case gets more spe-
cific with each safety case level. The overarching goalG.1 is
to prevent unacceptable risks leading to losses. Therefore, the
strategy S.1 is to analyze and mitigate the hazards to prevent
corresponding losses. A potential reason for hazards is the
inadequate Advisory. Hence, unsafe Advisories are analyzed
and mitigated. When comparing Fig. 10 and Fig. 11, it is vis-
ible how the safety case represents the analysis results and
augments them with an additional perspective. Complemen-
tary to the STPA results in form of CAs, UCAs, and Ms, the
safety case scrutinizes their validity and completeness. This
is done through the addition of assumptions and justifications
that have to be processed to establish a valid safety case. For
instance, if some unsafe executions (UCAs) of the Advisory
are not identified (A.3.2), the strategy (S.3) will fail to pre-
vent them. Hence, the justification (J.3.2) demands a peer
review of the UCA identification to reduce the likelihood of
missing UCAs. To fulfill this justification, activities such as
the coverage analysis presented in [26] can be executed. The
process of adding, analyzing, and justifying assumptions is
repeated on each safety case level.

5.3.2 Safety case assessment

If the assurance perspective is established in a model-based
fashion, further assistance functionality becomes available,
as elaborated in Sect. 4.2.4.

Safety case visualization and V&V One way to assist in han-
dling large-scale safety cases is a multi-faceted visualization.
In Sect. 4.2.4, it is explained how each view can have its
own advantages and can therefore be leveraged to analyze
a different aspect. Hence, the demonstration utilizes differ-
ent visualizations to discuss aspects of the safety case in the
following.

Since the safety case branch in Fig. 11 did not display the
assumptions and justifications related to the goals (seeFig. 5),
the matrix view in Fig. 12a highlights these relations. In the
matrix, the goals of the first three safety case levels are dis-
played with their relations to assumptions and justifications.
For instance, to address the hazards, as stated in S.1, it is
assumed that an analysis with an appropriate quality is exe-
cuted (A.1.2). Hence, the justification (J.1.2) is to follow and
document a proven analysis approach. In this example, the
proven analysis approach is the systematic STPA execution

123



A System-Theoretic Assurance Framework...

Fig. 12 Matrix (left) and diagram (right) view highlighting parts of the safety case

Fig. 13 Table view of the safety case (L4 to L5)

according to the handbook [8]. However, it is also possible
to extend the justification and demand other safety analysis
approaches in addition to the STPA. Thematrix view can also
be used to display and quickly analyze other aspects. Exam-
ples are the relations between assumptions and justifications
or the relations between strategies and supporting goals.

The subsequent diagram view in Fig. 12b is not new but
extends safety caseL3 of the branch shown in Fig. 11. Similar
to thematrix view, it displays the assumption and justification
related to G.3. In addition, the properties of the assumption
A.3.2 and justification J.3.2 are shown. It is visible how the
justification J.3.2was evaluated to be good enough (Justified
= true) to justify A.3.2. At the same time, J.3.2 was not yet
executed (Executed= false) and therefore invalidates this part
of the safety case. Accordingly, the implemented validation
rule highlights J.3.2 with an error. To demonstrate another
validation rule defined in Sect. 4.2.4, the UCA entries in the
context element C.3 were removed. Hence, a second valida-

tion warning highlights the empty context element. Empty
context elements are generated when no related elements are
identified in the safety analysis. In case of empty UCA or
LS context elements, this may indicate that something was
missed or not yet executed. In general, the diagram view
allows to display multiple relevant aspects at once (elements,
properties, and relations) but demands space to achieve this.
Hence, the diagram view’s strength is in the analysis of local
parts of the safety case. However, its usability reduces when
trying to analyze many elements at once.

After analyzing the safety case L3 with the diagram view,
a table view can be used to get an overview over the safety
case L4. Since safety case L4 covers the identified UCAs
displayed in Fig. 10, three main goals related to the Advisory
are presented in Fig. 13. Each goal covers one of the UCAs
identified during the analysis as visible in the summary in
Fig. 10. In addition, the related strategies, contexts, assump-
tions, justifications, and supporting goals are displayed in the

123



A. Ahlbrecht et al.

Fig. 14 Relationship map view of the safety case (L5 to L6)

table.With a high ratio of information over space, table views
give a broad overview and can be used to quickly navigate
the model.

For displaying the relationship between the safety case L5
and L6, a relationship view is used in Fig. 14. In this branch
of the safety case, the goal (G.5) is to mitigate the Wrong-
OperationalMode LS. Therefore, the Ms shall be analyzed
to ensure that they are addressed (S.5). One M is the CAS
mode feedback, which has to be implemented and verified
(G.6). Similar to Fig. 12b, the validation is shown. The vali-
dation highlights that the goal (G.6) is currently classified as
undeveloped. At the same time, the assumption (A.5.2) was
not evaluated to be justified and the justification (J.5.2) was
not executed. Accordingly, it is shown how the validation
helps to highlight parts of the safety case that need further
refinement.

After browsing through the safety case levels with dif-
ferent views, a final table view demonstrates that it is also
possible to analyze and set specific safety case properties.
In Fig. 15, the properties of the assumptions (Fig. 15a) and
justifications (Fig. 15b) are displayed from safety case L1 till
L4 for the branches of the Advisory. For each assumption in
Fig. 15a, a corresponding justification (same #) in Fig. 15b is
provided. When setting Justi f ied = true as displayed for
the assumptions in Fig. 15a, it is acknowledged that the justi-
fication is sufficient. Similarly, the Executed property of the
justifications shows the justification status. Accordingly, in
the justification table Fig. 15b, it is indicated that it was not
yet reviewed if all LSs of the NoAdvisoryWithIntruderPre-
sent UCA are identified (Fig. 15b #11) limiting the validity
of this part of the safety case.

Safety case progress tracking The last demonstrated func-
tionality for assessing the safety case is the creation and
analysis of safety case statistics. In Fig. 16a, the number of
elements for thewhole safety case is tracked over time to give
an idea of a possible progression of a safety case. Initially,
there are no safety case elements (Fig. 16a #1). After exe-
cuting the generation functionality described in Sect. 4.2.3,
a safety case baseline is created for the current status of the
safety analysis (Fig. 16a #2). However, the validity of the

safety case and completeness of the safety analysis is not
yet assessed. To improve the validity of the safety case, it
is checked if the assumptions are justified, resulting in an
increase in the number of justified assumptions (Fig. 16a #3).
It is important to note that the number of 12 justified assump-
tions corresponds to the 12 justified assumptions shown in
Fig. 15a, highlighting that both views are representations of
the same model. After making sure that the justifications are
adequate for the assumptions, the execution of justifications
can be started. This results in an increase in executed jus-
tifications (Fig. 16a #4). Again, the number of 8 executed
justifications corresponds to the number of executed justifi-
cations shown in Fig. 15b.

In addition to the overarching analysis of the safety case
statistics, it is helpful to take a look at the statistics per safety
case level as depicted in Fig. 16b. Thereby, the progress
throughout all safety case levels can be observed and eval-
uated. In the example, it is visible the number of goals at
safety case L4 (Fig. 16b #4) is substantially lower than the
goals at safety case L3 (Fig. 16b #3). This indicates that
not all CAs were analyzed yet. Simultaneously, zero justi-
fied assumptions and executed justifications at safety case
L5 (Fig. 16b #5) as well as the lack of elements in safety
case L6 (Fig. 16b #6) point to an incomplete analysis. Since
the example is only created for demonstration and validation
purposes, this accurately represents the incomplete state of
the safety case.

In practice, the safety case progress will not be as lin-
ear, but instead include parallel advances. At the same time,
the number of safety case elements will increase or decrease
depending on the resulting adjustments on the systemmodel.
In the end, all assumptions should be justified and all jus-
tifications should be executed to form a convincing safety
case. By validating assumptions and executing justifications,
additional issues in the system design can be identified and
addressed. Ultimately, this leads to an increasing confidence
in the final system design.

123



A System-Theoretic Assurance Framework...

Fig. 15 Sate of safety case assumptions (left) and justifications (right)

Fig. 16 Statistics highlighting the progress of the safety case

6 Discussion

This article proposes an integration of promising approaches
for system design (MBSE), safety analysis (STPA), and
safety assurance (GSN). The model-based nature of the inte-
gration enables assisting automation such as the generation
and assessment of a safety case. However, even with automa-
tion, an advantage cannot be claimed without consideration
of the usability of the generated artifacts. Specifically for
complex systems, working with a generated safety case can
be difficult. This is why this article also highlights how the
model-based nature of the safety case can be utilized in var-
ious ways to improve the usability. Related aspects include
the demonstration of a multi-faceted visualization, the auto-
mated highlighting of safety case parts that require further
attention, and the tracking of the safety case progress. The
model-based integration in the framework allows even more
possibilities than demonstrated in this article. For instance,
the end-to-end traceability of the model-based approaches
enables a change impact analysis from the design till the
assurance. If the design is changed, a functionality can auto-
matically detect that the safety analysis needs to be adapted
[27]. After adapting the safety analysis, a second function-
ality can identify and indicate that a corresponding update
is also needed in the assurance perspective. Implementing

such a multi-layered change impact functionality is only one
of many examples to improve the usability even further.

Because the long-term goal would be to use the approach
in the developments of safety-critical systems, caution with
the following aspects is required. Although generating a
safety case automatically around the safety analysis is sys-
tematic, it does not guarantee that the underlying argument
is correct or sufficient. Accordingly, the validity of the safety
case depends on the extent to which each part of the safety
case is developed and refined.Asdiscussed earlier, this iswhy
it is very important to systematically identify and evaluate all
assumptions and limitations at each safety case level. There-
fore, validation frameworks such as [37] are valuable for
establishing a consistent safety analysis quality and should
extend the current list of assumptions and justifications of
Fig. 5 in future work.

At the same time, the assurance framework in this arti-
cle does not yet cover the relation to other safety analysis
approaches. The reason is that the relations between STPA
and other analysis methods are currently being defined in
guidelines such as [22]. For reference, two examples for
integration will be mentioned. First, it is possible to expand
J.1.2 Follow systematic analysis approach of Fig. 5 and also
demand the analysis with methods in addition to the STPA.
Second, it is possible to use other safety analysis techniques

123



A. Ahlbrecht et al.

to refine and prevent issues that were identified with the
STPA. For instance, if a component failure is identified as
a reason for a LS, an M might request the execution of a
Failure Modes and Effects Analysis (FMEA) or Fault Tree
Analysis (FTA) for the corresponding components. Simi-
larly, Ms can also include other valuable analysis approaches
that help to tackle the challenges of software-intensive sys-
tems. Examples include scenario-based analysis approaches
[38] or formal methods [39].

Another topic of discussion is the demonstrated imple-
mentation. It should be mentioned that the framework can
also be implemented using other tools and languages as long
as the required capabilities are present. A tool-related disad-
vantage of the demonstrated implementation is that it rests on
a tool-specific API and cannot be easily transferred to other
tools. However, there are attempts to standardize the API for
SysMLv2, which might facilitate a transferable implementa-
tion in the future [19].

If an application for safety-critical systems is envisioned,
a tool qualification might be required to verify and vali-
date the automation. When using automation, caution is also
needed. For instance, automationmay introduce a false sense
of confidence into the safety case generation and evaluation.
If specific functionality is provided to check for properties
of the safety case, it must be ensured that these checks are
sufficient and not tempered with. This is particularly impor-
tant when the safety case increases in complexity due to the
subsequent reliance on automation.

7 Conclusion

Adapted system design, safety analysis, and safety assur-
ance approaches are necessary to overcome the challenges
of developing complex systems. Accordingly, this article
proposes an end-to-end integration of recent approaches for
system design (MBSE), safety analysis (STPA), and safety
assurance (GSN). By connecting the approaches in a model-
based fashion, assisting automation is enabled. In this article,
the automation is used to increase the confidence in the
system safety. Therefore, it is demonstrated how a safety
case baseline can be automatically generated and assessed.
The ability to generate a safety case baseline and assess
its properties has shown promising potential to support the
development of complex systems. Automated checks help
to highlight safety case parts that need more attention while
statistics provide a quick overview of the safety case status
and progress.

In future work, it should be further evaluated how the sys-
temdesign, safety analysis, and safety assurance perspectives
can be kept in a consistent state through the already estab-
lished traceability in the model. A related functionality is
a change impact implementation that automatically detects

inconsistencies and updates the respective views. Finally,
integrating the framework with domain-specific standards
and methods should be further refined and evaluated.

Acknowledgements Thisworkhas received fundingby theV&V4NGC
project of the German Aerospace Center (DLR). In addition, this work
has received funding by the European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No. 957210-
XANDAR.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Leveson, N.G., Thomas, J.P.: Certification of safety-critical sys-
tems. Commun. ACM 66(10), 22–26 (2023). https://doi.org/10.
1145/3615860

2. Frazza, C., Darfeuil, P., Gauthier, J.:MBSA in aeronautics: away to
support safety activities. In: Seguin, C., Zeller, M., Prosvirnova, T.
(eds.) Model-Based Safety and Assessment, pp. 31–42. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15842-1_3

3. Fogarty, D., De Salvo, P., Edward, D.: Model-based systems engi-
neering and model-based safety analysis: final report. Federal
Aviation Administration, Tech. Rep. DOT/FAA/TC-20/42 (2021)

4. Krishnan, R., Bhada, S.V.: An integrated system design and
safety framework for model-based safety analysis. IEEE Access 8,
146483–146497 (2020). https://doi.org/10.1109/ACCESS.2020.
3015151

5. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case
automation toolset. In: Ortmeier, F., Daniel, P. (eds.) Computer
Safety, Reliability, and Security, pp. 8–21. Springer, Berlin (2012).
https://doi.org/10.1007/978-3-642-33675-1_2

6. Walden, D.D., Roedler, G.J., Forsberg, K.J., Hamelin, R.D., Short-
well, T.M.: Systems Engineering Handbook, A Guide for System
Life Cycle Processes and Activities. WILEY, San Diego (2015)

7. International Council on SystemsEngineering (INCOSE). Systems
engineering vision 2020. INCOSE, Tech. Rep. INCOSE-TP-2004-
004-02 (2007)

8. Leveson, N. G., Thomas, J. P.: STPA Handbook (2018)
9. Leveson, N.G.: Engineering a Safer World, Systems Thinking

Applied to Safety. The MIT Press, Cambridge (2016)
10. The Assurance Case Working Group (ACWG). Goal Structuring

Notation Community Standard Version 3 (2021)
11. de Souza, F.G.R., de Melo Bezerra, J., Hirata, C.M., de Saqui-

Sannes, P., Apvrille, L.: Combining STPA with SysML modeling.
In: 2020 IEEE International Systems Conference (SysCon) (2020).
pp. 1–8. https://doi.org/10.1109/SysCon47679.2020.9275867

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3615860
https://doi.org/10.1145/3615860
https://doi.org/10.1007/978-3-031-15842-1_3
https://doi.org/10.1109/ACCESS.2020.3015151
https://doi.org/10.1109/ACCESS.2020.3015151
https://doi.org/10.1007/978-3-642-33675-1_2
https://doi.org/10.1109/SysCon47679.2020.9275867


A System-Theoretic Assurance Framework...

12. Acar Celik, E., Cârlan, C., Abdulkhaleq, A., Bauer, F., Schels,
M., Putzer, H.J.: Application of STPA for the elicitation of safety
requirements for a machine learning-based perception component
in automotive. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch,
F. (eds.) Computer Safety, Reliability, and Security, pp. 319–332.
Springer, Cham (2022)

13. Hirata, C., Nadjm-Tehrani, S.: Combining GSN and STPA for
safety arguments. In: Romanovsky, A., Troubitsyna, E., Gashi, I.,
Schoitsch, E., Bitsch, F. (eds.) Computer Safety, Reliability, and
Security, pp. 5–15. Springer, Cham (2019)

14. ObjectManagementGroup (OMG).RiskAnalysis andAssessment
Modeling Language (2021)

15. Estefan, J.A.: Survey ofmodel-based systems engineering (MBSE)
methodologies. Incose MBSE Focus Group 25(8), 1–12 (2007)

16. Aleksandraviciene, A., Morkevicius, A.: MagicGrid® Book of
Knowledge. A Practical Guide to System Modeling using Mag-
icGrid from No Magic, 2nd. Vitae Litera, Kaunas (2021)

17. Roques, P.: MBSE with the ARCADIA method and the Capella
tool. In: 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016). Toulouse, France (2016)

18. Friedenthal, S.,Moore,A., Steiner,R.:APracticalGuide toSysML,
The SystemsModeling Language.MorganKaufmann, Amsterdam
(2015)

19. Object Management Group (OMG). In: Systems Modeling Lan-
guage (SysML®) v2 API and services Request For Proposal (RFP)
(2018)

20. Rosenow, H.: Trade off bewertungsmethodik für tool- und metho-
denentscheidungen zur virtualisierung und modellbasierung in der
entwicklung. Master’s Thesis, Technische Universität München,
München (2018)

21. International Organization for Standardization (ISO). ISO
21448:2022 road vehicles—safety of the intended functionality
(2022)

22. SAE. Using STPA During Development and Safety Assessment of
Civil Aircraft AIR6913, 2018-02-13. Work in Progress

23. SAE. J3187 _202305: System theoretic process analysis (STPA)
recommended practices for evaluations of safety-critical systems
in any industry (2023)

24. SAE. J3307: System theoretic process analysis (STPA) standard
for all industries, WIP

25. Ahlbrecht, A., Durak, U.: Integrating safety into MBSE processes
with formal methods. In: 2021 IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC) (2021), pp. 1–9. https://doi.org/10.
1109/DASC52595.2021.9594315

26. Ahlbrecht,A.,Durak,U.:Model-basedSTPA: enabling safety anal-
ysis coverage assessment with formalization. In: 2022 IEEE/AIAA
41st Digital Avionics Systems Conference (DASC), pp. 1–10
(2022). https://doi.org/10.1109/DASC55683.2022.9925883

27. Ahlbrecht, A., Zaeske,W., Durak, U.:Model-based STPA: towards
agile safety-guided designwith formalization. In: 2022 IEEE Inter-
national Symposium on Systems Engineering (ISSE), pp. 1–8
(2022). https://doi.org/10.1109/ISSE54508.2022.10005396

28. Rushby, J.M.,Xu,X.,Rangarajan,M.,Weaver,T.L.:Understanding
and evaluating assurance cases. NASA, Tech. Rep. CR–2015-
218802 (2015)

29. Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R.: Model based
system assurance using the structured assurance case metamodel.
J. Syst. Softw. 154, 211–233 (2019). https://doi.org/10.1016/j.jss.
2019.05.013

30. Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two
decades of assurance case tools: a survey. In:Gallina, B., Skavhaug,
A., Schoitsch, E., Bitsch, F. (eds.) Computer Safety, Reliability, and
Security, pp. 49–59. Springer, Cham (2018)

31. Leveson, N.G.: White paper on limitations of safety assurance and
goal structuring notation (GSN) (2020)

32. de la Vara, J.L., Garcıa, A.S., Valero, J., Ayora, C.: Model-based
assurance evidence management for safety-critical systems. Softw.
Syst. Model. 21(6), 2329–2365 (2022). https://doi.org/10.1007/
s10270-021-00957-z

33. Wolny, S.,Mazak,A.,Carpella,C.,Geist,V.,Wimmer,M.:Thirteen
years of SysML: a systematic mapping study. Softw. Syst. Model.
(2020). https://doi.org/10.1007/s10270-019-00735-y

34. Ahlbrecht, A., Bertram, O.: Evaluating system architecture safety
in early phases of development with MBSE and STPA. In: 2021
IEEE International Symposium on Systems Engineering (ISSE),
pp. 1–8 (2021). https://doi.org/10.1109/ISSE51541.2021.9582542

35. Sun, L.: Establishing confidence in safety assessment evidence.
PhD thesis, University of York (2012)

36. Cabot, J., Gogolla, M.: Object constraint language (OCL): a defini-
tive guide. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.)
FormalMethods forModel-Driven Engineering: 12th International
School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2012, Bertinoro, Italy,
June 18–23, 2012. Advanced Lectures, pp. 58–90. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-30982-3_3

37. Sadeghi, R., Goerlandt, F.: A proposed validation framework for
the system theoretic process analysis (STPA) technique. Saf. Sci.
162, 106080 (2023). https://doi.org/10.1016/j.ssci.2023.106080

38. Khastgir, S., Brewerton, S., Thomas, J., Jennings, P.: Systems
approach to creating test scenarios for automated driving systems.
Reliab. Eng. Syst. Saf. 215, 107610 (2021). https://doi.org/10.
1016/j.ress.2021.107610

39. Julian, K.D., Kochenderfer, M.J.: Guaranteeing safety for neu-
ral network-based aircraft collision avoidance systems. In:
2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), pp. 1–10 (2019) https://doi.org/10.1109/DASC43569.
2019.9081748

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Alexander Ahlbrecht works as
a scientific associate in the Insti-
tute of Flight Systems at the Ger-
man Aerospace Center (DLR). He
received his master’s degree in
Electronic Automotive and Aero-
space Systems at the TU-
Braunschweig and is currently a
PhD candidate at the TU-Clausthal.
His research focuses on exam-
ining the potential synergy of
model-based systems engineering
(MBSE) and model-based safety
assessment (MBSA) for the devel-
opment of avionics systems. At

DLR, he manages and contributes to multiple research projects.

123

https://doi.org/10.1109/DASC52595.2021.9594315
https://doi.org/10.1109/DASC52595.2021.9594315
https://doi.org/10.1109/DASC55683.2022.9925883
https://doi.org/10.1109/ISSE54508.2022.10005396
https://doi.org/10.1016/j.jss.2019.05.013
https://doi.org/10.1016/j.jss.2019.05.013
https://doi.org/10.1007/s10270-021-00957-z
https://doi.org/10.1007/s10270-021-00957-z
https://doi.org/10.1007/s10270-019-00735-y
https://doi.org/10.1109/ISSE51541.2021.9582542
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1016/j.ssci.2023.106080
https://doi.org/10.1016/j.ress.2021.107610
https://doi.org/10.1016/j.ress.2021.107610
https://doi.org/10.1109/DASC43569.2019.9081748
https://doi.org/10.1109/DASC43569.2019.9081748


A. Ahlbrecht et al.

Jasper Sprockhoff works as a
scientific associate in the Insti-
tute of Flight Systems at the Ger-
man Aerospace Center (DLR). He
received his master’s degree in
Informatics at the TU-Clausthal.
His current research focus is on
the safe integration of machine
learning (ML) algorithms in avia-
tion systems. He is responsible for
the project management and tech-
nical content of the MBSE4AI
project at DLR while contribut-
ing to multiple other research
projects.

Umut Durak is the Group Leader
for Avionics Systems in the Insti-
tute of Flight Systems at the Ger-
man Aerospace Center (DLR). He
is also a Professor for Aeronauti-
cal Informatics in the Informatics
Institute at the TU-Clausthal. His
research interests concentrate on
engineering of software intensive
airborne systems. He has published
5 books and more than 80 papers
in various conference proceedings
and journals. He is an Associate
Fellow and the Co-Chair of Soft-
ware Technical Committee at the

American Institute of Aeronautics and Astronautics (AIAA) and
an Executive Board Member of the German simulation association
Arbeitsgemeinschaft Simulation (ASIM).

123


	A system-theoretic assurance framework for safety-driven systems engineering
	Abstract
	1 Introduction
	2 Background
	2.1 Model-based system design
	2.2 Model-based safety analysis
	2.3 Model-based safety assurance

	3 Related work
	4 Assurance framework
	4.1 Framework overview
	4.1.1 System design
	4.1.2 Safety analysis
	4.1.3 Safety assurance

	4.2 Framework implementation
	4.2.1 Modeling concepts
	4.2.2 Safety case pattern
	4.2.3 Safety case generation
	4.2.4 Safety case assessment


	5 Framework demonstration
	5.1 System design
	5.2 Safety analysis
	5.3 Safety assurance
	5.3.1 Safety case generation
	5.3.2 Safety case assessment


	6 Discussion
	7 Conclusion
	Acknowledgements
	References


