
BACHELORTHESIS

Application of Fixed Set Search to the Maximal
Partitioning Problem of Graphs with Supply and Demand

(MPGSD)

presented by

Manuel Roman Reinhart

Faculty: MIN-Faculty

Department of Informatics

Course of Studies: Information Systems

Matriculation Number: 7503222

Supervisor: Prof. Dr. Stefan Voß

Primary Referee: Prof. Dr. Stefan Voß

Institute of Information Systems

Secondary Referee: Dr. Xiaoning Shi

Institute of Information Systems

University of Hamburg

Institute of Transport Research, German Aerospace Center

Fixed Set Search Applied to the MPGSD i

List of Contents

List of Figures ii

List of Tables iii

1 Introduction 1

2 Problem formulation 3

3 Solution approach 5
3.1 Greedy algorithm . 5

3.1.1 Pseudocode for greedy algorithm 6

3.2 A matheuristic based on the fixed set search 8

3.2.1 Fixed set search . 8

3.2.2 Enhanced greedy algorithm with fixed set initialization 11

4 Results 13
4.1 Test instance generation . 13

4.2 Experimental settings . 15

4.3 Computational experiments . 15

4.4 Comparison with correction methods from the literature 25

5 Conclusion 28

A Appendix 29

Bibliography 31

Eidesstattliche Versicherung 32

Fixed Set Search Applied to the MPGSD ii

List of Figures

Fig. 2.1 Example of Maximal Partitioning of Supply and Demand Graphs . . . 4

Fig. 3.1 Example of a Fixed Set . 11

Fig. A.1 Performance of different correction methods applied to general graphs,

as illustrated in Jovanovic et al. (2015), p. 390. 29

Fig. A.2 Performance of different correction methods applied to trees, as illus-

trated in Jovanovic et al. (2015), p. 391. 30

Fixed Set Search Applied to the MPGSD iii

List of Tables

Tab. 4.1 Comparison of the Average Relative Error for solving the MPGSD

problem with the basic greedy traits mentioned in Section 3.1 using

highly and low connected graphs . 17

Tab. 4.2 Comparison of Fixed Set Search performance in highly connected graphs

by varying the number of mbest solutions considered for Fixed Set con-

struction (selected from 500 greedy iterations) 18

Tab. 4.3 Comparison of Fixed Set Search performance in low connected graphs

by varying the number of mbest solutions considered for Fixed Set con-

struction (selected from 500 greedy iterations) 19

Tab. 4.4 Comparison of Fixed Set Search performance in highly connected graphs

by varying the number of iterations to find the fixed set (with mbest set

to 5% of iterations) . 20

Tab. 4.5 Comparison of Fixed Set Search performance in low connected graphs

by varying the number of iterations to find the fixed set (with mbest set

to 5% of iterations) . 21

Tab. 4.6 Comparison of computation times (in milliseconds) for solving the Fixed

Set Search across varying numbers of iterations to generate the fixed

set, in both low and highly connected graphs (with trait 1 and mbest set

to 5% of the total iterations) . 22

Tab. 4.7 Comparison of performance and computation time (ms) for varying the

amount of randomized greedy iterations (trait 4) after Fixed Set selec-

tion across different connectivity levels (with a fixed amount of 500

iterations and mbest set to 5% (25) to find the fixed set) 23

Tab. 4.8 Fixed Set Search performance using graphs from the literature, as de-

scribed by Jovanovic et al. (2015) (1000 iterations, mbest = 2.5%, Trait

1 (maximum demand)) . 26

Fixed Set Search Applied to the MPGSD 1

1 Introduction

Graph partitioning is a fundamental problem in computer science, with applications span-

ning areas such as data mining, network analysis, and the optimization of computational

resources. At its core, graph partitioning involves dividing a graph’s vertices into multiple

groups while minimizing the number of edges between different groups. Such partition-

ing is crucial for enabling efficient computations on large-scale graphs, particularly in

applications that require complexity reduction, such as scientific simulations and network

analyses (cf. Buluç et al. (2016)). Graph partitioning is NP-complete, making exact solu-

tions and approximations difficult to achieve (cf. Fan et al. (2020)).

This problem becomes particularly challenging when the graph’s vertices represent enti-

ties with specific supply or demand attributes, which need to be covered. The Maximal

Partitioning Problem of Graphs with Supply and Demand (MPGSD) extends traditional

graph partitioning by introducing specific supply and demand attributes of vertices. Un-

like standard partitioning, the MPGSD requires that each partition, containing one supply

vertex, covers at least the demand of its demand vertices. Since not all nodes might be

included, it differs from common partitioning problems; this adaptation is used in appli-

cations such as electrical grid management, where each sub-network or partition must be

self-sufficient, reflecting a miniaturized yet complete grid system capable of sustaining

itself without external support (cf. Jovanovic et al. (2015)).

Despite the extensive studies on graph partitioning, the MPGSD remains computation-

ally challenging due to its NP-hard nature (cf. Ito et al. (2008)), prompting the need

for heuristic and metaheuristic approaches. Among these, the Fixed Set Search (FSS)

algorithm emerges as a promising approach. Originally designed for combinatorial op-

timization problems, FSS strategically explores the solution space, generated through a

greedy algorithm, by finding reoccurring combinations in the best generated solutions,

known as the "fixed set". These fixed sets are then optimized iteratively to approach a

near-optimal solution (cf. Jovanovic et al. (2023)).

In recent papers, the FSS has successfully been applied to solve the traveling salesman

problem (Jovanovic et al. (2019)) or the clique partitioning problem (Jovanovic et al.

(2023)). These applications highlight the ability of the FSS to iteratively refine solutions

by identifying and exploiting recurring patterns, making it a powerful tool for complex

optimization tasks.

Parallel to this, recent research on solving the MPGSD has explored a variety of meth-

ods. Mixed Integer Programming (MIP) has been employed for sparse graphs (Jovanovic

Fixed Set Search Applied to the MPGSD 2

and Voß (2016)), where its exact optimization capabilities excel under lower complexity

constraints (cf. Bertsimas and Tsitsiklis (1997)). Heuristic local search and correction

techniques (Jovanovic et al. (2015)) provide flexible and adaptable approaches that incre-

mentally improve solutions, while metaheuristic methods like Ant Colony Optimization

(ACO) (Jovanovic et al. (2016)) utilize pheromone-based probabilistic mechanisms to ex-

plore new paths and exploit known solutions, effectively balancing solution quality and

computational efficiency (cf. Dorigo et al. (2006)). These methods highlight the ongo-

ing effort to balance computational efficiency and accuracy in solving the MPGSD, each

offering unique strengths tailored to specific problem settings.

In this thesis we aim to adapt the FSS to the MPGSD problem, seeking to develop an

efficient solution for dividing supply and demand within graph partitions. By leveraging

the ability of the FSS to identify recurring patterns across various graph sizes, from small

to large, and from low to high connectivity, this approach attempts to balance accuracy

and computational efficiency while addressing the challenges posed by supply-demand

constraints in graph partitioning.

The thesis is structured as follows. Section 2 provides a detailed and formal definition

of the MPGSD. In Section 3, we introduce various solution approaches for solving the

MPGSD, including their algorithmic design, such as a greedy approach and the FSS.

Section 4 then presents the experimental setup, covering the generation of test instances,

evaluation of results and a comparison with an existing approach from the literature. Fi-

nally, Section 5 concludes the thesis with a summary of the key findings and suggestions

for future research.

Fixed Set Search Applied to the MPGSD 3

2 Problem formulation

In this section, we are going to introduce the Maximal Partitioning of Supply and Demand

Graphs (MPGSD) problem. Let us define G = (V, E) to be an undirected graph with a

vertex set V and an edge set E. The set V furthermore is partitioned into two disjunct

subsets Vs and Vd . Let |V | = n, |Vs| = ns and |Vd| = nd , then n = ns + nd . Each vertex

u ∈ Vs will be called a supply vertex and is assigned a positive integer sup(u), called a

supply of v, while each vertex of the second subset v ∈Vd will be called a demand vertex

and is assigned a positive integer dem(v), called a demand of v (cf. Ito et al. (2009)).

As mentioned in Jovanovic et al. (2018), the goal of the MPGSD is to find a set of disjunct

subgraphs Π = {S1,S2,S3, ...,Sn} of the graph G. Each subgraph Si should contain exactly

one distinct supply node u ∈ Vs and potentially multiple demand nodes. The objective is

to maximize the total covered demand over all subgraphs S:

max ∑
S∈Π

∑
v∈S∩Vd

dem(v)

regarding the following constraints ∀Si ∈Π:

Each must have a supply greater or equal to its total demand.

∑
v∈Si∩Vs

sup(v)≥ ∑
v∈Si∩Vd

dem(v) (1)

Each demand and supply vertex can only be an element of one subgraph; therefore, each

demand vertex can only be covered by one supply vertex.

Si∩S j = /0, ∀i, j ∈ {1,2, ...,n} and i ̸= j (2)

All the subgraphs in Π must be connected.

Si is connected (3)

Each subgraph contains only a single supply vertex.

∑
u∈S∩Vs

= 1 (4)

Note that not all demand vertices are required to be covered by Π.

Figure 2.1 presents an example of the maximal partitioning problem in supply and demand

Fixed Set Search Applied to the MPGSD 4

Figure 2.1.: Example of Maximal Partitioning of Supply and Demand Graphs

graphs. The graph in the top left corner shows the initial setup with specific supply and

demand vertices. The following image displays various possible partitions, following the

mentioned restrictions. Each partition is represented by a unique color to highlight the

potential distribution of supply and demand. Even this small example illustrates how

many possible partitions can be found even in a simple graph. To determine an optimal

solution, it would be necessary to explore every conceivable combination of supply and

demand vertices, which confirms the exponential complexity of this problem. Therefore,

we aim to find a near-optimal solution using various heuristic approaches.

Fixed Set Search Applied to the MPGSD 5

3 Solution approach

This section outlines the methodologies employed to tackle the maximal partitioning

problem of supply and demand graphs. Given the complexity and the combinatorial na-

ture of the problem, we explore various strategies that aim to efficiently find near-optimal

solutions. The methods discussed include a Greedy algorithm, which offers a straightfor-

ward approach to partitioning by iteratively making local optimal choices. Additionally,

we explore a matheuristic approach that combines heuristic methods to improve both so-

lution quality and computational efficiency. This approach is detailed through its key

components: the Fixed Set Search and an Enhanced Greedy Algorithm, which incorpo-

rates the initialization using the fixed set for better performance and stability to tackle the

problems complexity.

3.1 Greedy algorithm

To find an initial solution for the problem and subsequently create multiple solution in-

stances to identify recurring fixed sets, we start by implementing a greedy algorithm. The

key principle of greedy algorithms is that at each step, decisions are made by selecting

the locally optimal choice (e.g., adding the best adjacent vertex to a subgraph) without

reconsidering previous decisions. Once a decision is made, it is final, and the algorithm

does not backtrack or reverse these choices (cf. Cormen et al. (2022)).

We will start our greedy algorithm with a given MPGSD graph G. The solution will

contain n = |Vs| subgraphs, one for each supply vertex. After initialization each subgraph

will only contain its corresponding supply vertex. Afterwards the subgraph Si with the

most remaining supply, will be selected and extended by a vertex v∈Vd , which is adjacent,

not yet part of any other subgraph and whose demand can be fulfilled by the supply vertex.

The choice of vertex can be determined depending on the desired trait, similar to those

mentioned by Jovanovic et al. (2015):

• Trait 1: Most available demand that is not covered

• Trait 2: Most adjacent vertices

• Trait 3: A combination of adjacent vertices and remaining demand

• Trait 4: A random trait from the above

If selecting a vertex by the first trait, an iteration is performed over each vertex u ∈ Si in

the current subgraph. For each vertex u, we look at its adjacent vertices v ∈Vd . The max

dem(v) ∀v ∈ Vd will be selected if it exceeds the demand of previously found vertices

Fixed Set Search Applied to the MPGSD 6

and if its demand can be fulfilled. After going over every vertex u and its adjacent vertices,

the vertex with the maximum demand will be returned. This heuristic is effective, if we

want to cover high demand relatively quickly. However, subgraphs might block other

subgraphs from further expansion, locking them in place. To tackle this challenge we

take a look at the second trait.

If we select a vertex using the second trait, we follow a similar approach, but instead of

selecting the vertex with the most demand, we select the vertex with the largest number

of adjacent vertices, whose demands are not yet being covered. This way, we assure that

the subgraph has enough "room" to expand to further vertices and does not get stuck (as

illustrated in the top right partition of Figure 2.1).

To embrace both traits, we can use a combination of both. Let x = dem(v)
|ad j(v)|+1 with |ad j(v)|

being the number of adjacent vertices of v, whose demands are not yet being covered. We

define our ratio r = 1
x . We then select the vertex with the maximum r among all vertices

found and add it to the subgraph.

For example, let us assume we have a vertex k with dem(k) = 10 and |ad j(k) = 1| and

a vertex p with dem(p) = 10 as well, but |ad j(p)| = 3. For k our r = 0.2 and for p our

r = 0.4. In this scenario, vertex p would be selected as our maximum and added to the

subgraph.

Finally, instead of generating just one solution each time we solve our MPGSD graph G,

we can obtain multiple solutions by using a random trait from the three available traits

for selecting each new vertex to add to the subgraph. This approach allows us to gather a

diverse set of solutions, which can later be analyzed to identify recurring fixed sets.

If no fitting adjacent vertex can be found in any of the subgraphs, due to a lack of remain-

ing supply or because no adjacent vertices are available, the algorithm terminates and

returns Π with a set of subgraphs Si ∈ Π for G. At this stage, we can consider our graph

G solved. However, it is important to note that we cannot guarantee that our solution is

optimal or fully satisfactory, i.e., all supply is utilized or all demand is covered.

3.1.1 Pseudocode for greedy algorithm

If we take a look at the pseudocode of algorithm 1: greedySolve, we see that the algorithm

takes an MPGSD graph and one of our previously discussed traits. The algorithm will

return a number of subgraphs that represent our solution, similar to the colored sections

in Figure 2.1.

We begin by resetting the vertices of our graph. This step ensures that our graph can be

solved multiple times without needing to build a new graph each time. This becomes

Fixed Set Search Applied to the MPGSD 7

important when discussing our Fixed Set Search, which requires solving the problem

multiple times. After resetting each vertex, we create a new subgraph for each supply

vertex in our MPGSD graph.

Next, we initialize the covered demand of the entire problem to 0 and set the total re-

maining supply to the combined supply of the supply vertices. Then, we enter a loop in

line 4 that always selects the subgraph with the highest remaining supply that is not yet

complete. If a subgraph is found that is not yet finished, we select the best fitting vertex

to add to our subgraph using our selected trait. A vertex can only be selected if its de-

mand can be fulfilled by the supply vertex of the subgraph, it is adjacent to any vertex of

the subgraph, and it is not already covered by another subgraph. If these conditions are

not met, the subgraph is set to complete. Otherwise, the selected vertex is added to the

subgraph. We then update the vertex to be set as covered and adjust the remaining supply

of the subgraph, as well as the overall used supply and covered demand.

The loop ends when no subgraph is available for selection. The algorithm then returns its

solved graph containing our subgraphs and terminates.

Algorithm 1 greedySolve: Pseudocode for solving the MPGSD problem using a greedy
approach.
Input: g: MPGSD Graph, trait: trait for vertex selection
Output: A solved graph containing all the subgraphs, the graphO f SubGraphs

1: resetGraphVertices(g)
2: graphO f SubGraphs← new SolvedGraph(g)
3: graphO f SubGraphs.updateSupAndDem(g.getSupAndDem())
4: while true do
5: selectedSubGraph← graphO f SubGraphs.getSubgraphWithHigestSupply()
6: if selectedSubGraph is null then
7: break
8: end if
9: selectedAd jDemV ← selectedSubGraph.getVertexToAdd(trait)

10: if selectedAd jDemV is null then
11: selectedSubGraph.setComplete()
12: else
13: selectedAd jDemV.updateVertex()
14: selectedSubGraph.addVertex(selectedAd jDemV)
15: graphO f SubGraphs.updateSupAndDem(selectedAd jDemV.getDemand())
16: end if
17: end while
18: return graphOfSubGraphs

Fixed Set Search Applied to the MPGSD 8

3.2 A matheuristic based on the fixed set search

To address the problem, that we cannot guarantee that our solution is optimal, and achieve

more satisfactory results, we implement a fixed set search algorithm. The fundamental

concept of this approach is to solve the graph multiple times, identify instances of recur-

ring vertex combinations, and initialize our greedy algorithm again using the discovered

combinations.

This method allows us to leverage previously identified, high-potential, patterns and avoid

starting the entire process from scratch each time. By doing so, we aim to enhance both

the efficiency and the quality of the solutions produced. This allows the algorithm to focus

on optimizing the remaining parts of the graph rather than starting from scratch each time

(cf. Jovanovic et al. (2023)).

3.2.1 Fixed set search

As mentioned before, a fixed set is a subset of vertices that frequently appear in high-

quality solutions. At the start of Algorithm 2: getFixedSets, we initialise the fixed sets as

an empty list, where we will later on store one subgraph for each corresponding supply

vertex. We also initialize an empty array of size m, where we store the mbest solutions,

which will later be analysed to find recurring patterns.

After initialization, we greedily solve our MPGSD problem t times, with t ≥ mbest , using

a random trait (trait 4), as described in Section 3.1, to create a variety of solutions which

differ from one another. If a solution passes a certain threshold:

Supplycovered

Supplytotal
> threshold

which can be defined beforehand, we consider it a good enough solution to be added to

our array of mbest solutions. If the array of mbest solutions is already full, a new solution

that outperforms any of the existing ones in terms of demand coverage will replace the

current worst-performing solution. If none of the t solutions surpasses the threshold, we

simply add a solution where each subgraph contains only its supply vertex.

Once we have our array of mbest solutions, we aggregate all subgraphs for each supply

vertex together, as shown in line 16 of Algorithm 2. For example, all the subgraphs cor-

responding to supply vertex one from every solution in our array are grouped together.

This results in m subgraphs per supply vertex. Before we proceed with finding the com-

mon subgraphs, we need to reset the graph vertices because they will be rebuilt during the

creation of the fixed sets.

Fixed Set Search Applied to the MPGSD 9

The algorithm for finding the fixed sets, as represented in line 19 of Algorithm 2, is

detailed in Algorithm 3: f indFixedSet and will be explained in the next paragraph. It

involves analyzing these grouped subgraphs to identify recurring patterns and create a

common subgraph for each supply vertex. After finding a common subgraph for each

supply vertex, using Algorithm 3, it is added to the list of fixed sets. Once all groups of

subgraphs have been processed, the algorithm returns the complete list of fixed sets.

Algorithm 2 getFixedSets: Pseudocode for getting fixed sets
Input: g: MPGSD Graph, t: number of greedy solutions, m: number of solutions to

consider for FSS, threshold: percentage of supply that should be covered
Output: A list of subgraphs, one for each supply vertex, the f ixedSets

1: f ixedSets← empty list
2: arrayO f BestGreedySolutions← new array of size m
3: for i← 0 to t do
4: solution← greedySolve(g, 4)
5: covSup← solution.getCovSup()
6: totalSup← solution.getTotalSup()
7: supPercentCovered← covSup

totalSup
8: if supPercentCovered > threshold then
9: findPlaceInArray(arrayO f BestGreedySolutions, solution)

10: end if
11: end for
12: if arrayO f BestGreedySolutions is empty then
13: replacementSolution← new SolvedGraph(g)
14: arrayO f BestGreedySolutions[0]← replacementSolution
15: end if
16: listForEachSupply← sortBySupplyV(arrayO f BestGreedySolutions)
17: resetGraphVertices(g)
18: for x← 0 to listForEachSupply.size()−1 do
19: f ixedSet← findFixedSet(listForEachSupply.get(x), g)
20: f ixedSets.add(f ixedSet)
21: end for
22: return f ixedSets

In Algorithm 3, for finding each fixed set out of our list of aggregated supply vertices, we

begin by examining all the edges in each subgraph and count their occurrences, storing

their sum in a frequency map. If an edge appears in more than 50% of the subgraphs, it

is considered common and included in a new subgraph called the commonSet. We then

create our final subgraph, the f ixedSet, by applying the extractConnectedComponent

method to the commonSet. This method checks the connectivity of the commonSet using a

Depth-First Search (DFS) and returns only the portion of the commonSet that is connected

within the same cluster as the supply vertex. Finally our algorithm then terminates and

returns this f ixedSet. If no common edges are found initially, we return a subgraph

containing only the supply vertex. By repeating this process for each of the aggregated

Fixed Set Search Applied to the MPGSD 10

supply vertices, we obtain one fixed set per supply vertex, collectively forming our fixed

sets.

Algorithm 3 findFixedSet: Pseudocode for finding a fixed set out of multiple subgraphs
Input: subgraphsForOneSupply: list of subgraphs, g: MPGSD Graph
Output: A common subgraph for the corresponding supply vertex, the f ixedSet

1: edgeFrequency← empty map
2: for i← 0 to subgraphsForOneSupply.size()−1 do
3: countAllEdges(subgraphsForOneSupply.get(i), edgeFrequency)
4: end for
5: threshold← subgraphsForOneSupply.size()/2
6: commonEdges← empty set
7: for each entry in edgeFrequency do
8: if entry.value > threshold then
9: commonEdges.add(entry.key)

10: end if
11: end for
12: if not commonEdges.isEmpty() then
13: commonSet← createFixedSet(commonEdges)
14: f ixedSet← commonSet.extractConnectedComponent()
15: return f ixedSet
16: end if
17: return new SubGraph(getSubgraphsSupplyVertex())

Let us illustrate the basic concept of finding a fixed set with a small example. As seen in

Figure 3.1, we have two different solutions for the same MPGSD problem. Let us assume

they would surpass our initial threshold and are considered good solutions. Let m = 2,

and these two solutions are in our array of mbest solutions.

In Algorithm 3, we count all the edges for the first supply vertex, in this case, the one

surrounded red. We would count the edges from sup(10) to dem(4) and from dem(4)

to dem(2) twice. The edge from sup(10) to the upper vertex dem(4) and the edge from

dem(2) to dem(1) are only counted once.

Because only the edges from sup(10) to dem(4) and from dem(4) to dem(2) occur in over

50% of the solutions, they are considered common. Therefore, our corresponding fixed

set for the supply vertex surrounded in red would include the edges from sup(10) down to

dem(4) and from dem(4) to dem(2).

After repeating the process for every group of supply vertices, such as the green and blue

surrounded supply vertices in our example, we would obtain the shown fixed sets.

Fixed Set Search Applied to the MPGSD 11

Figure 3.1.: Example of a Fixed Set

3.2.2 Enhanced greedy algorithm with fixed set initialization

To solve our MPGSD problem using the identified fixed sets, we use Algorithm 4. We

start by initializing currentBestCoverage to zero and set bestGraph null. The algorithm

then iterates a specified number of times. In each iteration, we reset the graph vertices

from previous solutions, rebuild the fixed sets and greedily solve our graph as described

in Algorithm 1, but with a modified initialization. Instead of starting each subgraph from

scratch with only its supply vertex, we initialize each subgraph with the vertices from the

fixed set, as shown in line 6 of Algorithm 4. If the demand coverage in the current solution

is higher than our current best coverage, we update bestGraph and currentBestCoverage

to the current solution’s values.

Trait 4 includes randomness by alternating between the different greedy strategies (Traits

1, 2, and 3). This randomized greedy algorithm with pre-selected elements aims to ex-

plore a wider range of potential solutions by varying the method of vertex selection. The

purpose of performing multiple iterations with the previously identified fixed set is to di-

versify the search process, allowing the algorithm to explore various solution paths and

ultimately select one with the most demand coverage out of all solutions.

By using the "Fixed Set Search" approach to solve our problem, we anticipate the follow-

ing benefits:

Fixed Set Search Applied to the MPGSD 12

Algorithm 4 getBestFSSolution: Pseudocode for solving the MPGSD problem using a
greedy approach with fixed sets.
Input: iterations: number of iterations, g: MPGSD Graph, trait: trait for vertex selec-

tion, f ixedSets: list of fixed sets
Output: A solved graph to the MPGSD problem using Fixed Sets, the bestGraph

1: currentBestCoverage← 0
2: bestGraph← null
3: for i← 1 to iterations do
4: resetGraphVertices(g)
5: rebuildFixedSetVertices(f ixedSets)
6: solved← greedySolve(g, trait, f ixedSets)
7: currentDemCov← solved.getTotalCoveredDemand()
8: if currentBestCoverage < currentDemCov then
9: currentBestCoverage← currentDemCov

10: bestGraph← solved
11: end if
12: end for
13: rebuildFixedSetVertices(bestGraph)
14: return bestGraph

1. Efficiency: Starting the greedy algorithm with pre-selected fixed sets reduces the

need for to start from scratch with only a single supply vertex each time, leading to

faster high-quality solutions. By leveraging previously identified successful vertex

combinations, the algorithm can bypass many of the early, less effective iterations.

2. Improved solution quality: Due to the fixed sets, the algorithm starts in more

promising regions of the solution space, improving the chances of finding near-

optimal solutions for the MPGSD problem. Reusing successful vertex combina-

tions from previous runs can therefore enhance the overall quality of the method.

However, there are potential drawbacks to this approach:

1. Dependency on initial solutions: The effectiveness of the fixed set search depends

heavily on the quality of the initial solutions. If the initial solutions are not are not

diverse or of high enough quality, the fixed sets identified will also be insufficient,

which can lead to a suboptimal final solution.

2. Limited exploration: While the fixed sets may lead to starting in promising re-

gions, as mentioned before, this could also limit the further exploration of possible

solutions and potentially result in missing out on solutions which do not fit to our

initial partition.

In the next section, we are going to analyse how effectively the Fixed Set Search approach

performs across different types of graphs to determine whether these benefits hold true or

whether the potential drawbacks influence the success of the algorithm.

Fixed Set Search Applied to the MPGSD 13

4 Results

In this section, we present the results of our computational experiments to evaluate the

effectiveness of the proposed solution approach for the MPGSD. We begin by describ-

ing the generation of test instances, followed by the experimental settings, including the

hardware and software environment used for the experiments. Finally, we present and an-

alyze the results of our computational experiments, focusing on the influence of different

variables, such as the number of iterations, the amount of mbest solutions or the different

solving traits, in terms of solution performance and computational time. Additionally, we

compare our method with a correction approach proposed by Jovanovic et al. (2015) to

assess the effectiveness of our approach against existing methods.

4.1 Test instance generation

To create the test instances for the MPGSD problem, we convert a JSON file into our

graph. The JSON file follows a specific structure:

Listing 1 JSON for MPGSD graph

1 {

2 "supplyVertices": [

3 {"id": 1, "value": 10}

4],

5 "demandVertices": [

6 {"id": 2, "value": 2},

7 {"id": 3, "value": 4},

8 {"id": 4, "value": 3},

9 {"id": 5, "value": 3},

10],

11 "adjacencies": [

12 {"source": 1, "targets": [2]},

13 {"source": 2, "targets": [3, 4, 5]},

14]

15 }

Each of the supply and demand vertices is initialized with its corresponding value. Supply

vertices are initialized with their supply values, and demand vertices with their demand

Fixed Set Search Applied to the MPGSD 14

values. The adjacencies are then constructed based on the JSON structure.

For example, an entry such as "source": 2, "targets": [3, 4, 5] means that edges are created

between vertex 2 and vertices 3, 4, and 5. Consequently, vertices 3, 4, and 5 are added to

the adjacency list of vertex 2, and vertex 2 is added to the adjacency lists of vertices 3, 4,

and 5. By processing every entry in the adjacencies list, we construct the entire MPGSD

graph.

The JSON file is generated using a Python script. First, we define the number of supply

vertices, numsup, and demand vertices, numdem, that we want our graph to consist of. Each

demand vertex is assigned a value within the interval [10,40]. The interval for the supply

values [minsup,maxsup] is calculated by considering the average demand, as well as the

number of demand and supply vertices. The upper limit of the supply value interval,

maxsup, is calculated using the formula:

maxsup = avgdem × numdem

numsup

The result defines the upper boundary of the supply values. To determine the lower bound-

ary, minsup, we divide maxsup by 10:

minsup =
maxsup

10

After having set the values of the vertices, we need to create the adjacencies. To evaluate

our results effectively, it is crucial that we know what the best possible solution would

look like beforehand. We begin by selecting a supply vertex and adding a random demand

vertex to its adjacencies. If the supply is not fully covered by this vertex, we continue by

adding a demand vertex to the adjacnecies of the previous one, that has a demand less

than the remaining supply. Continuing this process creates a chain of demand vertices,

creating a snake-like pattern. If the remaining supply is lower than the minimum demand

value mindem, we add a final demand vertex whose demand is set equal to the remaining

supply, thus making an exception to the preset interval boundaries, but it allows us to

guarantee that there is an optimal solution that utilizes the entire supply.

After applying this process to each supply vertex, the optimal solution is equal the total

available supply. This allows us to compare the total available supply of the MPGSD

graph to the supply coverage of our FSS results and calculate the relative errors of the

generated solutions.

To complete the adjacencies of the entire graph, we differentiate between low and high

connectivity graphs. In a highly connected graph, each vertex has 10 random vertices

Fixed Set Search Applied to the MPGSD 15

added to its targets, whereas in a low connectivity graph, each vertex will have only one

random vertex added to its targets. To ensure connectivity, we perform a Depth-First

Search (DFS) to check the graph’s connectivity. If any vertex is not connected to the rest

of the graph, a random connection is added to its targets. The DFS is repeated until all

vertices are part of a single connected graph. This guarantees that there is a path between

any two vertices, ensuring the MPGSD graph is fully connected.

4.2 Experimental settings

This section outlines the computational environment and settings employed for testing

and evaluating the performance of our algorithm.

The algorithms were developed in Java using the Eclipse IDE 2024-06. All experiments

were executed on a machine featuring an AMD Ryzen 5800X 8-Core Processor, paired

with 32 GB of DDR4-3000 MHz RAM, running Microsoft Windows 10 64-bit. Although

the system is equipped with 32 GB of RAM, Eclipse was configured to utilize a maximum

of 2 GB during testing to maintain consistent performance.

To provide a thorough evaluation of the proposed algorithm, we tested it on a range of

graph sizes. The selection of graph sizes was based on the methodology described in

Jovanovic et al. (2015), while the implementation of the graphs was done according to

the procedures detailed in the previous section 4.1.

4.3 Computational experiments

As test graphs, we use both highly connected and low connected MPGSD graphs, as

mentioned in Section 4.1. To assess our results as accurately as possible, we generated

500 solutions for each test case to determine the average from these solutions. We evaluate

all results based on the following metrics:

• Average Relative Error (Avg) in percent:

avgrelativeError =

(
1− avgcoveredDem

optimal

)
× 100

• Standard Deviation (SD) in percent:

SD =

√
∑(relativeError− avgrelativeError)

2

solutions
× 100

• Maximum Relative Error (Max) in percent.

Fixed Set Search Applied to the MPGSD 16

Due to the method of the FSS, we have a lot of different variables, we can change, be it

the amount greedy iterations we perform to find our mbest solutions, the size of our mbest

solutions to create our fixed set, or the greedy solving trait, we use to solve the problem

using our fixed set. For all tests, we kept the threshold fixed at 0.7, meaning only solutions

with a supply coverage greater than 70% were considered for our array of mbest solutions.

The first table 4.1 shows the results if we were to solve the MPGSD graph using only our

normal greedy traits, without performing a FSS. For each trait, the results are listed for

both, low and high connected, graphs.

From our results, we can conclude that trait 1 for highly connected graphs outperforms

the other two traits for every graph. For low connected graphs, trait 1 performs worse than

traits 2 and 3 for some graphs, but still outperforms both traits for most low connected

graphs. Therefore, after generating our fixed set, we use trait 1 in the following tables,

to determine our final results, in order to better compare the influence of changing each

variable, such as the amount iterations or the size of mbest .

When examining the influence of the number of mbest solutions, it is evident that increas-

ing the number of mbest solutions generally leads to a lower Maximum Relative Error

and Standard Deviation in almost all cases, for both low connected and highly connected

graphs. This trend indicates that a larger pool of solutions contributes to greater stability

and consistency in the results. However, the impact on the Average Relative Error is more

nuanced. In highly connected graphs, the best results for Average Relative Error are of-

ten achieved with mbest = 10. For low connected graphs, the outcomes are more varied;

while increasing mbest often outperforms some solutions with a smaller amount of mbest

solutions by a few percentage points, there can be large jumps in error rates, as seen in

Table 4.3. When taking a look at the 2x40 graph, the Average Relative Error increases

from 7.36% with mbest = 10 to 17.86% with mbest = 100.

In assessing the impact of the number of iterations, the data clearly shows that more

iterations consistently decrease the Maximum Relative Error, Standard Deviation and in

nearly all cases, reduce the Average Relative Error as well. This applies for both low

connected and highly connected graphs, reinforcing the idea that more iterations lead to a

greater exploration of the solution space, resulting in better overall results.

When comparing the Average Relative Error of the FSS approach to the results from Table

4.1, where the graph was solved using only a greedy approach with a specific trait, we can

observe that the FSS approach almost always yields better results in low connected graphs,

with improvements in at least 75% of results. This noticeable improvement highlights the

effectiveness of the FSS in scenarios where the connectivity of the graph is low and the

problem complexity is higher.

Fixed Set Search Applied to the MPGSD 17

Table 4.1.: Comparison of the Average Relative Error for solving the MPGSD problem
with the basic greedy traits mentioned in Section 3.1 using highly and low
connected graphs

Sup x dem Error trait 1 (%) Error trait 2 (%) Error trait 3 (%)

High Conn. Low Conn. High Conn. Low Conn. High Conn. Low Conn.

2x6 0.0 0.0 31.82 58.49 4.55 56.60

2x10 0.0 0.0 4.35 14.44 13.04 17.78

2x20 0.94 33.76 13.21 24.12 5.35 14.15

2x40 0.0 25.92 0.89 31.70 3.55 29.25

5x15 0.0 26.63 10.28 38.46 10.28 26.63

5x25 2.83 0.84 14.16 36.59 13.88 19.27

5x50 0.99 18.47 7.12 24.90 7.45 5.09

5x100 0.0 20.62 3.52 22.06 4.58 19.96

10x30 2.78 2.30 23.54 35.25 14.68 11.06

10x50 10.30 7.30 13.54 21.90 17.78 13.77

10x100 1.40 25.27 7.44 28.29 8.29 13.89

10x200 0.20 8.94 5.29 30.57 3.35 27.12

25x75 3.26 4.74 23.21 14.85 14.82 6.62

25x125 1.06 6.08 19.35 17.87 13.40 9.51

25x250 1.83 5.34 14.48 10.40 7.58 9.01

25x500 0.66 2.42 4.10 16.74 6.07 10.36

50x150 2.15 2.96 22.67 21.93 15.02 4.06

50x250 2.69 5.54 16.77 20.29 14.61 5.25

50x500 2.35 5.26 9.70 12.24 7.93 6.78

50x1000 0.61 8.52 3.23 19.05 2.77 9.62

100x300 5.55 1.27 27.63 18.71 14.96 3.27

100x500 4.06 5.06 13.31 15.37 14.22 4.05

100x1000 1.01 4.07 7.34 9.10 8.41 5.73

100x2000 0.50 4.66 3.47 11.37 3.76 5.97

200x600 3.84 1.12 24.44 17.52 13.30 1.18

200x1000 4.44 3.09 14.63 11.11 14.65 3.11

200x2000 2.01 4.91 7.18 7.24 7.78 3.25

200x4000 0.34 3.95 2.91 9.23 3.81 4.14

400x1200 4.74 1.04 24.46 15.19 12.71 0.88

400x2000 4.51 3.79 16.29 10.49 13.02 2.06

400x4000 1.10 4.20 6.70 6.79 8.11 3.50

400x8000 0.40 3.68 3.26 6.39 3.97 3.58

In contrast, in highly connected graphs where trait 1 performs exceptionally well, the

FSS still manages to outperform it in around 50% of the cases, particularly when a lower

Fixed Set Search Applied to the MPGSD 18

percentage of mbest solutions is used relative to the number of iterations.

Table 4.2.: Comparison of Fixed Set Search performance in highly connected graphs by
varying the number of mbest solutions considered for Fixed Set construction
(selected from 500 greedy iterations)

Sup x dem mbest = 10 mbest = 25 mbest = 50 mbest = 100

Avg Max SD Avg Max SD Avg Max SD Avg Max SD

2x6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2x10 0.00 0.00 0.00 0.00 0.00 0.00 1.57 1.57 0.61 0.00 0.00 0.00

2x20 0.00 8.49 1.20 0.00 5.03 0.83 1.77 2.44 0.80 1.57 1.57 0.61

2x40 0.00 3.77 0.86 0.67 3.55 0.81 0.93 2.34 0.87 0.22 2.00 0.80

5x15 0.00 0.93 0.37 0.93 2.34 0.62 1.13 4.53 0.78 0.00 2.34 0.53

5x25 1.13 4.82 0.80 2.55 3.97 0.74 1.99 4.14 0.79 4.53 6.80 1.30

5x50 3.15 4.14 0.79 0.66 4.14 0.81 0.20 1.33 0.27 1.99 4.14 0.61

5x100 0.13 1.53 0.29 0.27 1.53 0.27 2.03 4.81 0.76 0.00 1.26 0.24

10x30 2.03 4.81 0.50 2.03 4.81 0.95 1.62 4.04 0.62 2.03 4.81 0.88

10x50 2.02 4.24 0.73 0.81 5.45 0.68 1.01 3.02 0.38 2.02 3.84 0.67

10x100 1.32 2.87 0.48 0.93 3.10 0.49 0.20 0.78 0.13 1.55 2.25 0.32

10x200 0.75 0.95 0.15 0.34 0.91 0.15 2.89 8.48 1.22 0.37 0.88 0.12

25x75 1.86 7.64 0.98 2.33 8.48 1.36 2.34 3.84 0.43 4.75 8.48 0.82

25x125 2.17 3.95 0.56 1.61 3.67 0.44 1.34 6.21 0.89 1.78 3.11 0.43

25x250 4.46 5.32 1.32 1.19 2.81 0.38 0.41 0.70 0.12 0.94 5.76 0.69

25x500 0.41 0.87 0.14 0.59 0.83 0.13 0.41 0.70 0.12 0.35 0.74 0.11

50x150 3.44 7.32 0.99 4.97 7.36 0.88 4.88 7.70 0.69 6.07 7.99 0.58

50x250 2.29 5.47 0.71 3.04 4.88 0.65 4.11 4.77 0.71 3.52 4.72 0.77

50x500 1.20 2.34 0.28 1.04 2.17 0.29 0.92 2.38 0.26 0.97 1.95 0.21

50x1000 0.47 0.88 0.11 0.41 0.84 0.11 0.81 0.84 0.11 0.48 0.78 0.10

100x300 3.61 5.47 0.56 3.90 5.79 0.47 4.37 6.08 0.37 4.56 5.71 0.29

100x500 2.45 3.99 0.38 2.53 3.31 0.29 2.35 3.54 0.26 2.78 3.28 0.23

100x1000 1.06 1.48 0.16 1.22 1.50 0.15 0.97 1.50 0.15 1.12 1.48 0.15

100x2000 0.35 0.70 0.07 0.44 0.66 0.07 0.47 0.64 0.07 0.55 0.66 0.07

200x600 3.48 5.68 0.46 3.83 5.97 0.40 5.19 5.62 0.37 4.79 5.63 0.31

200x1000 3.10 3.96 0.32 2.54 3.87 0.30 2.48 3.67 0.27 3.34 3.84 0.24

200x2000 1.24 1.76 0.16 1.35 1.70 0.13 1.19 1.74 0.13 1.12 1.66 0.12

200x4000 0.45 0.76 0.06 0.45 0.63 0.05 0.51 0.61 0.05 0.40 0.60 0.05

400x1200 4.06 5.05 0.33 4.37 4.96 0.30 4.26 4.88 0.24 4.17 4.76 0.21

400x2000 2.59 4.03 0.28 3.45 4.05 0.24 3.29 3.81 0.24 2.99 3.88 0.22

400x4000 1.18 1.48 0.09 1.03 1.42 0.08 1.12 1.34 0.06 1.10 1.27 0.06

400x8000 0.45 0.55 0.04 0.48 0.58 0.04 0.43 0.55 0.04 0.43 0.55 0.03

When considering the number of iterations required to outperform trait 1 in highly con-

nected graphs, the results indicate that with just 50 iterations, the FSS tends to perform

worse. At 100 iterations, the results are mixed, with outcomes being mostly evenly split

Fixed Set Search Applied to the MPGSD 19

between performing better or worse than trait 1. However, as the number of iterations

increases, the FSS starts to outperform the greedy approach more consistently, eventually

leading to better results in more than half of the cases. Meaning that even in graphs with

high connectivity, the FSS can offer advantages, when carefully selecting the appropriate

number of mbest solutions and amount of iterations.

Table 4.3.: Comparison of Fixed Set Search performance in low connected graphs by
varying the number of mbest solutions considered for Fixed Set construction
(selected from 500 greedy iterations)

Sup x dem mbest = 10 mbest = 25 mbest = 50 mbest = 100

Avg Max SD Avg Max SD Avg Max SD Avg Max SD

2x6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2x10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.56 0.25 5.56 5.56 2.44

2x20 0.64 3.22 0.94 1.61 3.22 0.79 3.22 3.22 0.27 2.57 2.57 0.06

2x40 7.36 19.44 1.49 7.36 19.44 5.24 19.44 19.44 0.52 17.86 18.91 0.36

5x15 6.51 6.51 0.00 13.02 13.02 1.55 13.02 13.02 1.94 13.02 13.02 0.00

5x25 2.23 5.59 1.00 3.07 5.59 1.09 1.68 4.47 0.76 0.84 3.63 0.78

5x50 6.69 12.99 1.71 5.49 14.86 1.34 5.49 14.86 3.26 11.78 18.07 3.26

5x100 1.00 1.55 0.23 0.33 2.11 0.34 0.67 2.55 0.68 2.00 3.44 0.36

10x30 7.83 7.83 1.43 2.30 7.83 1.23 2.30 7.83 1.31 2.30 5.53 0.38

10x50 0.69 3.17 0.42 0.96 4.27 0.23 3.44 4.41 0.67 4.27 5.65 1.56

10x100 5.24 12.29 1.71 9.68 10.64 0.69 9.68 10.42 0.24 9.90 15.99 1.13

10x200 3.83 4.91 0.84 4.03 8.36 0.67 3.95 8.44 1.35 7.95 8.44 1.46

25x75 4.74 5.01 0.04 4.74 4.83 0.03 4.74 4.83 0.02 4.74 4.83 0.03

25x125 3.71 4.37 0.25 3.87 4.37 0.18 3.71 4.26 0.12 3.93 4.20 0.08

25x250 3.48 5.09 0.61 3.48 4.77 0.50 4.20 4.74 0.40 3.32 5.79 0.31

25x500 3.75 4.63 0.32 3.79 4.63 0.16 3.88 4.47 0.15 3.83 4.54 0.18

50x150 0.75 1.40 0.17 1.30 1.40 0.14 1.00 1.40 0.11 1.30 1.30 0.12

50x250 1.87 4.15 0.57 2.25 3.48 0.43 1.49 3.07 0.37 1.42 3.07 0.34

50x500 2.98 3.76 0.36 3.10 3.75 0.27 3.29 3.91 0.23 3.17 3.95 0.20

50x1000 5.19 5.76 0.14 5.30 5.74 0.11 5.46 5.76 0.10 5.88 6.06 0.22

100x300 0.83 1.44 0.42 1.27 1.27 0.38 0.12 1.44 0.45 0.12 1.27 0.53

100x500 2.23 3.05 0.41 1.92 2.78 0.36 2.04 2.74 0.28 2.08 2.81 0.16

100x1000 3.31 3.78 0.25 3.12 3.96 0.21 3.33 3.90 0.17 3.45 3.84 0.14

100x2000 3.53 3.75 0.15 3.44 3.80 0.17 3.32 3.79 0.11 3.46 3.75 0.09

200x600 0.14 0.71 0.08 0.33 0.35 0.06 0.11 0.34 0.05 0.11 0.25 0.05

200x1000 1.52 1.74 0.16 1.18 1.73 0.15 1.01 1.68 0.14 1.32 1.79 0.13

200x2000 3.26 3.79 0.20 3.17 3.89 0.21 3.68 3.90 0.18 3.66 3.96 0.11

200x4000 4.20 4.35 0.25 4.01 4.73 0.16 3.96 4.88 0.13 4.25 4.83 0.09

400x1200 0.47 0.80 0.12 0.32 0.57 0.11 0.32 0.49 0.10 0.27 0.49 0.10

400x2000 2.46 2.46 0.19 1.60 2.17 0.17 1.53 2.24 0.17 2.23 2.33 0.12

400x4000 3.27 3.44 0.13 3.23 3.54 0.13 3.22 3.59 0.12 3.45 3.64 0.12

400x8000 2.87 3.03 0.23 2.83 3.05 0.10 2.84 3.04 0.06 2.91 3.04 0.05

Fixed Set Search Applied to the MPGSD 20

Table 4.4.: Comparison of Fixed Set Search performance in highly connected graphs by
varying the number of iterations to find the fixed set (with mbest set to 5% of
iterations)

Sup x dem Iterations = 50 Iterations = 100 Iterations = 1000 Iterations = 4000

Avg Max SD Avg Max SD Avg Max SD Avg Max SD

2x6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2x10 0.00 3.62 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2x20 3.77 12.58 1.90 2.20 11.64 1.59 0.00 3.46 0.65 0.00 1.57 0.27

2x40 0.22 4.21 0.90 1.33 3.77 0.92 0.22 2.00 0.80 1.77 1.77 0.80

5x15 1.40 5.14 0.95 0.00 3.74 0.73 0.93 2.34 0.47 0.93 0.93 0.41

5x25 2.83 9.07 1.38 1.13 5.67 1.22 1.13 3.12 0.39 1.13 1.13 0.00

5x50 1.82 6.95 0.93 0.99 4.30 0.87 1.16 4.14 0.88 1.16 3.15 0.83

5x100 0.80 2.06 0.40 0.13 2.12 0.37 0.27 1.46 0.31 0.33 1.33 0.22

10x30 4.81 8.86 1.33 2.03 8.61 1.07 2.03 4.81 0.78 2.03 4.81 0.48

10x50 4.04 7.07 1.10 2.22 7.07 1.02 0.81 3.84 0.58 1.82 2.02 0.51

10x100 0.93 3.49 0.59 0.93 3.02 0.54 0.70 2.71 0.37 1.40 1.40 0.19

10x200 0.24 1.25 0.23 0.91 1.12 0.19 0.34 0.78 0.13 0.20 0.51 0.09

25x75 1.86 10.16 1.31 5.78 9.51 1.33 4.75 7.46 1.29 2.33 5.78 1.05

25x125 3.78 6.34 0.86 2.34 6.79 0.82 1.33 3.11 0.40 2.06 2.56 0.38

25x250 0.86 5.20 0.50 1.60 5.55 0.46 0.71 5.86 0.96 1.29 2.38 0.32

25x500 0.42 1.12 0.16 0.59 1.09 0.15 0.49 0.91 0.12 0.21 0.62 0.09

50x150 4.45 8.13 1.04 5.07 8.13 1.08 5.12 7.27 0.72 5.26 5.93 0.38

50x250 3.49 6.53 0.80 3.60 5.44 0.73 2.53 5.07 0.76 2.69 4.00 0.65

50x500 1.53 2.42 0.29 1.43 2.77 0.29 0.93 2.24 0.27 1.03 1.46 0.17

50x1000 0.45 1.02 0.13 0.55 1.03 0.12 0.62 0.80 0.10 0.49 0.73 0.08

100x300 3.77 7.81 0.74 4.61 6.39 0.57 4.24 5.76 0.39 4.48 5.19 0.29

100x500 4.29 4.59 0.45 3.08 4.48 0.42 2.00 3.26 0.26 2.09 2.74 0.19

100x1000 1.42 2.18 0.19 1.21 1.76 0.18 0.82 1.43 0.16 0.97 1.35 0.14

100x2000 0.46 0.79 0.08 0.46 0.72 0.08 0.40 0.69 0.07 0.40 0.63 0.06

200x600 5.10 7.46 0.62 5.32 6.68 0.53 3.75 5.40 0.38 4.35 5.30 0.28

200x1000 3.67 5.58 0.40 3.92 4.35 0.34 2.78 3.96 0.27 2.67 3.32 0.17

200x2000 1.29 1.90 0.15 1.58 1.95 0.15 1.27 1.72 0.13 1.27 1.53 0.11

200x4000 0.39 1.12 0.07 0.47 0.76 0.06 0.49 0.62 0.05 0.40 0.61 0.05

400x1200 4.99 6.52 0.40 5.13 5.93 0.39 4.07 4.95 0.24 4.37 4.50 0.15

400x2000 3.55 5.35 0.38 3.20 4.62 0.31 3.05 3.81 0.23 3.09 3.66 0.20

400x4000 1.41 1.90 0.12 1.28 1.67 0.10 1.15 1.32 0.06 1.11 1.21 0.05

400x8000 0.48 0.68 0.05 0.48 0.61 0.04 0.45 0.54 0.03 0.43 0.51 0.03

When examining the performance of using a randomized trait for vertex selection (trait

4), as explained in Section 3, we initially assumed that introducing randomness could

help explore different regions of the solution space, potentially leading to better overall

solutions in cases where deterministic methods might get stuck in local optima.

Fixed Set Search Applied to the MPGSD 21

Table 4.5.: Comparison of Fixed Set Search performance in low connected graphs by
varying the number of iterations to find the fixed set (with mbest set to 5% of
iterations)

Sup x dem Iterations = 50 Iterations = 100 Iterations = 1000 Iterations = 4000

Avg Max SD Avg Max SD Avg Max SD Avg Max SD

2x6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2x10 0.00 5.56 1.40 0.00 5.56 0.35 0.00 0.00 0.00 0.00 0.00 0.00

2x20 2.57 5.47 1.00 2.25 5.47 0.99 1.61 3.22 0.59 1.61 3.22 0.21

2x40 17.69 19.79 4.57 17.86 19.96 5.04 17.69 19.44 5.40 17.69 19.44 5.23

5x15 6.51 13.02 3.20 6.51 13.02 2.92 6.51 13.02 0.65 6.51 6.51 0.00

5x25 6.42 8.94 1.97 0.84 8.94 1.76 0.84 4.47 0.56 0.84 2.23 0.29

5x50 12.58 21.69 3.30 6.56 18.21 2.85 5.35 13.65 2.57 11.78 13.65 2.61

5x100 0.67 3.77 0.62 0.55 3.10 0.51 0.55 2.00 0.23 0.55 1.11 0.13

10x30 4.15 10.14 1.94 2.30 9.91 1.70 4.15 7.83 1.22 4.15 5.53 0.77

10x50 4.27 5.92 1.75 0.69 5.65 1.39 0.69 0.96 0.08 0.69 0.96 0.08

10x100 9.45 16.33 1.85 9.28 15.37 1.68 9.68 10.59 0.27 9.68 9.68 0.00

10x200 3.70 13.06 2.47 7.86 9.69 1.89 3.62 7.95 0.25 3.95 4.20 0.16

25x75 4.74 5.37 0.07 4.83 5.37 0.06 4.74 4.83 0.02 4.74 4.83 0.01

25x125 2.49 6.86 0.71 3.60 6.86 0.46 3.71 4.26 0.12 3.93 3.93 0.09

25x250 5.50 6.42 0.94 4.90 6.32 0.87 2.78 4.65 0.44 3.73 4.02 0.32

25x500 4.38 5.00 0.42 3.89 5.00 0.36 3.82 4.45 0.12 4.02 4.17 0.08

50x150 0.65 2.26 0.31 1.00 2.06 0.23 0.95 1.30 0.10 0.95 1.30 0.03

50x250 3.17 5.10 0.76 1.99 4.65 0.68 1.52 2.79 0.38 1.42 2.41 0.24

50x500 3.33 4.38 0.45 3.20 4.59 0.41 3.14 3.70 0.24 2.85 3.30 0.16

50x1000 5.19 6.60 0.27 5.64 6.39 0.22 5.45 5.70 0.10 5.30 5.61 0.07

100x300 1.81 1.93 0.41 0.71 1.95 0.44 0.66 1.27 0.30 0.12 0.71 0.06

100x500 2.16 3.93 0.54 3.50 3.61 0.46 1.40 2.59 0.33 1.71 2.62 0.32

100x1000 3.54 5.09 0.43 3.42 4.64 0.35 3.34 3.76 0.17 3.17 3.52 0.07

100x2000 3.40 4.81 0.38 3.55 4.78 0.26 3.51 3.73 0.12 3.31 3.75 0.09

200x600 0.20 1.08 0.21 0.66 1.07 0.17 0.20 0.26 0.05 0.11 0.20 0.03

200x1000 1.59 2.50 0.25 1.32 2.09 0.21 1.34 1.65 0.13 1.05 1.57 0.12

200x2000 3.41 4.37 0.27 3.17 3.89 0.21 3.03 3.71 0.19 3.13 3.72 0.19

200x4000 3.69 4.78 0.20 4.01 4.73 0.16 4.10 4.46 0.13 3.96 4.28 0.08

400x1200 0.31 0.92 0.15 0.32 0.57 0.11 0.11 0.52 0.11 0.07 0.43 0.08

400x2000 2.01 2.69 0.23 1.60 2.17 0.17 1.58 2.16 0.17 1.70 2.08 0.15

400x4000 3.05 3.76 0.16 3.07 3.80 0.16 3.18 3.48 0.09 3.08 3.30 0.07

400x8000 3.04 3.30 0.23 2.97 3.17 0.20 2.76 3.03 0.06 2.88 2.98 0.04

However, as shown by the results from Table 4.7, where we compared 500 iterations with

5% of the best solutions (mbest) to generate our fixed set, and then applied our Randomized

Greedy Algorithm with Pre-Selected Elements (Fixed Set) from Section 3.2.2, the results

show that for highly connected graphs, simply performing a final solve using trait 1 with

our fixed set (which selects the vertex with the maximum demand that can still be covered)

considerably outperforms our randomized approach, even after 1000 iterations with trait

4.

Fixed Set Search Applied to the MPGSD 22

Table 4.6.: Comparison of computation times (in milliseconds) for solving the Fixed Set
Search across varying numbers of iterations to generate the fixed set, in both
low and highly connected graphs (with trait 1 and mbest set to 5% of the total
iterations)

Sup x dem Iterations = 100 Iterations = 500 Iterations = 1000 Iterations = 4000

Time in ms Time in ms Time in ms Time in ms

high conn. low conn. high conn. low conn. high conn. low conn. high conn. low conn.

2x6 0.1 0.1 0.7 0.7 0.6 0.6 5.1 2.8

2x10 0.2 0.1 0.9 0.6 1.6 1.2 8.1 4.9

2x20 0.7 0.4 3.8 1.7 7.0 3.6 29.2 13.8

2x40 2.8 1.7 14.6 7.3 27.7 15.7 113.7 60.0

5x15 0.2 0.2 1.0 0.9 1.6 1.8 7.8 7.6

5x25 0.8 0.5 4.2 2.4 7.5 5.2 32.4 21.2

5x50 2.7 0.6 14.5 2.7 27.0 5.7 112.3 23.4

5x100 9.0 0.9 47.7 4.1 88.7 8.6 375.7 33.7

10x30 0.4 0.5 2.4 2.3 4.2 4.8 18.5 18.8

10x50 1.2 1.0 6.7 4.4 12.2 9.3 52.2 37.2

10x100 5.6 1.6 29.2 7.4 55.4 15.5 233.8 61.0

10x200 23.1 3.8 118.9 17.5 229.7 37.2 955.4 144.6

25x75 1.5 1.2 7.8 5.7 15.0 12.2 64.1 47.5

25x125 3.8 2.6 19.5 11.9 37.6 25.5 160.3 95.0

25x250 14.4 3.5 72.7 16.2 142.1 34.7 601.0 128.3

25x500 60.4 20.0 298.8 92.2 594.0 197.3 2476.4 732.1

50x150 4.7 4.3 24.5 20.0 46.5 42.6 197.7 164.2

50x250 8.7 6.4 45.0 30.0 85.3 63.1 364.1 239.0

50x500 33.0 14.6 165.6 67.5 323.4 144.6 1351.1 537.1

50x1000 146.3 59.4 714.8 271.9 1464.3 600.4 5900.0 2199.1

100x300 9.3 10.1 49.7 47.4 90.7 101.1 388.4 372.3

100x500 22.4 15.3 117.3 69.4 223.0 152.6 928.9 556.4

100x1000 77.7 37.6 393.2 170.4 767.3 373.9 3175.9 1371.7

100x2000 323.6 112.7 1618.7 513.1 3209.5 1143.3 12953.9 4100.6

200x600 30.9 30.7 153.9 139.5 303.1 334.9 1193.7 1137.4

200x1000 55.6 38.8 280.2 177.1 549.2 447.2 2216.0 1406.7

200x2000 190.4 91.0 943.3 19755.3 1868.3 1041.9 7739.5 3302.1

200x4000 706.1 242.3 3580.4 1229.2 6977.5 2821.7 28487.2 8794.6

400x1200 93.9 107.0 481.5 530.0 931.3 1037.2 3720.5 3932.3

400x2000 159.9 152.4 826.7 738.1 1571.0 1516.8 6463.6 5631.4

400x4000 467.6 321.1 2403.6 1578.5 4626.3 3258.5 19102.9 12377.4

400x8000 1671.0 661.7 8625.4 3197.2 16740.0 6326.3 67211.1 23683.6

This outcome is based on the fact that when we select a small number of mbest solutions

from our iterations, the resulting fixed set almost completely covers most of the final

MPGSD solution space. Consequently, we are often left with only one or two vertices to

be added per subgraph.

In highly connected graphs, when performing trait 1, selecting the vertex with the most

available demand that can still be covered by our supply vertex, usually leads to optimal or

near-optimal results, as the graph’s high connectivity often provides a vertex with demand

close to the remaining supply.

Fixed Set Search Applied to the MPGSD 23

Table 4.7.: Comparison of performance and computation time (ms) for varying the
amount of randomized greedy iterations (trait 4) after Fixed Set selection
across different connectivity levels (with a fixed amount of 500 iterations
and mbest set to 5% (25) to find the fixed set)

Sup x dem randomized iterations = 50 randomized iterations = 1000 randomized iterations = 50 randomized iterations = 1000

high conn. high conn. low conn. low conn.

Avg Max SD Time Avg Max SD Time Avg Max SD Time Avg Max SD Time

2x6 0.00 0.00 0.00 3.2 0.00 0.00 0.00 0.6 0.00 0.00 0.00 0.4 0.00 0.00 0.00 0.6

2x10 0.00 0.00 0.00 3.1 0.00 0.00 0.00 1.3 0.00 0.00 0.00 0.9 0.00 0.00 0.00 1.2

2x20 0.00 1.57 0.29 7.7 0.31 0.63 0.14 8.2 0.00 3.22 1.25 1.9 0.96 3.22 1.17 2.9

2x40 0.00 0.22 0.05 23.3 0.00 0.00 0.00 42.0 19.44 19.44 5.35 8.2 17.69 19.44 5.48 10.6

5x15 0.93 2.34 0.45 1.2 0.93 2.34 0.55 1.5 6.51 13.02 1.55 1.0 6.51 13.02 1.28 1.8

5x25 1.13 1.98 0.64 4.6 1.13 1.70 0.60 7.1 2.51 5.59 0.89 3.1 1.40 4.47 0.81 4.5

5x50 0.66 1.32 0.29 16.0 0.17 0.50 0.10 32.9 4.82 12.32 1.38 3.0 6.02 13.65 1.80 5.3

5x100 0.20 0.73 0.13 53.0 0.13 0.13 0.04 116.1 0.44 2.11 0.38 4.6 1.33 2.11 0.35 7.1

10x30 0.76 4.81 1.26 2.5 4.81 4.81 1.07 4.1 5.53 5.53 1.15 2.6 2.30 5.53 1.19 4.4

10x50 1.41 3.64 0.64 7.4 0.61 2.63 0.49 17.7 0.14 0.69 0.13 5.2 0.14 0.69 0.12 7.5

10x100 1.09 2.09 0.33 32.9 0.62 1.55 0.23 82.1 9.68 10.42 0.63 8.2 9.68 10.42 0.42 12.2

10x200 0.34 0.85 0.14 138.0 0.17 0.41 0.07 370.0 3.24 8.28 0.92 19.9 3.37 7.74 0.45 27.4

25x75 2.89 5.78 1.29 8.5 2.33 5.78 1.31 13.4 4.83 4.83 0.03 6.6 4.74 4.83 0.03 10.0

25x125 3.50 4.06 0.51 22.4 2.28 2.50 0.28 42.9 3.93 4.26 0.20 13.7 3.87 4.26 0.24 19.2

25x250 2.05 2.92 0.32 85.9 1.57 2.00 0.19 214.3 2.12 4.27 0.46 21.1 2.85 4.14 0.46 28.1

25x500 0.71 1.00 0.11 356.1 0.63 0.72 0.07 905.9 4.07 4.54 0.14 104.6 4.07 4.36 0.14 129.0

50x150 5.74 6.84 0.51 27.2 5.45 6.36 0.44 50.1 1.00 1.35 0.11 22.2 0.80 1.20 0.12 32.3

50x250 4.77 5.07 0.42 52.3 3.52 4.27 0.32 107.1 2.15 2.79 0.36 33.0 1.77 2.82 0.36 47.4

50x500 1.92 2.30 0.16 192.4 1.54 1.85 0.13 469.1 2.86 3.41 0.24 74.3 2.40 3.38 0.25 106.9

50x1000 0.96 1.12 0.09 857.4 0.71 0.84 0.06 2330.6 5.66 5.95 0.14 303.1 5.46 5.71 0.11 373.8

100x300 4.58 5.87 0.40 52.2 4.48 5.63 0.36 88.6 0.32 0.71 0.19 50.5 0.12 0.66 0.23 69.7

100x500 4.84 5.19 0.33 128.4 3.73 4.48 0.21 303.0 1.28 2.68 0.38 77.6 2.32 2.48 0.33 109.1

100x1000 2.30 2.62 0.12 449.0 1.93 2.23 0.10 1154.3 2.91 3.82 0.22 191.4 2.67 3.85 0.27 291.7

100x2000 1.09 1.19 0.06 1894.3 0.96 1.00 0.04 5162.7 3.73 4.00 0.17 565.3 3.66 4.03 0.19 703.6

200x600 5.52 6.36 0.42 163.1 4.44 5.92 0.33 285.5 0.12 0.32 0.05 151.3 0.07 0.29 0.05 186.8

200x1000 5.35 5.92 0.27 313.8 4.83 5.39 0.20 724.3 1.63 1.85 0.16 184.7 1.35 1.82 0.17 260.4

200x2000 2.43 2.75 0.10 1092.7 2.24 2.51 0.08 2875.6 3.63 3.96 0.21 441.4 3.37 3.91 0.22 616.1

200x4000 1.16 1.21 0.05 4268.2 1.05 1.09 0.03 11810.3 4.19 5.15 0.17 1201.4 4.30 4.94 0.16 1543.0

400x1200 5.67 6.18 0.22 514.5 5.04 5.91 0.22 886.8 0.40 0.50 0.10 511.2 0.27 0.51 0.11 620.9

400x2000 5.80 6.41 0.21 903.7 5.83 5.93 0.18 2007.2 1.77 2.38 0.16 757.8 1.88 2.23 0.17 997.4

400x4000 2.54 2.89 0.08 2763.0 2.47 2.64 0.05 7063.9 3.42 3.70 0.11 1667.4 3.21 3.63 0.12 2198.3

400x8000 1.15 1.30 0.03 10490.9 1.15 1.17 0.02 27960.0 3.26 3.43 0.14 3160.8 3.17 3.41 0.11 4115.6

The same logic generally applies to low connectivity graphs; however, in some cases, es-

pecially with a higher number of iterations, our randomized approach (trait 4) performs

slightly better than trait 1. This is because, in low connectivity graphs, selecting vertices

only based on the highest demand can occasionally block off other subgraphs. By includ-

ing traits 2 or 3, which also consider the amount of adjacent vertices, we open up paths

that would otherwise have been blocked, resulting in better solutions in some scenarios.

In addition to evaluating the performance, it is crucial to consider the computational effi-

ciency of the FSS approach, as detailed in Table 4.6. The results show that graphs with

low connectivity are generally faster to solve compared to highly connected graphs. For

instance, solving a 400x8000 problem with 1000 iterations takes 6.3 seconds in a low con-

nected graph, while the same task takes about 16.7 seconds in a highly connected graph.

This is due to the fact, that in low connected graphs each vertex, has fewer adjacent ver-

Fixed Set Search Applied to the MPGSD 24

tices, that could be added, so less comparisons between them need to be performed by the

algorithm.

Another key observation is that the computation time increases linearly with the num-

ber of iterations performed to find the fixed set. For example, when solving the highly

connected 10x100 graph, computation time increases from 5.6 milliseconds with 100 it-

erations to 55.4 milliseconds with 1000 iterations, and further to 233.8 milliseconds with

4000 iterations. This linear growth is consistent across different graph sizes, making it

easier to predict the computational time as the number of iterations increases.

When analyzing the time performance after generating the fixed set, we observe that each

iteration takes less time than each iteration used to find the fixed set. This is because

we no longer need to solve the entire graph again, as we start with a majority of the

solution space already covered. As seen in Table 4.7, even with 500 iterations to generate

and 1000 iterations after finding the fixed set, we achieve faster results than if we were

to perform 1000 iterations solely to find the fixed set. For example, in the case of a

400x8000 low connected graph, the time taken for 500 iterations to find the fixed set,

followed by performing 1000 iterations with the randomized approach on our fixed set is

approximately 4 seconds, compared to 6 seconds when performing 1000 iterations solely

for finding the fixed set, as shown in Table 4.6.

It is also important to note that while we focused on the impact of iterations on computa-

tion time, varying the number of mbest solutions during testing had little to no impact on

overall computation time. Therefore, while iterations greatly influence both accuracy and

computation time, adjusting mbest can be done with low concern for time complexity.

Overall, the FSS offers a great approach to improve upon traditional greedy methods,

especially in low connected graphs, where it not only improves accuracy, but also works

particularly well in terms of computational time. Even in highly connected graphs, where

plain greedy methods generally work especially well, the FSS can still provide major

improvements with the right configuration of mbest solutions and iterations. The linear

increase in computational time when increasing the amount iterations shows that this

method scales predictably, which allows for targeted decisions to be made on balancing

accuracy and computational time. This makes the FSS approach a practical and effective

choice, especially in scenarios where computational resources must be carefully managed.

However, the randomized approach, using trait 4, is generally less suitable for highly

connected graphs, as it tends to be consistently outperformed by trait 1. While trait 4 can

offer advantages in some graphs with low connectivity, it only occasionally outperforms

the solutions generated by trait 1. In these specific scenarios, the randomness in trait 4

helps to find new solutions that might otherwise be blocked by the deterministic selection

Fixed Set Search Applied to the MPGSD 25

of trait 1, yet this benefit is not universal across all cases.

4.4 Comparison with correction methods from the literature

To compare our Fixed Set Search approach with other methods, like the correction method

proposed by Jovanovic et al. (2015), we transformed their test instances of general graphs

and trees into our JSON format, which was described earlier. After generating these

graphs, we applied our method, using 1000 iterations to find the Fixed Set and selecting 25

(2.5%) of these solutions for the Fixed Set. We then performed one greedy iteration using

Trait 1 (maximum demand) to generate our final solution. These results are summarized

in Table 4.8.

When comparing our results with those using the correction method from the literature

(Jovanovic et al. (2015)), as seen in Table A.1 for general graphs and Table A.2 for trees,

we see that our approach only surpassed the correction methods in terms of Average Rela-

tive Error in a few cases, such as the 2x6 and 2x10 graphs. In terms of Maximum Relative

Error, our method outperformed one correction method (the greedy correction) in more

than half of the graphs, but it was generally inferior to the other correction methods. Espe-

cially, when considering the Multiheuristic correction method, our approach did not out-

perform it in any of the tested graphs, consistently showing performance approximately

3.4% worse for general graphs and around 7.5% worse for tree graphs.

The following factors may explain why our Fixed Set Search approach underperforms

compared to the correction methods used in the literature:

Graph structure and specialization: Jovanovic et al. (2015) designed their correction

methods with specific graph structures in mind, such as trees, which allow targeted op-

timizations. These structured graphs make correction methods, particularly important to

exploit predictable connections, like limited branching. Which makes these optimiza-

tions especially useful compared to more connected and unstructured graph types. Our

approach is applicable to a broad range of graph types, including general graphs, but it

lacks these tailored optimizations and therefore struggles in these type of graphs com-

pared to the correction method.

Fixed Set Search Applied to the MPGSD 26

Table 4.8.: Fixed Set Search performance using graphs from the literature, as described
by Jovanovic et al. (2015) (1000 iterations, mbest = 2.5%, Trait 1 (maximum
demand))

Sup x dem General Graphs Trees

Avg Max SD in Time in s Avg Max SD Time in s

2x6 1.49 2.34 0.25 0.00 0.00 0.00 0.00 0.00

2x10 1.63 3.09 0.70 0.00 1.44 1.66 0.09 0.00

2x20 1.96 5.31 1.33 0.00 4.76 5.60 0.67 0.00

2x40 1.16 3.44 0.91 0.02 6.22 7.38 0.70 0.01

5x15 5.39 7.87 1.22 0.00 2.59 4.24 0.67 0.00

5x25 4.36 8.27 1.42 0.00 4.84 7.05 1.20 0.00

5x50 2.94 5.41 1.05 0.02 10.22 11.54 1.18 0.01

5x100 1.32 2.97 0.66 0.06 13.64 14.74 1.27 0.03

10x30 6.90 10.08 1.65 0.00 5.16 7.94 1.32 0.00

10x50 5.52 8.50 1.26 0.01 8.33 10.67 1.46 0.01

10x100 3.47 5.30 0.94 0.04 12.31 13.95 1.35 0.02

10x200 1.70 3.34 0.67 0.13 16.22 17.62 0.96 0.06

25x75 8.06 11.20 1.30 0.02 6.62 9.30 1.26 0.01

25x125 7.43 9.37 1.01 0.04 9.77 11.56 1.20 0.02

25x250 3.80 5.37 0.68 0.12 11.45 12.95 0.89 0.06

25x500 2.21 3.40 0.46 0.34 13.42 14.83 0.76 0.17

50x150 9.99 12.05 1.06 0.05 7.16 9.55 1.08 0.03

50x250 7.73 9.44 0.76 0.10 9.47 11.08 0.84 0.06

50x500 4.40 5.42 0.51 0.26 12.15 13.41 0.71 0.15

50x1000 2.84 3.82 0.42 0.77 13.39 14.69 0.65 0.37

100x300 10.66 12.25 0.73 0.11 8.64 10.36 0.84 0.08

100x500 8.32 9.51 0.58 0.22 10.21 11.70 0.67 0.15

100x1000 4.43 5.22 0.37 0.58 12.16 13.36 0.57 0.35

100x2000 2.99 3.72 0.31 1.70 13.23 14.09 0.47 0.95

200x600 11.42 12.46 0.54 0.37 8.79 10.13 0.59 0.29

200x1000 8.52 9.28 0.40 0.65 10.61 11.59 0.52 0.47

200x2000 4.95 5.47 0.28 1.55 12.31 13.17 0.39 0.99

200x4000 3.18 3.64 0.23 4.06 13.66 14.36 0.35 2.36

400x1200 11.80 12.52 0.37 1.10 9.40 10.17 0.41 0.96

400x2000 8.80 9.32 0.29 2.08 10.94 11.50 0.32 1.55

400x4000 4.98 5.42 0.21 4.60 12.51 13.01 0.26 3.40

400x8000 3.08 3.45 0.17 11.13 13.72 14.11 0.23 6.77

Fixed Set Search Applied to the MPGSD 27

Correction method advantages: The correction methods by Jovanovic et al. (2015) in-

clude heuristics that iteratively refine the solution, similar to a "hill climbing method"

(Jovanovic et al. (2015), p. 392). This process allows for continuous adjustments that im-

prove the solution closer to optimality. In contrast, our Fixed Set Search approach finds a

single, fixed set and relies on greedy iterations to finalize the solution, limiting its ability

to improve and correct errors. This major difference in methodology is likely why our

approach performs worse, particularly when the problem requires continuous fine-tuning,

like trees.

Trade-off between speed and accuracy: While our approach shows linear increase

in computational time, the correction methods, especially the Multiheuristic correction

method, are specifically designed to enhance accuracy, even at the cost of increased com-

putational time. This is clearly visible when examining the graph 400x8000 in Table A.2,

where it takes 159.5 seconds to solve the graph using the multiheuristic correction method

proposed by Jovanovic et al. (2015). In contrast, our approach is faster compared to the

multiheuristic correction method, but it sacrifices some accuracy, making it less effective

on graphs where precision is crucial.

The differences between our method and the correction methods by Jovanovic et al.

(2015) highlight the importance of tailored heuristics, which iteratively refine solutions to

achieve high-quality solutions, especially on structured graph types. Our findings suggest

that while our approach lacks the high quality final solutions in certain graphs, it offers

computational efficiency and adaptability and provides better initial solutions compared

to the basic greedy approach. By integrating our method as an initial solution and then

applying existing correction methods, we could enhance overall accuracy, making it a

more competitive option for solving MPGSD problems.

Fixed Set Search Applied to the MPGSD 28

5 Conclusion

In this thesis, we presented a method to solve the Maximal Partitioning of Supply and

Demand Graphs (MPGSD) using a Fixed Set Search (FSS) approach, leveraging its ability

to identify recurring patterns in high-quality solutions to generate a more refined final

solution. This approach improves overall solution quality while balancing computational

time and accuracy.

Our computational results demonstrated that the proposed approach is well-suited for the

MPGSD problem, particularly in low connected graphs where it was consistently able

to find near-optimal solutions. Compared to the basic greedy approach, the FSS showed

great improvements, highlighting the effectiveness of exploring and utilizing common

occurrences of different solutions. The success of this method relies on carefully adjust-

ing parameters, especially increasing the number of iterations to improve accuracy while

managing the trade-off with computational time.

However, most of the time, the FSS approach did not match the precision of existing

correction methods from the literature, as proposed by Jovanovic et al. (2015). Especially

in structured graphs like trees, the inability to refine solutions beyond the initial fixed set

represents a key limitation. Nevertheless, the adaptability of the FSS and speed make it a

valuable addition to the landscape of heuristic algorithms for graph partitioning.

Our findings suggest that while the FSS provides better initial solutions than the basic

greedy approach, integrating it with existing correction methods could enhance overall

accuracy and solution quality. By using a high-quality initial solution provided by the

FSS followed by applying advanced correction methods to refine the solution, we could

combine both methods to utilize the strengths of both methods.

Future work could focus on developing these hybrid methods, combining the FSS with the

multiheuristic correction method from the literature to enhance overall solution quality.

Additionally, expanding the algorithm by implementing a broad range of greedy traits

could lead to a vast exploration of the initial solution space, ultimately resulting in more

diverse and higher-quality fixed sets, making the FSS a comprehensive approach in the

field of graph partitioning.

For implementation details and the graph instances used, the code and resources are acces-

sible on GitHub: https://github.com/CodingPythagoras/MPGSD-using-FixedSetSearch.git.

Fixed Set Search Applied to the MPGSD 29

A Appendix

Figure A.1.: Performance of different correction methods applied to general graphs, as
illustrated in Jovanovic et al. (2015), p. 390.

Fixed Set Search Applied to the MPGSD 30

Figure A.2.: Performance of different correction methods applied to trees, as illustrated
in Jovanovic et al. (2015), p. 391.

Fixed Set Search Applied to the MPGSD 31

Bibliography

Bertsimas, D. and J. N. Tsitsiklis (1997). Introduction to linear optimization, Volume 6.

Athena Scientific Belmont, MA.

Buluç, A., H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz (2016). Recent advances

in graph partitioning. Springer.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2022). Introduction to

algorithms. MIT press.

Dorigo, M., M. Birattari, and T. Stutzle (2006). Ant colony optimization. IEEE

computational intelligence magazine 1(4), 28–39.

Fan, W., M. Liu, C. Tian, R. Xu, and J. Zhou (2020). Incrementalization of graph

partitioning algorithms. Proceedings of the VLDB Endowment 13(8), 1261–1274.

Ito, T., E. D. Demaine, X. Zhou, and T. Nishizeki (2008). Approximability of partitioning

graphs with supply and demand. Journal of Discrete Algorithms 6(4), 627–650.

Ito, T., X. Zhou, and T. Nishizeki (2009). Partitioning graphs of supply and demand.

Discrete Applied Mathematics 157(12), 2620–2633.

Jovanovic, R., A. Bousselham, and S. Voß (2015). A heuristic method for solving

the problem of partitioning graphs with supply and demand. Annals of Operations

Research 235, 371–393.

Jovanovic, R., A. Bousselham, and S. Voß (2018). Partitioning of supply/demand

graphs with capacity limitations: an ant colony approach. Journal of Combinatorial

Optimization 35, 224–249.

Jovanovic, R., A. P. Sanfilippo, and S. Voß (2023). Fixed set search applied to the clique

partitioning problem. European Journal of Operational Research 309(1), 65–81.

Jovanovic, R., M. Tuba, and S. Voss (2016). An ant colony optimization algorithm for

partitioning graphs with supply and demand. Applied Soft Computing 41, 317–330.

Jovanovic, R., M. Tuba, and S. Voß (2019). Fixed set search applied to the traveling

salesman problem. In Hybrid Metaheuristics: 11th International Workshop, HM 2019,

Concepción, Chile, January 16–18, 2019, Proceedings 11. Springer, 63–77.

Jovanovic, R. and S. Voß (2016). A mixed integer program for partitioning graphs with

supply and demand emphasizing sparse graphs. Optimization Letters 10, 1693–1703.

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang

Information Systems selbstständig verfasst und keine anderen als die angegebenen Hil-

fsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen –

benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnom-

men wurden, sind als solche kenntlich gemacht. Ich versichere weiterhin, dass ich die

Arbeit vorher nicht in einem anderen Prüfungsverfahren eingereicht habe und die ein-

gereichte schriftliche Fassung der auf dem elektronischen Speichermedium entspricht.

Hamburg, den 01.10.2024 Unterschrift:

