

3D-shape Measurement of Parabolic Trough Mirror Panels: First Results of the SFERA-III Round Robin

SolarPACES 2024 - Roma October 8-11

M. Montecchi, A. Benedetti, G. Cara (ENEA) F. Torres, G. Bern (F-ISE) M. Röger, K. Blume, T. Schlichting, E. Lüpfert (DLR) D. Kesseli, G. Zhu (NREL) B. Smith, R. Brost (Sandia National Laboratory)

10th October 11:45 Room G

Causes of degradation of intercept factor in PT collectors

- 3D-shape measurement is fundamental to assess the panel compliance to the ideal parabola
- About 10 years ago a previous SolarPACES round-robin did not yeld satisfactory results because of the large deviations, thus a guideline on shape measurements is still lacking

3D-shape measurement round-robin in EU project SFERA-III

- SCOPE: comparison of the main geometric parameters, such as height and slope deviations from the ideal parabola as both RMS value and point by point
- PARTICIPANTS: <u>ENEA</u>, F-ISE, DLR, NREL, Sandia NL
- INSTRUMENTS: VISproPT (ENEA)

deflectometry (F-ISE, DLR, Sandia NL)

reflected target system (NREL)

• SPECIMEN KIT: 3 inner +3 outer RP3 parabolic trough panels

focal= 1710 mm silvered glass 3.8 mm thick

• EXECUTION: 01/2023 ENEA \rightarrow F-ISE \rightarrow DLR \rightarrow Sandia NL(NREL)

3D-shape RR methodology: panel mounting

The 4 spheres must lie in the same horizontal plane !!!

RR reference frame:

- Origin in the center of ball #2
- Z-axis vertical
- X-axis crossing the centers of ball #2 and #4

3D-shape RR methodology: main reference frames

RF=reference frame

- Laboratory RF
- Ideal parabola RF (*)
- Round-robin common RF (essential for point by point comparison!!!)

(*) Origin and orientation of parabola RF are evaluated by the construction drawing

3D-shape RR methodology: RRcomparator software

×				RRcmp			~ ^ ×	🗴 🖈 Diff Ideal-ENEA inner#60 z 🗸 🔿 🗙
Rcomparat	or v10.0							
pecimen in	iner#60 🗸	Parameter	Height (z) 🛛 🗸	Load file an	d SW realignment	by devZ_exp 🛛 🗸	2D-Integration	
ommon rang	ge: Min -11.7445		Max 79.74	32		decimal	2 🗘 🗆 *10^3	
Tab Paramet	ter Tab XY range	Tab statistics						
	P1	P2	P3	P4	Min	Max	Show diff	
Ideal	21.09	21.09	20.84	20.84	2D-contour	X-Profile	Y-Profile	(x=1, y=153) ~ R:255 G:156 B:0
ENEA	21.09	21.09	20.84	20.84	-11.35	77.13	plot	N PRomparator V V V
✓ FISE	21.12	21.12	20.79	20.79	-11.03	69.75	plot	Diff Ideal-ENEA inner#60 z
DLR	21.13	21.13	20.43	20.43	-11.66	78.92	plot	
✓ NREL	20.83	20.83	20.65	20.65	-11.74	79.74	plot	2
SANDIA	20.98	20.98	20.45	20.45	-11.18	79.23	plot	1,5
Limited to	the common VV a							z 1
Linited to	the common xr a	ica		Comparison				- 0,5 -
Com	pare 🗌 No	ormalized	ENEA	 ✓ 0,30 < ↓ Ide 	al 🗸	0,00 🗘 not no	rmalized	
mean 0.07		RMS 0.49	PV	3.45 m	in -0.98	max 2.47		-0,5
✓ 2D map	✓ Profile Plot Mi	n -0.98	Max	2.47		Ndat 26329		-500 0 500 1.000 1.500
								x (mm)

RRcomparator software for statistical and point-by-point comparison:

- C++ with Qt GUI
- Open source
- MS Windows executable
- Resampling on common grid to allow the point-by point comparison

OPTIONS:

- Software realignment of the 3D shape on the 4 supporting points
- Limit the comparison to the common XY area
- Differences can be computed from the ideal parabola or from another participant
- Normalization of the difference to the uncertainty

3D-shape RR methodology: open software open data https://github.com/mmonty1960/RRcomparator

https://github.com/mmonty1960/RRcompa	arator				
🌎 Product 🗸 Solutio	ons 🗸 Resources 🗸 Open Source 🗸 Enterprise 🗸 Pr	icing			
🖵 mmonty1960 / RRc	comparator (Public)				
<> Code 🕥 Issues 👬	Pull requests 🕟 Actions 🖽 Projects 😲 Security	🗠 Insights			
양 main ▾ 양 1 Branch ⓒ 9 Tags					
	() mmonty1960 v10.0				
	Workspace	v10.0			
Software and data	ComparisonNormalzed2maxError.docx	v10.0			
Contra o ana data		Initial commit			
Main documents —	C README.md	v10.0			
	RRplacingProcedure.pdf	v1.0			
	SFERA-III_Deliverable_3DshapeRR_v4_final	v8.0			
	rrcmp_WinExecLauncher.bat	v1.0			
	띠 README 책 GPL-3.0 license				

3D-shape RR methodology: preliminary acceptance test

Comparison of the values at the support points with the ones expected for the ideal parabola

Tab Paramet	ter Tab XY ranges	Tab statistics		Hoight
	P1	P2	P3	
Ideal	21.09	21.09	20.84	20.84
ENEA	21.03	21.01	20.93	20.87
✓ FISE	21.08	21.81	20.19	20.13
✓ DLR	21.10	21.13	20.40	20.50
NREL	21.11	21.04	20.18	20.92
SANDIA	21.08	21.03	20.36	20.56

No first submission passed the test !!!

<u>1st lesson learned:</u> Transforming data into different reference systems is not trivial !

Tab Parame	eter Tab XY ranges	Tab statistics		SlonoX	Tab Parame	ter Tab XY ranges	Tab statistics	9	loneY
	P1	P2	P3	Р4		P1	P2	P3	P4
Ideal	-0.136	-0.136	0.127	0.127	Ideal	0.000	0.000	0.000	0.000
ENEA	-0.133	-0.134	0.128	0.129	ENEA	-0.002	0.002	-0.001	0.003
FISE	-0.133	-0.134	0.126	0.127	FISE	-0.002	0.002	-0.001	0.003
✓ DLR	-0.134	-0.134	0.127	0.129	✓ DLR	-0.002	0.002	-0.001	0.001
NREL	-0.136	-0.134	0.127	0.129	NREL	-0.002	0.002	-0.002	0.002
SANDIA	-0.134	-0.134	0.127	0.128	SANDIA	-0.002	0.002	-0.001	0.002

3D-shape RR results: RMS deviations from ideal parabola-1

The more the shape conforms to the ideal parabola, the higher the optical-geometric efficiency in terms of intercept factor of the mirror panel

Mean and standard deviation of RMS values of z deviations

	As it is (mm)	XY common (mm)	XY common and SW realignment (mm)
Inner#60	0.47 ± 0.11	0.43 ± 0.10	0.40 ± 0.10
Inner#61*	0.57 ± 0.08	0.55 ± 0.10	0.48 ± 0.08
Inner#62	0.39 ± 0.10	0.35 ± 0.10	0.31 ± 0.06
Outer#93	0.38 ± 0.14	0.37 ± 0.13	0.33 ± 0.08
Outer#97	0.37 ± 0.12	0.35 ± 0.11	0.29 ± 0.08
Outer#99*	0.44 ± 0.16	0.41 ± 0.14	0.30 ± 0.09

(*) NREL data not available

3D-shape RR results: RMS deviations from ideal parabola-2

The more the shape conforms to the ideal parabola, the higher the optical-geometric efficiency in terms of intercept factor of the mirror panel

Mean and standard deviation of RMS values of slopeX deviations

	As it is (<u>mrad</u>)	XY common (<u>mrad</u>)	XY common and SW realignment (<u>mrad</u>)
Inner#60	2.66 ± 0.35	2.42 ± 0.37	2.42 ± 0.44
Inner#61*	3.23 ± 0.49	3.00 ± 0.49	3.01 ± 0.53
Inner#62	2.27 ± 0.25	2.07 ± 0.22	2.02 ± 0.18
Outer#93	1.61 ± 0.22	1.56 ± 0.22	1.52 ± 0.14
Outer#97	1.55 ± 0.20	1.53 ± 0.19	1.45 ± 0.11
Outer#99*	1.73 ± 0.24	1.69 ± 0.23	1.56 ± 0.07

(*) NREL data not available

3D-shape RR results: RMS deviations from ideal parabola-3

The more the shape conforms to the ideal parabola, the higher the optical-geometric efficiency in terms of intercept factor of the mirror panel

Mean and standard deviation of RMS values of slopeY deviations

	As it is (<u>mrad</u>)	XY common (<u>mrad</u>)	XY common and SW realignment (<u>mrad</u>)
Inner#60	2.60 ± 0.32	1.61 ± 0.07	1.60 ± 0.05
Inner#61*	2.75 ± 0.34	2.32 ± 0.09	2.30 ± 0.08
Inner#62	2.56 ± 0.32	1.61 ± 0.14	1.59 ± 0.13
Outer#93	2.17 ± 0.33	1.85 ± 0.21	1.83 ± 0.20
Outer#97	1.90 ± 0.42	1.61 ± 0.26	1.59 ± 0.25
Outer#99*	2.10 ± 0.38	1.87 ± 0.24	1.84 ± 0.26

(*) NREL data not available

<u>2nd lesson learned:</u>

agreement among participants improves when one applies the options

- Limited to the common XY area
- Shape realignment on the 4 attaching points

3D-shape RR results: Contour Maps of deviations from ideal parabola

SlopeX deviation

RRcomparator <3>

RRcomparator <4>

SANDIA inner#60 devDx

NREL inner#60 devDx

The narrow distribution of the RMS deviations as well as the similarity of contour maps and shape profiles prove a reasonable agreement in this RR

This represents an important improvement with respect to the previous round-robin

3D-shape RR results: comparison between pairs of evaluators

Difference between pairs of evaluators normalized to the error (3 sigma) - inner#60

	F-ISE	DLR	NREL	SANDIA
ENEA	0.05 ± 0.22	-0.04 ± 0.08	0.00 ± 0.26	0.13 ± 0.36
F-ISE		-0.14 ± 0.37	-0.09 ± 0.50	0.11 ± 0.51
DLR			0.05 ± 0.33	0.21 ± 0.50
NREL				0.13 ± 0.45

		F-ISE	DLR	NREL	SANDIA
	ENEA	0.01 ± 0.65	0.09 ± 0.31	-1.38 ± 4.16	-2.32 ± 2.86
K	F-ISE		0.02 ± 0.52	-0.65 ± 1.75	-0.89 ± 1.31
	DLR			-0.95 ± 2.62	-1.41 ± 1.77
	NREL				-0.51 ± 4.75

Ζ

		F-ISE	DLR	NREL	SANDIA
	ENEA	-0.06 ± 1.22	-0.20 ± 0.89	-0.64 ± 1.71	-0.76 ± 1.33
slopeY	F-ISE		-0.08 ± 1.42	-0.27 ± 1.46	-0.45 ± 1.43
-	DLR			-0.25 ± 1.08	-0.23 ± 0.95
	NREL				0.07 ± 1.82

3D-shape RR results: comparison between pairs of evaluators

3D-shape RR: the future

- <u>The Round-Robin is still going on</u>: NREL and SANDIA are checking the correctness of their data location in the XY plane
- Optionally the Intercept Factor will be included
- SolarPACES will fund the next activity with the project 3D-shape measurements for quality assessment of parabolic-trough reflective panels
- The lessons learned will feed into a new draft of the SolarPACES shape-guidelines

