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Orbit:
polar, sun-synchronous
7 day repeat cycle with 
111 orbits ≈ 16 orbits / day

Observations:
≈ 7000 line-of-sight (LOS) wind and 
aerosol/cloud optical profiles
(≈ 5-6 times more than radiosondes)

Aeolus wind and aerosol-cloud observations

Geometry:
Altitude: 308 km
Angle: 35°(off-

nadir)

Vertical resolution:
Max. altitude: ≈ 30 km
Number of bins: 24
Bin thickness: 0.25 – 2 km 

Wind requirements (HLOS)
random error: 1 – 2.5 m/s
systematic error: < 0.7 m/s

Objective: 
Improve numerical weather prediction (NWP) 
and advance understanding of atmospheric 
dynamics and climate processes

35°

Credit: ESA/ATG medialab



• Launch 22 August 2018, nominal lifetime of 
3.5 years exceeded with operation until 5 July 
2023, and assisted re-entry on 28 July 2023

• First European lidar in space after 20 years of 
development challenges and first wind lidar in 
space

• First high-power, ultraviolet (UV) laser in space 
(@ 354.8 nm) with stringent requirements on 
frequency stability (<7 MHz rms)

• Doppler wind lidar principle – straightforward 
but incredibly small wavelength shift

• Challenging direct-detection approach, due to 
need for winds from broad-bandwidth molecular 
Rayleigh backscatter up to lower stratosphere

Aeolus satellite ALADIN laser transmitter

Mie spectrometer Rayleigh spectrometer

Doppler equation:

relative Doppler shift: 

 1 m/s (LOS) ~ 5.64 MHz ~ 2.37 fm

Fig. credits Airbus DS
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ALADIN – a technological challenge

Reitebuch et al. (2009) JAOT / Reitebuch (2012) Springer / Reitebuch and Hardesty (2022) Springer



Aeolus – History and future
& the Aeolus Airborne Demonstrator (A2D)… accompanied by
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Aeolus Airborne Validation Campaigns After Launch 

• 4 airborne campaigns employing the A2D

• 52 flights with 26400 km along the Aeolus track 

 high resolution and high quality data

Lux et al. (2020 & 2022), AMT; Witschas et al. (2020 & 2022), AMT

Campaign # of flights # of underflights Sat track / km

WindVal-III 6 4 3000

AVATAR-E 9 6 4400

AVATAR-I 19 10 8000

AVATAR-T 18 11 11000
Sum 52 31 26400

Total 190 flight hours incl. test and transfer
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The Aeolus-2 Simulator (A2S) Study

 The purpose of this study (Jan. 2024 – Apr. 2025): 

 Re-configure the Aeolus End-to-End Simulator (E2S)

 Assess the radiometric performance of the Aeolus Rayleigh channel (Mie channel 
more complicated) by comparing simulated and measured signals

 Run simulations representative of the planned EPS-Aeolus mission performance 
(without updating the E2S software code).

 Investigation of a Dual Michelson interferometer (DMI) to assess the influence of Mie 
contamination on the Rayleigh channel + accuracy of the correction

 The great potential of the Aeolus End-to-End Simulator (E2S):

 The E2S was used extensively in combination with the Aeolus L1B, L2A and L2B processors before launch for performance simulations, 
algorithm sensitivity studies and functional testing over 15 years.

 Significant work was invested in the E2S to simulate atmosphere and the ALADIN instrument close to reality before launch

 After launch, the E2S was used for estimation of initial signal loss (DLR) and the investigation of noise in the L2A retrievals (Météo
France, ESA-ESTEC) and is now used in the functional testing during the processor delivery (DoRIT, KNMI)

 Functional updates of the E2S (compatible with L1B processor) were provided every 6 months during the operational phase of Aeolus.

End-to-End Simulator E2S

Aeolus Satellite data
L0 

Processor
L1A 

Processor L1B Processor

Calibration Processor L2A Aerosol Processor

L2B Wind Processor
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The Aeolus End-to-End Simulator (E2S)

Orbit + 
Pointing

Atmosphere + 
Ground

ALADIN 
instrument

Data
formatter

Aeolus orbit and DEM

UV surface reflectance
(ADAM database)

L0 + L1A + L1B 
processor
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Laser

wavelength pulse energy

linewidth integration times

Satellite and Structure

telescope aperture

receiver FOV

pointing errors

transmission transmitter chain

transmission receiver chain

pointing errors

nominal off-nadir angle

Atmosphere and Ground

wind altitudes

temperature cloud thickness

pressure cloud backsc. & extinct.

molec. backsc. & extinct. DEM

aeros. backsc. & extinct. albedo

Fabry-Perot spectrometer

peak transmission (direct reflected)

spectral spacing

FWHM / FSR

gaussian defects

Fizeau spectrometer

peak transmission fringe tilt

FWHM / FSR geometrical factor

ACCD

quantum efficiency

pixel characterisation (size, noise, …)

tripod transmission

radiometric gain (LSB/e-)

time in memory zone

Only single transmission values! 
 „weakest“ part of the simulator
 no simulation of angular 

dependent illumination

Miscellaneous

Look-Up-Table (= onboard DEM) constants

various noise sources master clock rate

AISP defaults parameters delay times,

range-dependent bias frequency arrays

number of pulses & measurement sub-resolution

E2S parameters (selection)

Lux et al. (2021) AMT
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Scenarios for comparison of Aeolus vs. Simulation
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Scenario

1

10

 Higher variablity of
Aeolus real  
measurements than 
E2S using ECMWF
model atmosphere
input (AUX_MET)

• U.S. Standard Atmosphere

• constant wind profile
• median aerosol profile*
• adapted dynamic range, noise, …

Comparison of Rayleigh useful signal

* ESA, Reference Model of the Atmosphere (1999) 

• + atmosphere from ECMWF: 
wind, temperature and pressure
and derived molecular backscatter
and extinction

• + transmission values

• Simulator-to-Aeolus-ratio ≈ 1
• Only very weak altitude dependence
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Comparison of Rayleigh wind random error

• Bias: almost 0 m/s reached
(mainly by adapting the calibration and 
noise parameters)

• Random error (HLOS):
• E2S: (vs. median from 0-profile)

sMAD ≈ 3.0 m/s.
• Aeolus:

sMAD ≈ 3.4 m/s
(from ECMWF O-B, corrected
for B-error)

* ESA, Reference Model of the Atmosphere (1999) 

• U.S. Standard Atmosphere

• constant wind profile (0 m/s)
• median aerosol profile*
• adapted dynamic range, 

noise, transmissions, …
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Atmosphere

AB

Laser FM-A

Laser FM-B

Dual Michelson Interferometer (DMI) & Mie cross-talk

DMI
Dual Michelson 

Interferometer (field-
widened)

  Either correction of contamination or flagging
of observations

 Both approaches need determination of 
scattering ratio from EPS-Aeolus data (low 
accuracy from NWP)

 EPS-Aeolus will provide backscatter 
information  Influence of Mie contamination 
can be corrected. 

 But: How accurate does the backscatter 
information need to be to meet the EPS-Aeolus 
wind error requirements?

  Tasks: 
1. Model the DMI (transmission & responses)
2. Determine the wind bias and assess a 

potential error correction scheme
3. Compare to Aeolus DFPI

 Mie contamination on Rayleigh signal is a significant error contributor for 1.3 < SR < 2.0 (depending on atmospheric T)

  In regions where Mie SNR is too low to derive accurate Mie winds (intermediate SR regime) a “correction” of Rayleigh 
winds is needed (critical for DMI)
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DMI vs. Fabry-Pérot-Interferometer (FPI)
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Witschas et al. (2023) AMT / Herbst and Vrancken (2016) Appl. Opt. / Dabas et al. (2008) Tellus / ESA tender, Performance requirements

Transmission curves
Internal reference
Basic assumptions

wind measurement range

 Mie contamination plays only a minor role for the FPI
 With Aeolus-like SR-knowledge the Mie sensitivity error would be ≈ 0.018 m/s / (m/s)  1.8 m/s on 100 m/s range
 The error wind speed dependent

FPI

DMI

DMI

(Required) SR - knowledge
Bias req.:

 Aeolus-1

 EPS-Aeolus breakthrough

 EPS-Aeolus threshold
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 DLR has ≈ 20 years of experience with airborne wind lidars

 Good correlation achieved for Rayleigh clear air signal profiles simulated by the E2S and measured by Aeolus

 Reasonable results achieved for L1B Rayleigh wind random errors (3 m/s vs. 3.4 m/s) for a first case

 Next step: simulate EPS-Aeolus performance with E2S by updating the respective (and known) parameters and 
tuning to required wind random error specification and comparing performance of Aeolus to (expected) EPS-Aeolus

 Future E2S improvements: RSP spots, Fizeau illumination, Rayleigh solar background simulation, end-to end 
verification, …

 A representative DMI simulator (as one option planned for EPS-Aeolus) was developed in the current study.

 The DMI performance was investigated and compared to the Aeolus FPI performance 

 Final step: Validate real EPS-Aeolus measurements by E2S simulations and A2D(2G) measurements

Summary

The funding for this study was provided by





BACK UP SLIDES
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Credit: ESA/ATG medialab



Radiometric performance assessment – Aeolus vs. E2S

 Use of molecular Rayleigh backscattering above clouds 
for instrument radiometric performance verification
 only depending on atmospheric density (temperature)
 low uncertainty

 Different approaches (nadir / off-nadir viewing) and different 
tools at different teams show a factor of about 2.5 to 3 lower 
Rayleigh signal levels compared to pre-launch expectations 
(derived from End-to-End Simulations using default settings)

 Signal levels for high-albedo (ice) ground returns are even 
lower by factor 2.5 to 5.0 (Mie/Rayleigh)

 A factor 2.5 – 3.0 lower atmospheric signal signal increases 
wind random error by a factor of 1.6 – 1.7

 Signal loss potentially caused by a combination of beam 
clipping, characteristics of the telescope and the transmit-
receive optics, and atmospheric turbulence.

2018-09-14 
nadir pointing

End-to-End 
Simulation (E2S)

Observation # 669 Altitude 15.6 km

2018-09-17 off-nadir 2018-09-17 off-nadir

17
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Limitations of the current version of the Aeolus End-to-
End Simulator (E2S)

 As the E2S has not been updated since the launch of Aeolus  Feed the knowledge gained from in-
orbit operations back into the simulator and produce realistic signals depicting real Aeolus observations

 Usage of EO-CFI for orbit and viewing geometry of EPS-Aeolus

 No DEM Look Up Table existing yet for EPS-Aeolus

 Not representing the full complexity of the Fizeau and Double Fabry-Perot interferometers

 DMI can only be integrated in the future

 No standard option to insert information about depolarization by particles

 Reliance on the ADAM albedo map and the inherent uncertainties.

 Inability to simulate certain types of bias sources (e.g. primary mirror temperature)



DMI vs. Fabry-Pérot-Interferometer (FPI)
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Witschas et al. (2023) AMT / Herbst and Vrancken (2016) Appl. Opt. / Dabas et al. (2008) Tellus / ESA tender, Performance requirements

𝑅 =  ஺ି஻
஺ା஻

A = transmitted intensity B = transmitted intensity

Transmission curves
Internal reference 
Basic assumptions


