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Introduction From

telescope

Measurement principle for “Mie winds” — The fringe imaging technique Fizeau
interferometer
The measurement of Aeolus Mie cloudy winds is based on the fringe-imaging technique. It relies

on determining the spatial location of a linear interference pattern (fringe) due to multiple
interference in a Fizeau spectrometer. This fringe is vertically imaged onto the Mie-channel detector.
The accuracy of Mie cloudy winds thus depends on several pre- and post-detection factors. n "

3 . . S : Fig. 1: Simplified sketch of the A2D Mie channel setup. QWP: quart
Peak centroid algorithms for Aeolus “Mie wind” retrieval B - 2Nl
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In the Aeolus Level 1 B (L1B) processor, the centroid location, and the width of the Fizeau fringes (T,)? where I, is the peak height, I, is
are usually analyzed by the Mie core 2 algorithm, which applies a downhill simplex fit routine ~ £(x) = IL'4(x R the FWHM of the peak profile,
i of a Lorentzian peak function L(x) to the measurement data. and x, is the center position.
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Based on a.tmosphe.rlc.ground return and internal refere_nce S|gn§Is it was demons_trate.d that v(x) = I, - MG (x) + (1 = n) L (x))+0 ORI coiilieien of

the Mie fringe profile is better described by a pseudo-Voigt function V(x) > A Voigt fit was ) .

. . . ) ) . . 2 5 L*(x) and G*(x), normalized to

implemented in the L1B processor in 2022 as the Mie core 3 algorithm for an improved retrieval £+(x) = T — X2 ()’ linit. rom R Sy S S

of the scattering ratio and is currently implemented for the Mie wind retrieval. | b e Ry | i]gvar 3 from 0 46 1

In addition, a novel, non-fit-based algorithm was developed and reduces computation time G(x) = v4InZ exp< 4ln2 ( x_x0)2)> and% % ar? offsety J
_significantly (by a factor of 700). Vrly (Ty)? |

Goal of this study

The goal of this study was to investigate the performance of different existing Mie core algorithms (Lorentzian and pseudo-Voigt) as well as to develop a new,
non-fit-based, and very fast algorithm for the Fizeau fringe analysis.
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An peak centroid algorithm for Fizeau-fringe analysis algorithm — The 4-channel ratio R,
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Simulated Fizeau fringe profiles R, response along one pixel
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Performance analysis of different peak centroid algorithms for Aeolus Mie-wind retrleval — A2D data
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Summary

Based on airborne A2D (AVATAR-I campaign, Iceland, 2019), it is demonstrated that the pseudo-Voigt-based fit algorithm (Mie core 3) performs

appreciably better than the Lorentzian-based fit algorithm (Mie core 2). Nearly 50% more valid Mie winds could be retrieved with similar quality. The
5 novel R, algorithm shows a similar performance as the Mie core 3, but with a factor 700 faster computation time - The R, algorithm can
’ be regarded as a suitable alternative for applications where a fast computation time is needed.

The R, algorithm might also be useful for the fast and accurate analysis of spectrograms from heterodyne-detection wind lidars. o
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