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The Aeolus mission The ALADIN instrument
* Launch of the satellite on 22 August 2018 and first-of-its-kind assisted reentry in July 2023 + Wind velocity measurements are performed under 35° off-nadir angle along the line-of-
« Orbit: polar, sun-synchronous dusk-dawn, mean altitude of 320 km, 1 week repeat cycle sight (LOS) and across-track, obtaining only one component of the wind vector.
- 15t European lidar and 1%t Doppler Wind Lidar (DWL) in space [1-3] « Laser pulses emitted in the ultra-violet (UV) at 354.8 nm (thereby profiting from the A4 —

dependence of the effective scattering cross-section of molecules), with a repetition
frequency of 50.5 Hz, a linewidth of =50 MHz, a frequency stability of mostly 7 MHz [5]
and reported pulse energies of 40 mJ — 101 mJ (nominal mission).

* Single payload: ALADIN (Atmospheric LAser Doppler INstrument), equipped with two
frequency tunable flight model (FM) lasers FM-A and FM-B

» Direct-detection approac_h utilizing high-resolution ipterferometry - Allows for the analysis £ + Interferometers: Fizeau for Mie signal and Double-Fabry-Pérot for Rayleigh signal
of narrowband Mie (particles) and broadband Rayleigh (molecular) spectra I + Mie response = Fringe position on Accumulation Charge Coupled Device (ACCD)
» Frequency shift can be associated with the position of an intensity maximum on a suitable * Rayleigh response (Rg) = Contrast ratio of the signal sum of each of the two spots A and B
detector (Mie) and the change in the intensity transmitted through the filters (Rayleigh) e on the ACCD: R(f) = (AQf) = BQC))/(A(f) + B(f))
» - Benefit: Large vertical coverage due to reliable backscatter at all altitudes [4] « Considerable effort was put S —
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The Instrument Response Calibration

A calibration is required to establish a relation between the measured responses and the
frequency of the backscattered light. From the beginning the IRC was seen as a crucial

Response calibration curves

« Curves for ground and internal reference differ remarkably despite both having a spectrally
narrow signal. These differences

contribution to the strategy for the correction of instrumental drifts, e.g. to the spectral \“ : Rayleigh g2 vary with time = illumination
characterization of the instrument using internal measurements and to the correction of A S ' conditions of the interferometers
remaining linear and harmonic biases in the wind speed using ground-return velocities. SR A G %“\1 o] on the two optical paths [8].
I e 1= z~ 30 m/s
* 40 sltepsloleS MHz > 1 GHz (£ 90 m{s) around Iaserlfrequency f, used for measuring wind E coud shadow "\-\e‘wf“\ « Linear fits provide:
» Nadir pointing excludes influence of wind speed (vertical component neglected) 2| > invalid et - slope = sensitivity
- « intercept = intersection point with y-axis

* High albedo of ice + snow = high SNR for ground returns = required for atmospheric Mie

L1B wind retrieval uses a - offset frequency = intersection point with x-axis

o 5t order polynomial fit:

Slope and intercept values are the
S only IRC-related L1B information

a2 forwarded to the L2B processor,
whose wind retrieval is additionally

measurement (alttude of DEM intersection) /
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Timelines of response calibration characteristics Refinement of the calibration approach based on real data

As drifts of instrumental characteristics can be induced, for example, by slowly changing
angles of the light incident on the spectrometers, IRCs are used not only to calibrate Level-1B
winds, but also to monitor the state of the involved parts of the system.

+ Following the launch of Aeolus, unexpected and varying biases in wind speed were
observed. These biases could not be effectively addressed using existing methods such as
the IRCs. A new correction method was introduced to the L2B wind processor, taking into

Figure: 6 e I A A A R T account temperature gradients across Aeolus' primary telescope mirror [10] .
Offset frequency i e . Viea 8 + Additionally, comparisons of Aeolus winds against winds from the European Centre for
DO 3} G N I Medium-Range Weather Forecasts revealed systematic errors in the Mie channel
Rayleigh Tog ' R o g winds, indicating imperfect calibration data [11] .
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f:fr:f:nggfh B P L implemented: Instrument Response Off-Nadir Calibration (IRONIC). With a similar setup of
(NT), the 2 ‘ ' oo i = the actual procedure but performed under the 35° off-nadir pointing, IRONICs were
;’;’t’l‘r’;”(zer’n’;) o I R e e B : L s thought to partly take over the role of IRCs. However, the characteristics of the response
andtheground)| 05 L : TEMER —— “ A ots curves of both modes differ slightly but systematically. This raises the question whether
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over the Arctic ¥y 0 4 i L BT B / systematic error, considering the mission requirement of a maximum bias of 0.7 m/s
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