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ABSTRACT
Cognitive radar involves a closed loop between the radar
receiver, radar transmitter, and the environment, simi-
lar to the perception-action cycle in human cognition.
It adapts acquisition parameters based on the acquired
information, which offers more efficient resource man-
agement of future SAR missions in varying scenes. We
propose a spaceborne cognitive SAR concept for ship
detection, which uses a two-stage process to improve
ship detection capabilities. This radar concept can be
implemented on a single platform using a hybrid mode or
distributed on separate SAR satellites operated in a con-
voy configuration. We implement variational quantum
circuits for the adaptation to the scene in a reinforcement
learning approach to explore possible advantages of quan-
tum computing combined with parameter optimisation
on classical computers.

Index Terms— SAR, cognitive radar, quantum com-
puting, reinforcement learning, radar remote sensing

1. INTRODUCTION

At its core, the purpose of radar remote sensing is to
gain up-to-date information about a scene. Respecting
physical and technical constraints, radar systems use var-
ious modes and techniques to extract the desired scene
parameters. Examples are a variety of data acquisition ge-
ometries, different waveforms and the synthesis of large
synthetic apertures (SAR). While many of these concepts
are employed more or less agnostically of the terrain and
actual scene content, there are good reasons to adapt the
acquisition process dynamically to the scene, an idea
coined as cognitive radar by Simon Haykin [1]. He refers
to the behaviour of some bats to adapt their echolocation
transmission when they assume objects in front of them
such as possible prey. This strategy, induces a richer

Fig. 1: The cognitive radar concept involves a feedback
loop where a primary scanning satellite with a high false
alarm rate directs another satellite to validate potential
ship detections with higher resolution but smaller swath
width. The second satellite relocates its spotlight to the
most promising positions in the ocean based on the cur-
rent state of accumulated SAR data. The spotlight reposi-
tioning and the decision process are denoted in pink, and
multiple such beams could be active simultaneously.



neural response and perception that allows bats to gain a
deeper understanding of their surroundings [2].
In radar systems, waveform diversity and digital beam-
forming (DBF) as well as active phased array antennas
allow for a similar level of dynamic adaptation of the sen-
sors. Challenging aspects are the real-time scene analysis
and the corresponding action planning which are both
crucial for improving the information retrieval and re-
source management beyond established ’static’ concepts.
The application range of cognitive radar systems encom-
passes a wide spectrum. One promising example in the
area of remote sensing is the detection of small ships or
oil spills in large maritime areas or other forms of object
detection in large-scale SAR imaging.
These scenarios suffer from a well-known trade-off be-
tween azimuth resolution and swath width on the ground
[3]. DBF effectively enables to trade resolution for swath
width and vice versa. This allows for a variety of dif-
ferent hybrid acquisition modes as discussed in [4]. An
example of a cognitive radar concept for spaceborne mar-
itime ship detection is illustrated in Fig. 1. A leading
satellite in a ’static’ ScanSAR mode scans the ocean with
a low false negative rate for ships with a low resolution
yet wide swath. It analyses the collected sensory data in
real-time either onboard or on a ground station leading to
strong demand for computational hardware dedicated to
(quantum-) machine learning for a fast automated mode
adaptation. Based on statistical similarities it then seg-
ments the scene into classes that likely represent either
ship or ocean, accepting a high false alarm rate to ideally
include all ships in the scene corresponding to a low false
negative rate. Based on this prior analysis the following
satellite is tasked to use one or more high-resolution spot-
light beams centred on the most promising positions to
clarify whether a ship is truly present.
Instead of first principle methods, this paper aims for
efficient data-driven approaches to determine policies
for the action planning step of the follow satellite, util-
ising reinforcement learning. These methods typically
involve exploring large state-action spaces for finding
good policies as well as rewarding, e.g. in our scenario,
detecting ships and saving resources. Different reinforce-
ment learning schemes are discussed in [5]. A promising
quantum embedding of an actor-critic approach for flight
path optimisation of UAVs is described in [6] which re-
ports better trainability compared to non-quantum imple-
mentations. The aforementioned advantages of quantum
computing seem to enable faster convergence for neural

networks utilizing trainable quantum layers as reported
in [6] [7] and [8]. In contrast to classical artificial neu-
ral networks, their quantum pendant is typically built of
parameterized variational quantum circuits whose param-
eters function as trainable weights in the network. Inputs
are encoded very similarly into the circuit. Exploring
large state-action spaces remains a major challenge in
reinforcement learning [5] which might profit from high
dimensional quantum mechanical correlations.

2. PROBLEM DESCRIPTION

The goal of our concept is to achieve a better detection
quality of ships in large maritime areas without prior
knowledge of the scene using fewer resources than with
a scene-agnostic acquisition. With the chosen satellite
constellation two important tasks arise. The first is to find
potential candidates in the wide swath SAR acquisition of
the lead satellite and the second is the automatic steering
of spotlight beams towards these candidates. The concept
relies on a good choice of positions to steer towards
instead of a second full coverage of the scene. Heuristic
approaches could involve ordering possible targets by
likelihood yet sparing sufficiently plausible positions to
save resources. Since modern phased array antennas as
well as

Fig. 2: Simplification of the beam steering problem: Only
nine potential ship positions in a large scene are con-
sidered. Their probability is inferred from a prior low-
resolution image of the whole scene and colour-coded.
A limited number of additional acquisitions with a high-
resolution mode (three circles in dark khaki) ideally cov-
ers all of the potential ships for validation with high gain.



Fig. 3: Illustration of a variational quantum circuit: Horizontal lines correspond to the state of one qubit each.
A vector x of six input variables is encoded into the collective quantum state of six qubits via single qubit Rx

rotations. Trainable parameters ϑ are encoded via single qubit Ry and Rz rotations of the state. Entanglement is
implemented via two-qubit, controlled z gates (vertical blue lines) and the whole procedure is repeated another time
with independent parameters.

DBF techniques allow a quick adaptation on the tech-
nical level, sophisticated adaptations of multiple high-
resolution beams are possible in principle, allowing for a
rich operational complexity. This makes first principle ap-
proaches challenging and motivates us to test data-driven
approaches using quantum machine learning. Due to the
current limitations of real and classically simulated quan-
tum computers regarding the number of logical quantum
bits (qubits), we simplify the problem of planning the
beam steering.
We restrict the number of candidates to consider to ten or
fewer positions in the scene and their estimated probabil-
ity of finding ships among them, as shown in Fig. 2. We
further restrict the beam steering to three high-resolution
acquisitions which we approximate as circles of 15km ra-
dius on the ground. For the lead satellite, we use labelled
focused SAR images acquired by a Sentinel-1 wide swath
mode of 144 km × 212 km. We further ignore ship move-
ment during the acquisitions. To quantify the success of
the steering we suggest the true positive rate given by
the number of true ships covered by the three acquisi-
tions together divided by all true ships in the scene as we
are interested in covering as many of the true ships with
high-resolution acquisitions as possible within the above
constraints.

3. METHODS

We use labelled data of large maritime scenes from [9]
and train a UNET model [10] with an additional sigmoid
function to predict a probability map for all pixels of the

scene using focused SAR images as input. Due to the
sparsity of the ships in the ocean, fast and stable conver-
gence is enabled by using focal binary cross entropy [11]
as a loss function during training of the UNET model.
Ideally one would like to compare this predicted probabil-
ity map before and after the high-resolution acquisition
of the following satellite to quantify the concept as a
whole. Yet, current quantum computers and classical
simulators allow not much more than 30 logical qubits to
encode information. In principle, each qubit can encode
a real number, for practical reasons a rational number.
Therefore, the probability map needs to be compressed
to such a size to be encoded into a quantum circuit which
motivates the choice of our simplifications of the steering
task. To encode k potential ships with their probability
q = 3k qubits are necessary.
The dataset contains at least an order of magnitude more
ships per scene, such that we uniformly sample k ∈
[3, 10] candidates with a probability above a threshold
each. As an ansatz for a solution, we choose a variational
quantum circuit similar to Fig. 3 which consists of a
quantum circuit and a classical optimisation for training.
The circuit encodes inputs as well as trainable parameters
into rotations of entangled qubits in a high dimensional
(2q) Hilbert space. The network can be rewarded based
on the true positive rate of its choice of beam locations.
We encode the ship candidates and trainable parameters
in the style of the variational quantum circuit (VQC) in
Fig. 3 with the appropriate number of qubits and subse-
quently steer our spotlights to the positions corresponding
to the VQC’s decoded outputs. Initialized in the ground



state |0⟩, a ship’s position in azimuth is encoded into the
angle α towards one qubit’s new state Rα

x

(
|0⟩

)
via rota-

tion around the x axis of its Bloch sphere. The maximal
position corresponds to an angle of 2π. The equivalent
for the position in range. Its probability can be stored in
the same way such that a value of 1 corresponds to an
angle of 2π.
Consequently, k potential ships can be encoded into 3k
qubits together with their probability or 2k without. The
state of each qubit is then modified by different rotations
around the y axis, Ry, and the z axis, Rz , with variable
angles which function as trainable parameters of the cir-
cuit. To break their independence, neighbouring qubits
are entangled via controlled z gates which rotate one
qubit’s state by π around its z axis if another control
qubit is in the |1⟩ state. The whole unitary operation is
repeated multiple times with independent parameters to
increase the circuit’s complexity and establish a nonlinear
relation between inputs and outputs. A higher complexity
extends the space of functions that can be learned by the
VQC allowing for better expressivity in theory. Measur-
ing the state of the same 2l qubits at the end of the circuit
many times (for statistical significance) allows decoding
l pairs of positions in azimuth and range for the centre
of l spotlight beams. The different angles can then be
optimised for a desired output configuration of the beams
while the remaining 3k − 2l qubits are not measured.

4. DISCUSSION & OUTLOOK

We are working on different reward-based optimisation
strategies to reinforce useful steering behaviour. The vari-
ational quantum circuit can also be used inside machine
learning frameworks that allow gradient descent-based
optimisation via symbolic differentiation of an objective
function. Therefore it is desirable to construct a differen-
tiable reward function as a surrogate for the true positive
rate. Alternative gradient-free methods for reinforcement
could also turn out as useful. Moreover, we plan to ex-
plore the effect of weighting the actual knowledge gain
from the spotlight acquisitions compared to the wide ac-
quisition of our lead satellite alone for rewarding our
model. Furthermore, we will study the influence of our
model’s hyperparameters, e.g., the number of repetitions
in the circuit as well as different entangling schemes.
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