SIMULATOR FOR EPS-AEC SIMULATOR FOR
UWE Marksteiner¹⁾, Stefanie Knobloch¹⁾, Benjamin Witschas¹⁾,
Markus Meringer²⁾, Dorit Huber³⁾, Katja Reissig⁴⁾
Presentation Time 11.45 AM - 12.00 PM
Presentation Time 11.45 AM - 12.00 PM
Presentat **SIMULATOR FOR E**

UWE Marksteiner¹⁾, Stefanie Knobloch¹⁾, Benjamin Witschas¹⁾, Oliver

Markus Meringer²⁾, Dorit Huber³⁾, Katja Reissigr⁴⁾

Theme.

Chesen Months. 334 EPS, Actual (11:45 AM – 12:00 PM

PresentMu THE WAY TO A PERFORMANCE
SIMULATOR FOR EPS-AEOLUS THE WAY TO A PERFORMANCE
SIMULATOR FOR EPS-AEOLUS

SIMULATOR

Uwe Marksteiner¹⁾, Stefanie Knobloch¹⁾, Benjamin Witschas¹⁾, Oliver Reitebuch¹⁾, /
Markus Meringer²⁾, Dorit Huber³⁾, Katja Reissig⁴⁾ **Paper Number:** 109

Narkus Meringer²¹, Dorif Huber³¹, Katja Reissig⁴⁾

Markus Meringer²¹, Dorif Huber³¹, Katja Reissig⁴⁾

Thema: 04 Towards new operational programma and properations studies

Thema: 04 Towards 1) Institute of Atmospheric Physics, German Aerospace Center DLR, Oberpfaffenhofen 82234, Germany

Nation Center of Atmospheric Physics, German Aerospace Center DLR, Oberpfaffenhofen 82234, Germany

Phone Numeric Translati Experiment Controller (Sensing Technology Institute, German Aerospace Center DLR, Oberphaffenhofen 82234, Germany

The Markus African Center Department Center DR, Action Resisting (Sensing Aerospace Center DLR, Oberphaffen Stephend Physics, Germann Arrospace Center DLR, Oberplatfelthofen 82234, Germann Philip Resission Dealing and Technology, Function Technology, Function Technology, Function Technology, Function Technology, Function Technol

4) IB Reissig, 86923 Finning, Germany

Aeolus wind and aerosol-cloud observations

Objective:

Improve numerical weather prediction (NWP) and advance understanding of atmospheric dynamics and climate processes

Orbit: polar, sun-synchronous 7 day repeat cycle with 111 orbits ≈ 16 orbits / day

> $\frac{3.4}{10.26}$ $10 - 20$

 $\frac{90}{k}$

35°¦ <mark>Geometry:</mark> I Altitude: 308 km Angle: 35° (offnadir)

Observations:

 \approx 7000 line-of-sight (LOS) wind and
 \approx 7000 line-of-sight (LOS) wind and
 $R_{\partial W}$ $R_{\partial W}$ and $R_{\$ aerosol/cloud optical profiles
 $\begin{array}{ccc}\n & & \nearrow a_W & Q_W \\
\hline\n6 & 6 & \text{times more than radiosondes}\n\end{array}$ (≈ 5-6 times more than radiosondes) $\begin{array}{l}\n\textbf{Observations:}\n\begin{array}{l}\n\approx 7000 \text{ line-of-sight (LOS) wind and}\n\text{aerosol/cloud optical profiles}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{l}\n\text{zero: 5-6 times more than radiosondes}\n\end{array}\n\end{array}\n\begin{array}{l}\n\text{Area: 5-6 times more than radiosondes}\n\end{array}\n\end{array}\n\begin{array}{l}\n\text{Area: 5-6 times more than radiosondes}\n\end{array}\n\end{array}\n\begin{array}{l}\n\text{Area: 5-6 times more than radiosondes}\n\end{array$

Vertical resolution: $\begin{array}{r} \n \begin{array}{r}\n 35^\circ \\
 \text{Geometry:} \\
 \text{Altitude: } 308 \text{ km} \\
 \text{Angle: } 35^\circ \text{ (off-} \\
 \text{nadir)}\n \end{array}\n \end{array}$

Max. altitude: $\approx 30 \text{ km}$

Number of bins: 24

Bin thickness: $0.25 - 2 \text{ km}$ Number of bins: 24 35°

Geometry:

Altitude: 308 km

Angle: 35° (off-

nadir)

Mumber of bins: 24

Bin thickness: 0.25 – 2 km

nd requirements (HLOS) Mindle: 35° (off-

angle: 35° (off-

madir)

Max. altitude: ≈ 30 km

Number of bins: 24

Bin thickness: 0.25 – 2 km

Wind requirements (HLOS)

random error: $1 - 2.5$ m/s

systematic error: < 0.7 m/s **Properties and Section**
 Properties and Section

Max. altitude: $\approx 30 \text{ km}$

Number of bins: 24

Bin thickness: 0.25 – 2 km

Wind requirements (HLOS)

random error: 1 – 2.5 m/s

systematic error: < 0.7 m/s

systematic error: < 0.7 m/s

ALADIN – a technological challenge

allenge

alleng

Mie spectrometer Rayleigh spectrometer

- Launch 22 August 2018, nominal lifetime of 3.5 years exceeded with operation until 5 July
- **2023**
 2023
 2023, and assisted re-entry on 28 July 2023

First European lidar in space after 20 years of

development challenges and first wind lidar in

space First European lidar in space after 20 years of Launch 22 August 2018, nominal lifetime of
3.5 years exceeded with operation until 5 July
2023, and assisted re-entry on 28 July 2023
First European lidar in space after 20 years of
development challenges and first wind li space
- First high-power, ultraviolet (UV) laser in space ($@$ 354.8 nm) with stringent requirements on frequency stability (<7 MHz rms) • Launch 22 August 2018, nominal lifetime of
3.5 years exceeded with operation until 5 July
2023, and assisted re-entry on 28 July 2023
• First European lidar in space after 20 years of
development challenges and first win **Example 12 August 2018, nominal lifetime** of
3.5 years exceeded with operation until 5 July
2023, and assisted re-entry on 28 July 2023
• First European lidar in space after 20 years of
development challenges and first wi
	-
	- need for winds from broad-bandwidth molecular Rayleigh backscatter up to lower stratosphere

Doppler equation:

\n
$$
\Delta f/f_0 \approx 10^{-8}
$$
\nrelative Doppler shift:

\n
$$
\Delta f = 2f_0 \frac{v_{\text{LOS}}}{c}
$$
\n
$$
\rightarrow
$$
\n1 m/s (LOS) ~ 5.64 MHz ~ 2.37 fm

Reitebuch et al. (2009) JAOT/Reitebuch (2012) Springer / Reitebuch and Hardesty (2022) Springer

Aeolus — History and future
... accompanied by the End-to-End Simulator (E2S) & the Aeolus Airbe
... Aeolus — History and future
... accompanied by the End to End Simulator (E2S) & the Aeolus Airborne Demonstrator (A2D)
Pre-launch: > 100 recommendations derived for Aeolus instrument alignment, operation, retrieval algorit tory and future
the End-to-End Simulator (E2S) & the Aeolus Ai
nmendations derived for Aeolus instrument alignment, or

 \rightarrow Pre-launch: > 100 recommendations derived for Aeolus instrument alignment, operation, retrieval algorithms and CalVal

- 4 airborne campaigns employing the A2D
- 52 flights with 26400 km along the Aeolus track
- \rightarrow high resolution and high quality data

The Aeolus-2 Simulator (A2S) Study

- -
- The Aeolus-2 Simulator (A2S) Study

 The purpose of this study (Jan. 2024 Apr. 2025):

 Re-configure the Aeolus End-to-End Simulator (E2S)

 Assess the radiometric performance of the Aeolus Rayleigh channel (Mie chan more complicated) by comparing simulated and measured signals
	- Run simulations representative of the planned EPS-Aeolus mission performance (without updating the E2S software code).
	- Investigation of a Dual Michelson interferometer (DMI) to assess the influence of Mie contamination on the Rayleigh channel + accuracy of the correction
- The great **potential** of the Aeolus End-to-End Simulator (**E2S**):
	-
	-
	-
	-

Only single transmission values!
 \rightarrow weakest
 \rightarrow mo simulation of angular

dependent illumination Only single transmission values!
 \rightarrow weakest" part of the simulator
 \rightarrow no simulation of angular

dependent illumination Only single transmission values!
 \rightarrow weakest
 \rightarrow weakest
 \rightarrow no simulation of angular

dependent illumination

ous
 \rightarrow no simulation of angular

dependent illumination

ous
 \rightarrow constants Western States (States Correction of angles Contained States Correction of angles Contained States (States Contained States Contained States Contained States Contained States (States Contained States Contained States Conta

Miscellaneous

Fabry-Perot spectrometer

FWHM / FSR

ACCD in the contract of the co

• U.S. Standard Atmosphere

-
-
-

- U.S. Standard Atmosphere
• constant wind profile
• median aerosol profile
• adapted dynamic range, noise, ...
• + atmosphere from ECMWF:
• wind, temperature and pressure \rightarrow
and derived molecular backscatter
and extinc U.S. Standard Atmosphere

constant wind profile

median aerosol profile*

adapted dynamic range, noise, ...
 $+$ atmosphere from ECMWF:

wind, temperature and pressure \rightarrow

and derived molecular backscatter

and extincti U.S. Standard Atmosphere

constant wind profile

median aerosol profile*

adapted dynamic range, noise, ...
 $+$ atmosphere from ECMWF:

wind, temperature and pressure \rightarrow

and derived molecular backscatter

and extincti and extinction • U.S. Standard Atmosphere

• constant wind profile

• median aerosol profile*

• adapted dynamic range, noise, ...

• + atmosphere from ECMWF:

wind, temperature and pressure \rightarrow

and derived molecular backscatter

and • A through the form ECMWF:
• Wind, temperature and pressure \rightarrow
• and derived molecular backscatter
• Transmission values
• Simulator-to-Aeolus-ratio \approx 1
• Only very weak altitude dependence
• ESA, Reference Model of
-

- Simulator-to-Aeolus-ratio ≈ 1
-

* ESA, Reference Model of the Atmosphere (1999)

Comparison of Rayleigh wind random error $\sum_{\text{base}}^{\text{Laser}}$

• U.S. Standard Atmosphere

-
-
- noise, transmissions, …

- Bias: almost 0 m/s reached (mainly by adapting the calibration and

Reading a derivative constant wind profile (0 m/s)

median aerosol profile*

adapted dynamic range,

noise, transmissions, ...

Bias: almost 0 m/s reached

(mainly by adapting the • U.S. Standard Atmosphere

• constant wind profile (0 m/s)

• median aerosol profile*

• adapted dynamic range,

noise, transmissions, ...

• Bias: almost 0 m/s reached

(mainly by adapting the calibration and

noise par **J.S. Standard Atmosphere**

constant wind profile (0 m/s)

inedian aerosol profile*

idapted dynamic range,

noise, transmissions, ...
 Sias: almost 0 m/s reached

mainly by adapting the calibration and

oise parameter ant wind profile (0 m/s)

in aerosol profile*

ed dynamic range,

transmissions, ...

almost 0 m/s reached

by adapting the calibration and

rameters)
 om error (HLOS):

S: (vs. median from 0-profile)

sMAD ≈ 3.0 m/s
 ant wind profile (0 m/s)
in aerosol profile*
ed dynamic range,
transmissions, ...
almost 0 m/s reached
by adapting the calibration and
rameters)
om error (HLOS):
S: (vs. median from 0-profile)
sMAD \approx 3.0 m/s
olus:

- -
	-

(from ECMWF O-B, corrected

* ESA, Reference Model of the Atmosphere (1999)

Dual Michelson Interferometer (DMI) & Mie cross-talk

- Mie contamination on Rayleigh signal is a significant error contributor for $1.3 < SR < 2.0$ (depending on atmospheric T)
- **Dual Michelson Interferometer (DMI) & Mie cross-talk**

 Mie contamination on Rayleigh signal is a significant error contributor for 1.3 < SR < 2.0 (depending on atmospheric T)

 → In regions where Mie SNR is too low t winds is needed (critical for DMI)
- of observations
- Both approaches need determination of scattering ratio from EPS-Aeolus data (low accuracy from NWP)
- EPS-Aeolus will provide backscatter $\text{information} \rightarrow \text{Influence}$ of Mie contamination can be corrected.
- But: How accurate does the backscatter information need to be to meet the EPS-Aeolus wind error requirements? → If regions where the SNR is too low to derive accerting

winds is needed (critical for DMI)

→ Either correction of contamination or flagging

of observations

Both approaches need determination of

scattering ratio fr A approaches need determination of

statering ratio from EPS-Aeolus data (low

uuracy from NWP)

S-Aeolus will provide backscatter

normation → Influence of Mie contamination

be corrected.

- -
	- potential error correction scheme
	- 3. Compare to Aeolus DFPI

DMI vs. Fabry-Pérot-Interferometer (FPI)

-
-
-

13

Summary

- DLR has \approx 20 years of experience with airborne wind lidars
- Good correlation achieved for Rayleigh clear air signal profiles simulated by the E2S and measured by Aeolus
- **Reasonable** results achieved for L1B Rayleigh wind **random errors** (3 m/s vs. 3.4 m/s) for a first case
- Next step: simulate EPS-Aeolus performance with E2S by updating the respective (and known) parameters and tuning to required wind random error specification and comparing performance of Aeolus to (expected) EPS-Aeolus Final step: Validate real EPS-Aeolus measurements by E2S simulated by the E2S and measured by Aeolus

Freezonable results achieved for L1B Rayleigh wind random errors (3 m/s vs. 3.4 m/s) for a first case

For Aret step: s
- **Future E2S improvements:** RSP spots, Fizeau illumination, Rayleigh solar background simulation, end-to end verification, … Examples the set of the set of the study was provided by \bullet **EUMETSAT**
Next step: simulate EPS-Aeolus performance with E2S by updating the respective (and know
uning to required wind random error specification and compa
- A representative DMI simulator (as one option planned for EPS-Aeolus) was developed in the current study.
- The DMI performance was investigated and compared to the Aeolus FPI performance
-

14

BACK UP SLIDES

Credit: ESA/ATG medialab

Radiometric performance assessment – Aeolus vs. E2S

2018-09-14

 1000

 1200

- Use of molecular Rayleigh backscattering above clouds for instrument radiometric performance verification
	- \rightarrow only depending on atmospheric density (temperature) \rightarrow low uncertainty
- **Different approaches** (nadir / off-nadir viewing) and different tools at different teams show a factor of about 2.5 to 3 lower Rayleigh signal levels compared to pre-launch expectations (derived from End-to-End Simulations using default settings) \nUse of molecular Rayleigh backscattering above clouds for instrument radiometric performance verification \rightarrow only depending on atmospheric density (temperature) \rightarrow low uncertainty\nDifferent approaches (nadir / off-nadir viewing) and different tools at different teams show a factor of about 2.5 to 3 lower Rayleigh signal levels compared to pre-launch expectations (derived from End-to-End Simulations using default settings)\nSignal levels for high-albedo (ice) ground returns are even lower by factor 2.5 to 5.0 (Mie/Rayleigh)\nA factor 2.5 – 3.0 lower atmospheric signal signal increases wind random error by a factor of 1.6 – 1.7\nSignal loss potentially caused by a combination of beam\n Use of **molecular Rayleigh backscattering** above clouds
for instrument radiometric performance verification
 \rightarrow only depending on atmospheric density (temperature)
 \rightarrow low uncertainty
Different approaches (nadir / off-n \rightarrow low uncertainty

Different approaches (nadir / off-nadir viewing) and different

tools at different teams show a factor of about 2.5 to 3 lower

Rayleigh signal levels compared to pre-launch expectations

(derived fr **Different approaches** (nadir / off-nadir viewing) and different
tools at different teams show a factor of about 2.5 to 3 lower
Rayleigh signal levels compared to pre-launch expectations
(derived from End-to-End Simulat
- Signal levels for high-albedo (ice) ground returns are even lower by factor 2.5 to 5.0 (Mie/Rayleigh)
-
- Signal loss potentially caused by a combination of beam

Limitations of the current version of the Aeolus End-to-End Simulator (E2S) imitations of the current version of the Aeolus End-to-

Using Simulator (E2S)

No BEN has not been updated since the launch of Aeolus \rightarrow Feed the knowledge gained from the simulator and produce realistic signals depict

- As the E2S has not been updated since the launch of Aeolus \rightarrow Feed the knowledge gained from inorbit operations back into the simulator and produce realistic signals depicting real Aeolus observations
-
- No DEM Look Up Table existing yet for EPS-Aeolus
- Not representing the full complexity of the Fizeau and Double Fabry-Perot interferometers
- DMI can only be integrated in the future
- No standard option to insert information about depolarization by particles
- Reliance on the ADAM albedo map and the inherent uncertainties.
- Inability to simulate certain types of **bias sources** (e.g. primary mirror temperature)

