31ST INTERNATIONAL LASER RADAR CONFERENCE

22ND COHERENT LASER RADAR CONFERENCE

LANDSHUT, GERMANY, 23-28 JUNE 2024

Verification of different peak centroid analysis algorithms based on airborne wind lidar data in support of ESA's Aeolus mission

B. Witschas¹, J. M. Vaughan²,O. Lux¹, C. Lemmerz¹, I. Nikolaus³ and O. Reitebuch¹

- German Aerospace Center (DLR), Institute of Atmospheric Physics, Oberpfaffenhofen 82234, Germany
- Optical & Lidar Associates (OLA), Buckinghamshire, HP14 3PF, United Kingdom
- ³University of Applied Sciences Munich, Germany

Introduction

Measurement principle for "Mie winds" – The fringe imaging technique

The measurement of Aeolus Mie cloudy winds is based on the fringe-imaging technique. It relies on determining the spatial location of a linear interference pattern (fringe) due to multiple interference in a Fizeau spectrometer. This fringe is vertically imaged onto the Mie-channel detector. The accuracy of Mie cloudy winds thus depends on several pre- and post-detection factors.

From telescope Fizeau interferometer

Fig. 1: Simplified sketch of the A2D Mie channel setup. QWP: quarter wave plate, ACCD: accumulation charge-coupled device.

Peak centroid algorithms for Aeolus "Mie wind" retrieval

In the Aeolus Level 1 B (L1B) processor, the centroid location, and the width of the Fizeau fringes are usually analyzed by the Mie core 2 algorithm, which applies a downhill simplex fit routine of a Lorentzian peak function $\mathcal{L}(x)$ to the measurement data.

$$\mathcal{L}(x) = I_{\mathcal{L}} \cdot \frac{(\Gamma_{\mathcal{L}})^2}{4(x - x_0)^2 + (\Gamma_{\mathcal{L}})^2}$$

where $I_{\mathcal{L}}$ is the peak height, $\Gamma_{\mathcal{L}}$ is the FWHM of the peak profile, and x_0 is the center position.

Based on atmospheric ground return and internal reference signals it was demonstrated that $v(x) = I_v \cdot (\eta \mathcal{G}^*(x) + (1 - \eta)\mathcal{L}^*(x)) + \mathcal{O}(x)$ the Mie fringe profile is better described by a **pseudo-Voigt function** $\mathcal{V}(x) \rightarrow A$ Voigt fit was implemented in the L1B processor in 2022 as the **Mie core 3 algorithm** for an improved retrieval $\mathcal{L}^*(x) =$ of the scattering ratio and is currently implemented for the Mie wind retrieval. In addition, a novel, non-fit-based algorithm was developed and reduces computation time

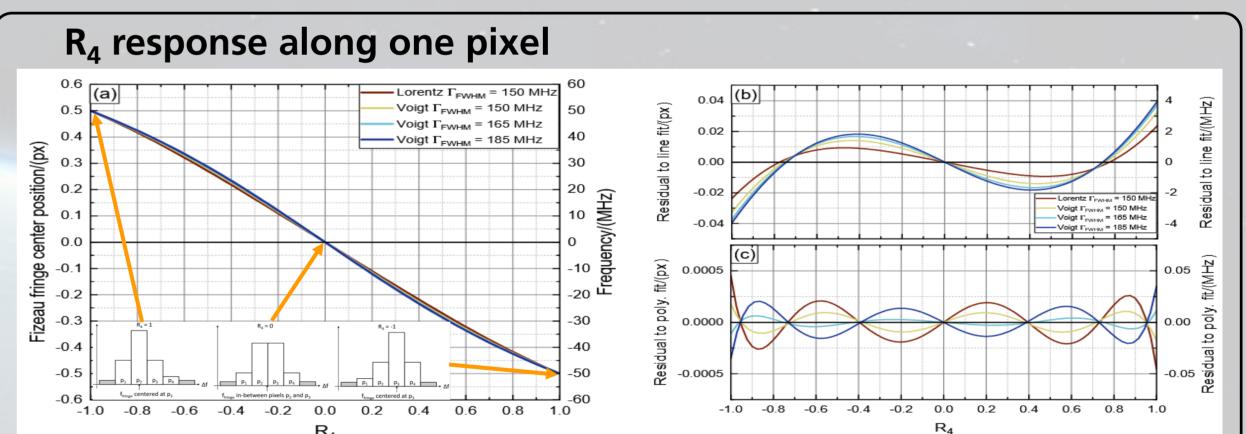
$$\mathcal{L}^*(x) = \frac{2}{\pi} \frac{\Gamma_{\mathcal{V}}}{4(x - x_0)^2 + (\Gamma_{\mathcal{V}})^2}$$

$$\mathcal{G}^*(x) = \frac{\sqrt{4\ln 2}}{\sqrt{\pi}\Gamma_{\mathcal{V}}} \exp\left(-\frac{4\ln 2}{(\Gamma_{\mathcal{V}})^2} ((x - x_0)^2)\right)$$

 $\mathcal{V}(x)$ is a linear combination of $\mathcal{L}^*(x)$ and $\mathcal{G}^*(x)$, normalized to unit area. I_{ν} is the area below the peak, η is varying from 0 to 1 and \mathcal{O} is an offset.

Goal of this study

significantly (by a factor of 700).


The goal of this study was to investigate the performance of different existing Mie core algorithms (Lorentzian and pseudo-Voigt) as well as to develop a new, non-fit-based, and very fast algorithm for the Fizeau fringe analysis.

An peak centroid algorithm for Fizeau-fringe analysis algorithm – The 4-channel ratio R₄

Simulated Fizeau fringe profiles curves are normalized Voigt Γ_{FWHM} = 185 MHz to unit area

- Fig. 2: Fizeau fringe profiles simulated by different model functions (Lorentzian and pseudo-Voigt) and different widths (see label) for a spectral pixel width of 100 MHz (bars).
- About 85% of the useful signal is contained in the inner 4 pixels
- The outer 12 pixels mainly contain noise
- The imaged fringe shape significantly depends on the applied spectral corrections
- → A ratio of the intensities contained in the inner 4 pixels of the Mie fringe − R₄ − is defined and used to determine the fringe position:

$$R_4 = \frac{(Ip_1 + Ip_2) - (Ip_3 + Ip_4)}{(Ip_2 + Ip_3) - (Ip_1 + Ip_4)}$$

- Fig. 3: R₄ values depending on the fringe position for different Fizeau fringe profiles along 1 pixel (px) (left) and the residuals to line fits (right, top) and 5th order polynomial fits (right, bottom).
- Rather uniform change of R₄ within on pixel (left); "non-linearity" < ±4 MHz (right) The residual to a 5th-order polynomial fit is $< \pm 0.03$ MHz (independent of the profile)

R₄ is **not affected by uniform background** (e.g. Rayleigh or solar background)

Performance analysis of different peak centroid algorithms for Aeolus Mie-wind retrieval – A2D data

A2D Mie response calibration performed on 18 Sept 2019 (AVATAR-I) Fig. 4: Mie response of the internal reference signal (a) and ground return signal (b) retrieved by the Lorentzian fit

(orange), the pseudo-Voigt fit (black), and the R_4 algorithm (blue), from data acquired with the A2D on 18 September 2019 (AVATAR-I). The residual to a third-order polynomial fit is shown below in panels (c) and (d).

- For the internal reference signal (left), the Lorentzian-based algorithm (orange) shows the largest deviations caused by the so-called pixelation effect. This effect is less pronounced for the pseudo-Voigt and the R₄ analysis.
- For atmospheric ground returns (right), the residuals are generally larger compared to the internal reference signal, and also worse for the Lorentzian-based algorithm.

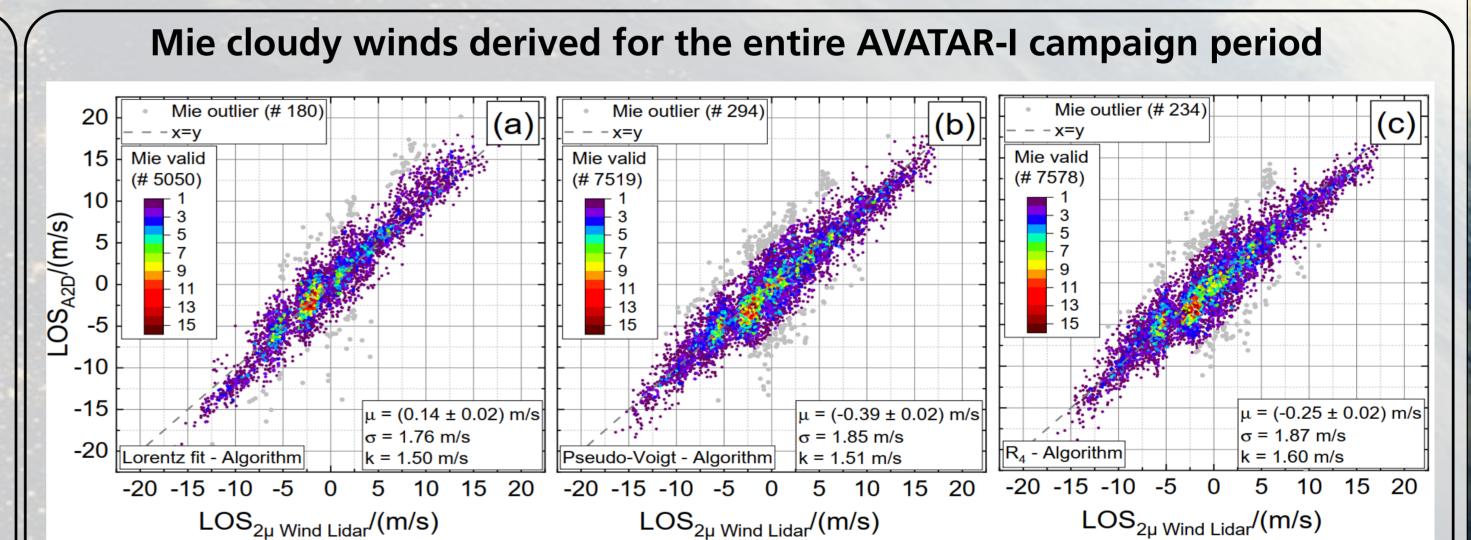


Fig. 5: A2D Mie cloudy LOS winds plotted against the 2- μ m DW wind speed projected onto the A2D LOS direction for all research flights performed during AVATAR-I, analyzed with th Lorentzian fit algorithm (a), the pseudo-Voigt fit algorithm (b) an the R_{\perp} algorithm (c). The color of the points indicates the number of data counts at certain wind speeds. Outliers that exceeded modified Z-score threshold of 3.5 are indicated in gray.

Valid data points	Outliers ^a	Random error ^b /(m/s)
5050	180 (3.6%)	1.50
7518 (49% more)	294 (3.9%)	1.51
6072 (20% more)	144 (2.4%)	1.56
	5050 7518 (49% more)	5050 180 (3.6%) 7518 (49% more) 294 (3.9%)

- The pseudo-Voigt-based algorithm shows very good performance. Almost 50% more valid Mie winds compared to the Mie core 2 (Lorentzian) analysis, but a similar random error.
- The R₄ algorithm represents a good alternative, being ~700 times faster than the fit-based algorithms, and yielding ~20% more valid Mie winds compared to the Mie core 2 analysis.

Summary

Based on airborne A2D (AVATAR-I campaign, Iceland, 2019), it is demonstrated that the pseudo-Voigt-based fit algorithm (Mie core 3) performs appreciably better than the Lorentzian-based fit algorithm (Mie core 2). Nearly 50% more valid Mie winds could be retrieved with similar quality. The novel R_{\perp} algorithm shows a similar performance as the Mie core 3, but with a factor 700 faster computation time \rightarrow The R_{\perp} algorithm can be regarded as a suitable alternative for applications where a fast computation time is needed.

The R₄ algorithm might also be useful for the fast and accurate analysis of spectrograms from heterodyne-detection wind lidars.