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Abstract

Although alkaline water electrolysis (AWE) is a highly mature
technology for hydrogen production, its potential is hindered by
relatively low efficiencies at high current densities. On the other
hand, to conform with “RePowerEU” directives, coupling elec-
trolyzers with new renewable energy sources (RES) is highly
demanded. However, integrating fluctuating RES poses chal-
lenges for the AWE due to increasing gas impurity as the current
density decreases. Herein, we revised the most promising
recent developments in materials, cell design, and system
integration aimed at conquering the aforementioned challenges.
It is shown that the implementation of advanced components
and control strategies, e.g. electrolyte management, is vital to
enhance the efficiency at high current densities and expand the
load range of operation by maintaining the high gas purity.
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Introduction
A complete transformation in the energy sector, i.e.
energy production, transport, and consumption, holds

the key to reduce global CO; emissions from around
32 Gt in 2023 to less than 2 Gt in 2050 [1]. The need to
reduce greenhouse gas (GHG) emissions has promoted
the use of what is called “green H,” i.e. hydrogen pro-
duced by water electrolysis employing renewable power
sources [2]. Green H; production is expected at first to
substitute conventional H; produced from fossil sources
in the chemical industry, but might then also become a
major energy carrier potentially used for long- and short-
term energy storage (chemical storage) to balance
energy demand and production [3,4]. The high purity
H; obtained by water electrolysis (>99.9%) can later be
used for power generation through thermo-mechanical
or electro-chemical convertors, synthetic fuels and
other hydrogen derivatives production, and in the
chemical industry [5,6]. According to the Net Zero
Emissions by 2050 Scenario, rising hydrogen use is ex-
pected to reach from 95 Mt in 2022 to more than 660 Mt
in 2050, increasing from 0.1% to 60% of the share of
electrolysis (3000 GW electrolyzers) [7,8].

Alkaline water electrolysis (AWE) is a mature technol-
ogy with a high technology readiness level (TRL 9
[9]) and represents 58% of the electrolyzer
manufacturing capacity in Europe [10]. Thanks to its
cost benefits, AWE presents a promising solution for
large-scale hydrogen production [11]. By 2023, there
was 81 MW, of installed capacity of AWE and 1200
MW, under construction [10]. Typically, its operation
temperature ranges from 40°C to 80°C, and pressures
reach up to 30 bar [4,12]. The entire system is designed
for lifetimes greater than 60.000 h and high H; con-
version efficiency, which currently is close to 70%
considering the lower heat value of H; [3]. The coupling
of renewable power energy sources (RES) with H;
production is theoretically possible thanks to the elec-
trolyzers electrical fast response [5], but historically the
AWE systems, including balance of plant (BoP) equip-
ment, have been designed for operation at steady-state
conditions [4]. The limitation of current densities upto
0.2—0.6 A-cm ™2 [13,14] combined with a minimum
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partial load of 10%—40% of the nominal load [15],
restrict the ability of the AWE system to operate under
the highly variable loads associated to RES. Further-
more, the slow thermal dynamic response at system
level, which leads operating at lower temperatures to
avoid component damage during fast load increase, re-
duces AWE efficiency. The main challenges identified
for the AWEs, particularly when integrated with RES,
are the low efficiency, low gas purity at low loads, high
cell voltage at high current densities, long-term dura-
bility, cost, and the system’s dynamic response [3,4,15].
Innovations could demonstrate AWE'’s potential to in-
crease current density and hydrogen production while
simultaneously decreasing costs [11].

In this context, researchers have directed their efforts
toward enhancing and optimizing cell/stack material and
configuration, adjustment of operation under dynamic,
and partial loads for better upstream and downstream
AWE integration. This study highlights the latest de-
velopments in AWEs technology and its integration into
the energy system, with the specific focus on challenges
associated with component level and operation under
fluctuating load profiles and the prerequisites for
downstream integration.

Developments at cell/stack level design and
its components

In the following section, cell/stack and material designs
for AWE are discussed, along with the most advanced
practices. The commonly used stack configuration,
series cells electrically connected by bipolar plates, is
introduced in Figure 1(a—c) [14]. The cell is composed
of two half-cells separated by a diaphragm or membrane
to minimize the gas mixture, and each half cell includes
an electrode, a gas diffusion layer to facilitate the bubble
removal, and a bipolar plate. At the cell level, modifi-
cations of gap between electrodes, electrolyte, and gas
flow inside the cell, electrodes and their microstruc-
tures, and separator properties have resulted in an
increased durability and efficiency due to a decrease in
the overall cell resistance, including ohmic and activa-
tion losses. As shown in Figure 1(d,e), at lower current
densities, the cell performance is governed mainly by
the catalytic activity, whereas at higher current den-
sities, the ohmic losses related to separators and elec-
trode microstructure play a major role [16]. In particular,
electrodes, their porous transport layer’s microstructure,
and separator’s conductivity impact the ohmic losses
associated with mass transport, by affecting the ion
transport to the reacting sites, and the bubble removal
capacity [11].

Precious metal-based catalysts demonstrated the highest
activity for the hydrogen and oxygen evolution reaction
(HER, OER). However, due to its scarcity and cost, they
have been replaced by Ni-based electrodes. Table 1
summarizes recently developed catalysts for OER and

HER. It can be seen that comparison between different
catalysts is not straightforward since there is not yet a
harmonized protocol among scientific community for the
performance characterization. Reviews on promising
nonprecious metal catalyst developments such as Fe-(Ni
or Co) for OER, transition metal nitrides, and Ni—Mo for
HER can be found in Refs. [17,18] and [19].

Unsteady operation of the commonly used Ni-based
catalysts can contribute to their deactivation due to
microstructural and chemical changes [20]. Anode based
on NiFe-hydroxide/oxide-coated stainless steel has
shown a stable overpotential after 20,000 potential
cycles from 0.5 to 1.8 V (vs. reference hydrogen clec-
trode (RHE), tested at 20 °C in 7 M KOH), while under
the same conditions, pure Ni showed a 100 mV increase
in overpotentials at 0.1 A-ecm™? [20]. Self-repairing
catalyst layers have been developed based on cobalt
hydroxide nanosheets (Co-ns) with a tripodal ligand on
Ni and were able to maintain their low overpotential
with an increase of just 9 mV after 40,000 potential
cycles (from 0.5 to 1.8 V vs. RHE). The repairing pro-
cess occurred thanks to the addition of a dispersion of
Co-ns to the 1 M KOH electrolyte, which were depos-
ited on the Ni anode during the constant current phases
of the test [21]. The durability of the electrodes is also
affected by the transients during start-up and shut-
down, which generate a reverse current flow during
the off periods through the ionic transport provided by
the electrolyte in the stack manifold (Figure 1(b)) and
promote an irreversible oxidation of the Ni cathode to -
Ni(OH); or NiO [22]. Efforts to limit this degradation
phenomenon include the implementation of cathodic
protection systems by sacrificial anodes [22] and the
design of electrodes with sacrificial species incorporated
into them [23].

The energy losses that arise from the formation of
bubbles within electrolysis systems, by blocking the
catalyst surface and increasing activation and ohmic loss
[24], limit the maximum operating current density [25].
In a recent review on the effect of bubbles on system
efficiency, it has been shown that at least 5%—10% of
the electrolysis system energy can be saved by miti-
gating bubble formation and that strategies such as
centrifuging the electrolyzer to apply a supergravity
environment for a gas bubble-free operation can lead to
an increase of 9%—17% of the stack energy efficiency (at
current densities greater than 500 mA-cm % and relative
to the higher heating value of hydrogen) [25]. Novel
systems, characterized by micro-structured porous
electrodes [16] and capillary-fed alkaline electrolysis
cells (Figure 1(f—i)) [26], hold the promise of a signif-
icant leap in energy efficiency thanks to a decrease in
bubble accumulation or directly avoiding bubble for-
mation. Studies on the effect of the microstructure of Ni
electrodes operated in zero-gap flow-through single cell
configuration (Figure 1(d,e)) showed the existence of an
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Figure 1
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Electrolyzer at stack and cell level. (a) Schematic representation of the stack components. (b) Degradation mechanisms during shut-down; along with the
electrodes, the electrocal circuit is completed by the bipolar plate (e-transport) and the electrolyte present in the stack manifold (ion transport). During
operation, each cell acts as an electrolytic cell, but during shut down, a reverse current flow is generated, and the anode and cathode of two adjacent cells
reverse their reactions and form a galvanic cell. This leads to the Ni electrode deactivation by the formation of - Ni(OH), or NiO (adapted from Ref. [22]).
(c) Electrical circuits, and electrochemical reactions at the cell level in alkaline media. (d) Effects of changes in the electrode microstructure on the OER
potential. The electrodes were tested in a 1 M KOH solution in a flow-through single cell equipped with a reference electrode to measure the anode
potential. Three Ni porous electrodes with different surface areas and porosities were tested (ordered by decreasing surface area and increasing bubble
removal capability): nanowire felt (Ni NW), microfiber felt (Ni MF), and Ni foam (adapted from Ref. [16]). (e) Comparison of the best-performing electrode in
Ref. [16] with the state-of-the-art of water electrolysis. Square red symbols represent the maximum current densities for alkaline electrolysis reported in
the literature, while the red triangles represent the results for membraneless flow-through alkaline electrolyzers. The shaded areas for AEL and PEM
correspond to operating industrial conditions (adapted from Ref. [16]). (f) Innovative cell design proposed by Hodges et al., 2022 [26] where the electrolyte
is feed by capillarity (achieved with a polyether sulfone (PES) separator), and bubble formation is avoided. (g) Comparison of the capillary-fed perfor-
mance at different configurations with standard cells using Zirffon™ as separator (NiFeOOH as anode and Pt/C as cathode). (h) Comparison of the
capillary-fed cell performance with commercial alkaline and PEM cells. (i) Sources of improved performance in the capillary-fed cell at 1 A.cm™ (f, g, h,
and i adapted from Ref. [26]).

optimal pore size related to the balance between
increasing surface area and decreasing bubble removal
[16]. They have also shown that different types of
electrodes with different structures and porosity can
impact reducing the ohmic loss stemmed from the
bubble formation and accumulation [16]. Modifications

on the separators can also improve their performance at
high current densities. Recently, the substitution of
porous diaphragms with ion-solvating membranes have
resulted in current densities >1.7 A-cm™% at 1.8 V
combined with a low hydrogen permeability in cells
based on Raney Ni-type electrodes immersed in
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aqueous 24% KOH at 80 °C [27,28]. The stability of
such membranes have been improved thanks to a new
membrane reinforcement, reaching 1000 h of operation
without cell failure [27].

System-level upstream and downstream
integration

In the following sections, possible upstream and down-
stream process integration are presented, including its
complexities and recent advances. ligure 2 presents a
summary of the integration at a system level.

Transient operation and upstream integration
including both experimental and simulation

The integration of RES with hydrogen production can
be achieved by implementing on-grid (RES and elec-
trolyzer connected to the grid, blue in Figure 2) or off-
grid systems (RES and electrolyzer isolated from the
grid, gray in Figure 2). The system integration should
consider the characteristics of the RES and optimize the
topology of the electrical coupling [38,40], the power
allocation strategies [41,42] and the operation of the
hydrogen plant. In this review, we will focus on the
advances related to the aspect of operation.

The inherent RES fluctuation subjects the connected
AWE to fast load changes and a wide load range [43]. The

Figure 2

gas impurity is one of the limiting factors in the dynamic
operation of AWEs, since it provokes safety shutdowns to
prevent the formation of explosive H,/O; mixtures,
affecting the stability and power quality of the electrical
system [40] and limiting the minimum partial load to
10%—40% of the AWE’s nominal power [13,15]. In
particular, the lower current densities associated with the
partial load will reduce the electrolyzer gas production
and consequently reduce the dilution of the impurities,
which can result in an unsafe impurity concentration
level [4]. The main source of impurity in an AWE is the
gas contained in the electrolyte recirculation stream
when the system is operated in mixed cycle mode to
avoid concertation gradients between the anode and
cathode sides [44]. Increasing electrolyte concentration
decreases the gas impurity by decreasing gas solubility
and diffusion, the upper limit being given by the
maximum conductivity achieved by concentrations of
32.5 wt% [44]. Modifications of system operation such as
higher temperature operation could improve gas purity in
mixed-mode electrolyte circulation by reducing the sol-
ubility of the gases and increasing the bubble rise in the
electrolyte/gas separators, which is beneficial for the
electrolyte/gas separator’s efficiency. The operation of a
separate electrolyte circuit also allows to obtain safety
levels of H, in O, at current densities as low as
0.05 A-cm™ % and pressures of 20 bar [45]. However,
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H, plant integration into upstream and downstream processes. The boundaries of the H, — plant are marked with a doted black rectangle and include:
water purification system, electrolyte circuit (tank, pumps, filter), electrolyzer stack, electrolyte/gas separators (for electrolyte/H, separation and elec-
trolyte/O, separation before the electrolyte is recirculated into the stack) and final H, conditioning and pressurization system. The plant can be integrated
into the electricity grid (on-grid) or isolated (off-grid). Battery banks and fuel cells can be installed to balance the system. The produced H, can be fed to
power to gas and power to liquid process, to the chemical industry or transport sector. Image created based on [14,38,39].
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temporary mixing of the electrolyte is required to keep
the concentration constant. An alternative is the dynamic
operation of the electrolytic cycles, which can be
achieved by flexible alternation between mixed and
separated modes [44]. The operation with adapted
electrolyte flow rate depending on the current density
was shown to reduce the gas impurity (to a maximum of
1.3% compared to 2.4% of H; in O; in standard mode)
and does not affect the cell voltage when operating a
single cell under simulated wind power profiles, as
depicted in Figure 3(a,b) [43]. Nevertheless, the mini-
mum flow rate for each system should be defined,
considering cooling requirements [43] and its effect on
the bubble growth rate inside the cell [44]. Simulations
have been performed to study the combined effect of
dynamic loads and different electrolyte circulation modes
(Figure 3(c,d)), showing that the dynamic response in
terms of impurity accumulation depends on the number

of cells and the gas volume of the system [46]. An
impressive impurity level below 1 vol% was achieved by
designing multiinput multioutput optimal controllers to
minimize the pressure difference between the anode and
cathode sides in pressurized electrolyzers, under con-
stant pressure separated electrolyte circulation mode,
and fluctuating current emulating RES [47].

The fast load changes associated with RES generate
potential and temperature variations, resulting in
decreased performance and accelerated cell degradation
[48]. Electrolyzers coupled to wind power showed a
temperature variation of 8°C when using a simple pro-
portional integral differential (PID) control, which
limits the temperature set point to 65°C and leads to
low operation performance [49]. Recently, temperature
controllers based on transient thermal modeling were
shown to be fundamental to mitigate the impact of
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Gas purity control in a single-cell electrolyzer. (a) Simulated wind profiles utilized to test different control strategies. The duration of each electrolyte
circulation mode is shown for the case of switching from separated to mixed circulation [43]. (b) Variation of the cell voltage and gas purity under the
simulated wind profile and different electrolyte circulation strategies (mixed mode and fixed volume flow, mixed mode, and variable volume flow, and
separated electrolyte circulation) [43]. (¢) The same data [43] was used to validate a model in Ref. [46], where mixed and alternated circulation modes
were simulated. The importance of considering additional gas crossover mechanism caused by a differential pressure between cathode and anode sides
was highlighted for near perfect agreement between the model and the experimental results. (d) Performing single cell model sensitivity analysis under
mixed circulation mode to investigate the dynamic response of the system by varying operation conditions: electrolyte volume flow, temperature, elec-
trolyte concentration, and gas separator volume [46]. Figure adapted from Refs. [43,46].
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external disturbances and increase the system efficiency
by increasing the temperature set point [50]. Dynamic
energy and mass balances could be combined with
electrochemical and thermal models to perform sensi-
tivity analyses of changing temperature, mass fraction of
KOH in the electrolyte solution and the lye flow rate
[51—54], and to develop efficient control strategies.

Researchers have observed that designing a suitable
controller for the dynamic operating conditions of AWE
systems has been shown to be a powerful tool. It was
shown that implementing a multistate transition model
(production, stand-by, and off states) led to investigate
temperature variations and hydrogen-produced proper-
ties, as well as increasing daily revenues [52].

Downstream integration

Figure 2 shows several of the utilization paths of green
H;. Particularly for the mobility sector, chemically stored
H; in the form of synthetic liquid fuels is considered to
be safer and easier to handle than pure H;. Synthetic
liquid fuel production using atmospheric H; supply from
AWE was simulated and resulted in an energy efficiency
of 63.4%. It could be enhanced to 71.5% when system
thermal integration was considered [55]. However, for
the mobility sector, the overall energy efficiencies reach
values close to 21% for E-fuels utilization, while for fuel-
cell electric vehicles, this can reach to 31% [53].

High pressures are generally required for downstream
integrations, 200—500 bar for hydrogen transport [56],
700 bar for mobility [56], 20—30 bar for reverse water
gas shift (RWGS) units and Fischer-Tropsch re-
actors [57,58]. Figure 4(a) shows that the AWE system
efficiency, calculated by including the energy consumed
to compress hydrogen up to 200 bar, reaches a maximum
value in the range of 10—30 bars in the stack. However,

Figure 4

further increasing on the stack pressure lead to a
decrease of system efficiency. It is also reported that the
optimum stack pressure operation could increase with
the increase of the final hydrogen compression pressure
[59]. It has been reported that incorporating pressurized
electrolyzers will contribute to decrease the system cost
by reducing the energy consumed for compression [56].
However, pressurization impacts electrolysis energy
consumption (as depicted in Figure 4(b)) [60] and in-
creases hydrogen crossover [61]. Moreover, the combi-
nation of low current densities with high pressure was
shown to exacerbate the wunfavorable conditions
regarding the gas purity [62]. Strategies using separated
electrolyte mode and advanced controllers that mini-
mize the gas crossover could pave the way for the
operation at higher pressure under fluctuating loads
[47]. New materials have been tested in short stacks
reaching up to 100 bar [63], but still more advances are
necessary to improve durability and gas purity in a wider
load range.

Conclusion

The most recent advances in AWE cell, stack, and
system levels were reviewed in this short article.
Developing new cell/stack components and cell designs
with a high bubble removal rate was shown to be a
promising strategy to increase efficiency at high current
densities. Furthermore, the need of advanced system
operational strategies under transient states for up-
stream integration and the high pressures required for
downstream processes were emphasized. The imple-
mentation of advanced control systems for the power
supply system’s temperature and pressure, and using
adaptive electrolyte flow rate and concentration could
decrease AWE’s minimum load, improve its dynamic
response when combined with RES, and increase
system efficiency. The downstream integration of highly

9.50

0
N
w

©w
=3
S

©
~
wn

® @
o N
e v

~
~
v

Hydrogen production rate per kW (mol/h) ~
@
I
S

~
v
=3

Pressure (bar)

b) 1.9
a5
= 185 E
c 44 Z
e 3
< s
o 1.80 PER
o =
B 8
O 175 42 g
= . £
Q + P=15bars a1 2
o 170 e P=30bars s
© ¢ P =50bars et
g o P =80bars w2
1.65 o P =100 bars S
39
1.60
0 200 400 600 800 1000
current density / mA.cm™
Current Opinion in Electrochemistry

(a) Effect of pressure on the hydrogen production efficiency when the energy required for compression up to 200 bar is considered. Results obtained by
simulations for an AWE system operating at 0.4 A-cm™2 [59]. (b) Mean cell voltage variation and energy consumption measured in a 5 cells short stack
using optimized electrodes and separators. The experimental results showed an increase in the cell voltage at increasing pressures above 30 bar [63].
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pressurized AWE to produce hydrogen, could also in-
crease the overall system efficiency and decrease the
system cost by reducing the energy consumed
for compression.
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