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Introduction

The measurement of Aeolus Mie cloudy winds is based on the fringe-imaging technique. It relies
on determining the spatial location of a linear interference pattern (fringe) due to multiple
interference in a Fizeau spectrometer. This fringe is vertically imaged onto the Mie-channel detector.
The accuracy of Mie cloudy winds thus depends on several pre- and post-detection factors.

Measurement principle for “Mie winds” – The fringe imaging technique

Peak centroid algorithms for Aeolus “Mie wind” retrieval 

An peak centroid algorithm for Fizeau-fringe analysis algorithm – The 4-channel ratio R4
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Fig. 1: Simplified sketch of the A2D Mie channel setup. QWP: quarter wave
plate, ACCD: accumulation charge-coupled device.

In the Aeolus Level 1 B (L1B) processor, the centroid location, and the width of the Fizeau fringes
are usually analyzed by the Mie core 2 algorithm, which applies a downhill simplex fit routine
of a Lorentzian peak function ℒ(x) to the measurement data.

where 𝐼ℒ is the peak height, Γℒ is
the FWHM of the peak profile,
and 𝑥0 is the center position.
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Based on atmospheric ground return and internal reference signals it was demonstrated that
the Mie fringe profile is better described by a pseudo-Voigt function 𝒱(x) → A Voigt fit was
implemented in the L1B processor in 2022 as the Mie core 3 algorithm for an improved retrieval
of the scattering ratio and is currently implemented for the Mie wind retrieval.
In addition, a novel, non-fit-based algorithm was developed and reduces computation time
significantly (by a factor of 700).

𝒱(𝑥) is a linear combination of
ℒ*(𝑥) and 𝒢*(𝑥), normalized to
unit area. 𝐼𝒱 is the area below
the peak, 𝜂 is varying from 0 to 1
and 𝒪 is an offset.
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• About 85% of the useful signal is contained in the
inner 4 pixels

• The outer 12 pixels mainly contain noise

• The imaged fringe shape significantly depends on
the applied spectral corrections

→ A ratio of the intensities contained in the inner
4 pixels of the Mie fringe – R4 – is defined and used
to determine the fringe position:

Fig. 2: Fizeau fringe profiles simulated by
different model functions (Lorentzian and
pseudo-Voigt) and different widths (see label)
for a spectral pixel width of 100 MHz (bars).

Simulated Fizeau fringe profiles

Summary

Based on airborne A2D (AVATAR-I campaign, Iceland, 2019), it is demonstrated that the pseudo-Voigt-based fit algorithm (Mie core 3) performs
appreciably better than the Lorentzian-based fit algorithm (Mie core 2). Nearly 50% more valid Mie winds could be retrieved with similar quality. The
novel R4 algorithm shows a similar performance as the Mie core 3, but with a factor 700 faster computation time → The R4 algorithm can
be regarded as a suitable alternative for applications where a fast computation time is needed.

The R4 algorithm might also be useful for the fast and accurate analysis of spectrograms from heterodyne-detection wind lidars.

Fig. 3: R4 values depending on the fringe position for different Fizeau fringe profiles along 1 pixel
(px) (left) and the residuals to line fits (right, top) and 5th order polynomial fits (right, bottom).

• Rather uniform change of R4 within on pixel (left); “non-linearity” < ±4 MHz (right)
• The residual to a 5th-order polynomial fit is < ±0.03 MHz (independent of the profile)
• R4 is not affected by uniform background (e.g. Rayleigh or solar background)

R4 response along one pixel 

Performance analysis of different peak centroid algorithms for Aeolus Mie-wind retrieval – A2D data

Fig. 4: Mie response of the internal reference signal (a) and ground return signal (b) retrieved by the Lorentzian fit
(orange), the pseudo-Voigt fit (black), and the R4 algorithm (blue), from data acquired with the A2D on 18
September 2019 (AVATAR-I). The residual to a third-order polynomial fit is shown below in panels (c) and (d).

Fig. 5: A2D Mie cloudy LOS winds plotted against the 2-𝜇m DWL
wind speed projected onto the A2D LOS direction for all 10
research flights performed during AVATAR-I, analyzed with the
Lorentzian fit algorithm (a), the pseudo-Voigt fit algorithm (b) and
the R4 algorithm (c). The color of the points indicates the number
of data counts at certain wind speeds. Outliers that exceeded a
modified Z-score threshold of 3.5 are indicated in gray.

• For the internal reference signal (left), the Lorentzian-based algorithm (orange) shows the
largest deviations caused by the so-called pixelation effect. This effect is less pronounced
for the pseudo-Voigt and the R4 analysis.

• For atmospheric ground returns (right), the residuals are generally larger compared to
the internal reference signal, and also worse for the Lorentzian-based algorithm.

A2D Mie response calibration performed on 18 Sept 2019 (AVATAR-I) Mie cloudy winds derived for the entire AVATAR-I campaign period

• The pseudo-Voigt-based algorithm shows very good performance. Almost 50% more
valid Mie winds compared to the Mie core 2 (Lorentzian) analysis, but a similar random error.

• The R4 algorithm represents a good alternative, being ~700 times faster than the fit-based
algorithms, and yielding ~20% more valid Mie winds compared to the Mie core 2 analysis.
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Goal of this study  
The goal of this study was to investigate the performance of different existing Mie core algorithms (Lorentzian and pseudo-Voigt) as well as to develop a new,
non-fit-based, and very fast algorithm for the Fizeau fringe analysis.


