Federal Ministry for Economic Affairs and Climate Action

Heliodor (0324310)

HELIOSTAT FIELD PERFORMANCE TESTING GUIDELINE

- A Step Forward in the Measurement of Distributed Concentrator Systems

Marc Röger¹, Tim Schlichting¹, Jakob Herrmann², Christoph Happich³, Daniel Nieffer⁴, Gerhard Weinrebe⁵, Patrick Hilger⁶, Ansgar Macke³, Kristina Blume¹, Fabian Gross⁴

SolarPACES 2024, Rome, Oct. 8-11, 2024

German Aerospace Center (DLR), Institute of Solar Research, Spain/Germany
 Kraftanlagen Energies & Services GmbH, Germany
 CSP Services GmbH, Germany
 sbp sonne GmbH, Germany
 previously sbp sonne GmbH, now Glasspoint Technology Center GmbH
 Synhelion, Germany

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger

Preface

Heliostat Performance Testing Guideline

- for single heliostat evaluation
- focused on prototype validation & qualification

DLR, Heliostat Testing Platform with Stellio

Heliostat Field Acceptance Guideline

- for whole heliostat fields
- focused on the performance measurement of an industrial-sized field

DLR, Solar Field Juelich

Heliostat Field Acceptance Guideline Overview

- 1. Objective
- 2. Definitions
- 3. Methodology
- 4. Field Acceptance Procedure Theoretical example
- 5. Field Acceptance Procedure Practical Exercise

1. Objective Heliostat Field Performance Acceptance Guideline

Objective

- The guideline shall lead to reliable, high quality heliostat fields
- by defining an acceptance procedure to determine the heliostat field performance.
- It proves compliance with contractual agreements between owner and manufacturer (Example of contract is available).
- The separation between the tower and the heliostat field efficiency is of high importance to the manufacturer, yet it has not been standardized so far.

<u>Status</u>

- Guideline development started in 2019 within German project consortium HELIODOR: DLR, CSP Services, KAM, Synhelion, sbp Sonne
- Pending: International review pending (task III heliostat working group, document to be sent)

Solar Power and Chemical Energy Systems	
IEA Technology Collaboration Program	
Heliostat Field Acceptance Guideline	
Draft Version 0.9 (June 2023) Outcome of the German national project Heliodor (0324310)	ure
Federal Ministry for Economic Aflein	onstruction
and Climate Action	
on the basis of a decision	interfaces
By the German Randoning	
Edited by	e
Tim Schlichting ¹ , Jakob Herrmann ³ , Christoph Happich ² ,	
Daniel Nieffer ⁵ , Patrick Hilger ⁴ , Marc Röger ¹ , Gerhard	
Weinrebe ⁵ , Ansgar Macke ² , Kristina Blume ¹ , Fabian Gross ⁵	
¹ DLR, ² CSP Services, ³ KAM, ⁴ Synhelion, ⁵ sbp sonne	
	Aethods
4.2.1 Communication and Safety Parameters	
4.2.2 Performance Parameters	
4.2.3 Commercial Parameters	
4.2.4 Environmental Parameters	
4.3 Example of contracts	
4.3.1 Typical chapters for heliostat field contract	
4.3.2 Slope error warranties (Level 1)	
4.3.3 Tracking error warranties (Level 1)	
4.3.4 Example for environmental parameters (e.g. TM	IY, Level 2)
4.4 Example for Flux Density Distribution	
4.5 Example – Single Heliostat Acceptance Test	
4.6 Energy-weighted Availability	
4.7 Heliostat Field Labelling	
4.8 Symbols and General Definitions	
4.9 References	

4.10 Normative References

2. Definitions

 Definition of system boundaries / interfaces

Irradiation Receiver Interface Wind Heliostat Field Power Distribution Heliostat Field Power Distribution Heliostat Field Control System (+ Aim Point Strategy)

Survival Limits

Environmental

Parameters

Survival Limits

Air Humidity

and Dust

Sunshape

(Flux)

Extinction

Liahtnina

Ground

Hail

Snow

Date/Time

Lonaitude

Height MSL

Atmosphere

Direct Normal

Irradiance

Wind Loads

Roughness

Operational

Survival Limits Thermal Loads

(Flux)

Latitude

(Flux)

(DNI)

Surface

Limits

Interface to Atmosphere

- Definitions of parameters in the categories of
 - Performance
 - Commercial
 - Communication & Safety
 - Environment

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

6

2. Definitions Categories of parameters regarding their method of estimation

Each parameter can be assigned to at least one of the following categories:

- AT- Acceptance Test: Parameter derived by short term field test (e.g. heliostat slope deviations after commissioning of the field)
- MP- Mathematical Proof: Based on measured data, further calculation steps must be made to derive this parameter (e.g. yearly energy output in MWh)
- TE-Time Evaluation: Parameter which has to be observed over time by multiple measurements or operational data (e.g. heliostat availability)
- PT- Component Pre-Test: Not every part or component can be tested in the field, e.g. lifetime of components. They must be measured in laboratory prior to shipment (e.g. mirror ageing)
- QC- On-site manufacturing quality control: Parameter which are derived during the heliostat manufacturing (e.g. inline slope deviation measurement).

3. Methodology

The guideline offers **different options** for an acceptance test in a **contractual agreement**:

- Heliostat properties only (level 1)
- Simulation based output (level 2, based on level 1)
- Measurement of solar field efficiency $\eta_{\rm sol, field}$ by
 - Integrated solar flux measurement over receiver aperture
 - $\eta_{\text{sol,field}} = P_{\text{in,aperture}} / \Sigma (G_b^* A_{\text{net}}^* \rho_{s,\theta}^* \xi)_i$
- High uncertainties >6-8%
- By measuring total efficiency (solar \rightarrow thermal output) and the thermal receiver efficiency:

Needs receiver and its thermal efficiency; accuracy of PowerOn/Off test?

 $\eta_{\rm sol, field} = \eta_{\rm total} / \eta_{\rm th, rec}$

3. Methodology

The guideline offers **different options** for an acceptance test in a contractual agreement:

- Heliostat properties only (level 1)
- Simulation based output (level 2, based on level 1) Level 2 recommended

• Measurement of solar field efficiency $\eta_{sol,field}$ by

- Integrated solar flux measurement over receiver aperture
 - $\eta_{\text{sol,field}} = [P_{\text{in,aperture}}] \Sigma (G_{\text{b}} * A_{\text{net}} * \rho_{\text{s},\theta} * \xi)_i$ High uncertainties >6-8%
- By measuring total efficiency (solar \rightarrow thermal output) and the thermal receiver efficiency:

Needs receiver and its thermal efficiency; accuracy of PowerOn/Off test?

 $\eta_{\rm sol, field} = \eta_{\rm total} / \eta_{\rm th, rec}$

	Heliostat properties only (level 1)
Acceptance Procedure	Define sampling method and measure individual heliostats of the sample
Contract	Comply <u>measured</u> heliostat parameters (e.g. distributions of tracking error, slope deviation, etc.) with the <u>contractual</u> <u>design values</u> ? within conf.intervall
Complexity	Moderate
Uncertainty of field performance result	Depends on sample size
Limitations	Not considered are: - Field layout effects - Aimpoint strategies

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

3. Methodology Different levels of performance acceptance

Level 2 recommended

	Heliostat properties only (level 1) \rightarrow	Simulation based output (level 2)
Acceptance Procedure	Define sampling method and measure individual heliostats of the sample	Define sampling and measure individual heliostats. Level2: Data analysis (Anomalies), data extrapolation on not measured heliostats and raytracing simulation
Contract	Comply <u>measured</u> heliostat parameters (e.g. distributions of tracking error, slope deviation, etc.) with the <u>contractual</u> <u>design values</u> ? within conf.intervall	Comply the <u>"sim.based"</u> heliostat field efficiency, or heliostat field yield (<i>yearly/monthly/daily MWh</i>) with the <u>contractual design value</u> ? within conf.intervall
Complexity	Moderate	More complex, additional simulation step
Uncertainty of field performance result	Depends on sample size	Uncertainty ~ 3 % (with sufficient sample size and hi-fidelity raytracer)
Limitations	Not considered are: - Field layout effects - Aimpoint strategies	 Aimpoint strategy is considered - must be defined in contract Raytracer validated and the same used for contract and acceptance calculation

4. Field Acceptance Procedure Theoretical Example - Sampling

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

4. Field Acceptance Procedure Theoretical Example – Data extrapolation (scalar)

4. Field Acceptance Procedure Theoretical Example – Simulation and comparison with contract

5. Field Acceptance Procedure Practical Exercise: Exemplary Acceptance Testing Jülich

Sub Sector of 1001 Heliostats

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

5. Field Acceptance Procedure Practical Exercise: Exemplary Acceptance Testing Jülich

- Lessons learned & included in guideline:
 - Acceptance went smooth
 - SW reflectance better from lab measurements [PT], only variation from field measurements [AT]
 - Confirmation: Geometrical performance parameters have high priorities
 - Cluster analysis detected area of bad calibrated heliostats
 - Development of faster measurement of tracking accuracy was included in guideline
- Publication of exemplary acceptance testing planned for beginning of 2025

Heliostat Field Performance Testing Guideline, 09.10.24, Marc Röger, Tim Schlichting

Conclusion Heliostat Field Performance Acceptance Guideline

- The guideline defines acceptance procedures to determine the heliostat field performance and proves compliance with contractual agreements between owner and manufacturer
- Based on statistical samples of heliostat individuals
- The performance of heliostat individuals uses the SolarPACES Heliostat Performance Testing Guideline
- The measured values are extrapolated to the whole field and a raytracer calculates hourly or yearly efficiencies
- The simulated power can be validated by flux measurements of individual heliostats or groups
- The viability of the approach has been tested at the Solar Tower Juelich

Heliostat Field Acceptance Guideline

Funding Agencies

Heliodor (0324310) AdaptedHelio (03EE5056A)

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages SFERA-III (823802)

AnalyzeHeliostatField

EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME (Grant 823802)

THANK YOU for your attention THANKS to all contributing persons

Marc Röger, marc.roeger@dlr.de DLR, Qualification, Condition Monitoring