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A B S T R A C T

Wind turbine towers pose major challenges for design engineers due to their complex geometry, nonlinear 
material behavior and imperfection sensitivity. In service, these thin-walled shells are burdened by a combi-
nation of complex load cases and prone to buckling. In fact, one of the main design drivers of wind turbine towers 
is stability failure for which often the design recommendation of the EN-1993–1–6 are used.

Recently an international shell buckling exercise was caried out by the team behind the EN-1993–1–6 design 
standard. Within this exercise 29 teams from academia and industry were asked to perform a series of linear and 
non-linear finite element simulations of an 8-MW multi-strake steel wind turbine support tower segment. In 
general, the linear and nonlinear analyzes posed no challenge for the shell buckling experts from around the 
world. However, the imperfection sensitivity analysis results scattered significantly among the participants. In 
addition, there was little consensus as to whether the given tower design is actually safe.

The authors, whose background is aerospace engineering, participated in this exercise and show in this article 
how they overcome the challenges of this typical civil engineering problem. Among linear and non-linear ana-
lyzes the authors show the results of state-of-the-art shell buckling concepts which were developed for aerospace 
shells like interstage tanks and adapters but are also applicable to wind turbine towers.

Abbreviations and glossary
E Elasticity modulus
EBC Energy Barriere Criterion
Exp. Experiment
GMNA Geometrically and material nonlinear analysis
GMNIA Geometrically and material nonlinear analysis with 

imperfections
GNA Geometrically nonlinear analysis
GNIA Geometrically nonlinear analysis with imperfections
ISBE International shell buckling exercise
L Cylinder height/length
LBA Linear bifurcation analysis
LRSM Localized reduced stiffness method
KDF Knockdown factor
MNA Material nonlinear analysis
N Buckling load
R Radius of a cylinder

SBPA Single Boundary Perturbation Approach
SPLA Single Perturbation Load Approach
t Wall thickness
Y Yield strength
λ Relative shell slenderness
ρ Knockdown factor
ν Poisson’s ratio

1. Introduction

Cylindrical shells are structural elements widely used in various 
engineering applications, such as aerospace [1,2] marine [3,4] and civil 
engineering [5,6] due to their high strength-to-weight ratio. Under axial 
compression, these structures can experience buckling, a critical failure 
mode that significantly influences their design and safety [7]. The 
presence of geometric imperfections further complicates the buckling 
behavior, necessitating sophisticated design approaches and robust 
analysis techniques.
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The buckling of cylindrical shells under axial compression is a clas-
sical problem in structural mechanics. According to classical linear 
buckling theory [8], this critical load N is given by (1) for pure elastic 
material behavior and for plastic material behavior by (2): 

Nelastic =
2⋅π⋅E⋅t2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3(1 − ν2)

√ (1) 

Nplastic = 2⋅π⋅R⋅t⋅Y (2) 

where E is the elasticity modulus, t is the wall thickness of the cylinder, n 
the Poisson’s ratio, R the cylinder radius and Y the yield stress.

However, real-world shells invariably contain imperfections that 
lower the buckling load significantly below this theoretical value. Cy-
lindrical shells are highly sensitive to imperfections, which can be in the 
form of initial geometric deviations [9], material inconsistencies [10], 
or boundary condition irregularities [11]. These imperfections can cause 
the actual buckling load to be a small fraction of the theoretical critical 
load. This sensitivity was first noted by Koiter [12] who demonstrated 
that even minor imperfections could lead to substantial reductions in 
buckling strength.

The traditional approach [13] to account for imperfections in the 
design of cylindrical shells involves the use of empirical knockdown 
factors (3) which are multiplied with the reference buckling load of a 
shell. 

ρexp =
Nexp

Nreference
(3) 

These factors are derived from experimental data and provide a 
safety margin by reducing the theoretical buckling load. Historically, 
NASA SP-8007 [14] has been a key reference, providing conservative 
knockdown factors for different shell geometries and loading conditions. 
These factors are typically expressed as a function of shell geometry (R/t 
ratio – Radius-to-thickness ratio) and material properties. 
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Recent advances have focused on refining knockdown factors 
through improved understanding of imperfection patterns and distri-
butions [15]. Computational methods, such as finite element analysis 
(FEA) [16], have enabled more accurate predictions of the influence of 
imperfections on buckling loads. Research has also explored probabi-
listic approaches [17] to account for variability in imperfections [18], 
leading to the development of stochastic knockdown factors [19,20].

Finite Element Analysis has become a cornerstone in the analysis of 
cylindrical shells under axial compression. Modern FEA software allows 
for detailed modeling of imperfections [21] and provides insights into 
their effects on buckling behavior [22].

Advanced modeling techniques, such as incorporating realistic 
imperfection shapes based on measured data [23] or statistical distri-
butions enhances the accuracy of numerical predictions [24].

Experimental testing remains essential for validating theoretical and 
numerical predictions [25]. Laboratory tests on cylindrical shells 
involve precisely controlled axial compression to observe buckling 
behavior and post-buckling response [26]. High-resolution measure-
ment techniques, such as digital image correlation (DIC), allow for 
detailed tracking of deformations and imperfection patterns [27].

Experimental results are used to calibrate and validate numerical 
models [28]. A key aspect of this correlation is the accurate represen-
tation of initial imperfections in the models [29]. By comparing exper-
imental and numerical buckling loads and deformation patterns [30], 
researchers can refine their models and improve the predictive capa-
bility of numerical methods [31].

Cylindrical shells are usually tested with fully clamped boundary 

conditions [32] and there is an increasing number of publications which 
study different kind of boundary conditions for cylindrical shells like 
localized multi-region boundary conditions [33] which occur in steel 
silo [34]. Detailed numerical and experimental studies for this specific 
type of boundary conditions were led by Jiao et al. [35,36].

Scaling effects are important in experimental studies of cylindrical 
shells [37]. Smaller-scale models are often used in laboratory settings, 
but these may not replicate the behavior of full-scale structures due to 
differences in material properties and imperfection magnitudes [38].

The use of advanced materials, such as composites, introduces new 
challenges and opportunities in the design of cylindrical shells [39]. 
These materials offer improved performance but require novel analysis 
techniques to account for their complex behaviors under axial 
compression [40].

In addition to realistic measured geometric imperfections, there is 
also a considerable amount of work put in researching artificial geo-
metric imperfections [41,42]. The aim was to determine a “worst” 
imperfection which leads to a design lower-bound for the buckling load 
of cylindrical shells. The shape which can be a categorized as worst 
imperfection is according to Horak et al. [43] the “dimple” imperfection. 
The first concept which uses a dimple and determine a corresponding 
design load by adjusting the amplitude of the dimple is the single 
perturbation load approach (SPLA) by Hühne et al. [44]. The SPLA has 
been investigated by a large number of researchers during the DESCIOS 
project [45]. In the years following the publication of the SPLA different 
similar “dimple” design concepts have been developed. The worst 
multiple perturbation load approach (WMPLA [46]) uses an optimiza-
tion algorithm [47] to determine position and amplitude of dimple 
imperfections which lead to an improved design load compared to the 
regular SPLA. The single boundary perturbation approach (SBPA) in-
duces a single dimple by means of an edge perturbation [48,49]. The 
localized reduced stiffness method (LRSM) [50,51] induces a dimple by 
means of a local reduction of the membrane stiffness of a shell and is 
based on the original reduced stiffness method (RSM) by Croll et al. [52,
53].

The SPLA and LRSM type of methods have so far only been applied to 
aerospace or marine shell structures [54,55]. In 2022 a shell buckling 
“round-robin” exercise took place where different authors form the 
world were invited to perform imperfection sensitivity analyze to an 
civil engineering type shell, a wind turbine tower. This article summa-
rizes the results of the shell buckling exercise and the application of 
state-of-the-art dimple imperfection concepts which are used to analyze 
the wind turbine tower.

This article is structured as follows, the main results of international 
shell buckling exercise and its challenging task are presented in chapter 
2. The state-of-the-art dimple imperfection concepts are presented in 
chapter 3 and validated by means of a well-documented test series of 
isotropic cylinders. In chapter 4, the wind turbine tower shell is pre-
sented is analyzed using the methods presented in chapter 3. In the last 
5th chapter, important findings are summarized and discussed. An 
outlook for future research is given.

2. The international shell buckling exercise

The international shell buckling exercise (ISBE) took place in 2022 
from about May to October and was initiated by Adam Sadowski from 
the Imperial college of London and Marc Seidel from Siemens Gamesa 
[56,5]. In total 29 research groups from around the world were given a 
shell buckling problem which should be analyzed with either FEA or 
analytical methods (or both). The main task of the ISBE was to perform a 
series of simulations to evaluate the linear and nonlinear stability and 
material strength behavior of a wind turbine tower with 2 two load cases 
(LC1 and LC2). The analyzes were performed in accordance with the 
Eurocode standard. The following analyzes should be performed: 

1. LBA – linear bifurcation analysis
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2. MNA – material nonlinear analysis
3. GNA – geometrically nonlinear analysis
4. GMNA – geometrically and material nonlinear analysis
5. GMNIA – geometrically and material nonlinear analysis with 

imperfections

The results of the first four analysis types (LBA, MNA, GNA and 
GNMA) were in general in good agreement among the different research 
groups. Significant differences however were determined for the results 
of the GMNIA, see Fig. 1. Most research groups applied eigenmode im-
perfections (64 %), about 23 % of the research groups applied weld 
imperfections, the remaining research groups applied for example su-
perpositions of multiple LBA eigenmodes and only one research group 
(the authors of this article) applied dimple imperfection principles. 
Another interesting result of the ISBE is that nearly half of all GMNIA 
submission concluded that the tower design loads are not safe as the LPF 
is below one.

The ISBE was a good opportunity for the authors to apply the rela-
tively new dimple imperfection concepts to a civil engineering shell. 
There were several challenges for the application of the EBC/SPLA to the 
wind turbine tower because the dimple concepts were mainly developed 
and tested to aerospace shells (interstage, adapter and tanks). The main 
challenges were: 

1. The tower is under a combination of multiple different loads and not 
only loaded with one load case (axial compression, bending, shear, 
torsion…).

2. The tower has a relatively low yield strength and therefore plastic 
buckling is relevant compared to a pure elastic buckling problem.

3. The tower is only fixed (in terms of mechanical boundary conditions) 
at the bottom end and not on the top end.

4. The tower has different wall thickness values along its height and is a 
cylindrical-conical-cylindrical shell.

Unfortunately, no experimental buckling test data exist for the wind 
turbine tower as a benchmark. Due to the associated costs for 
manufacturing and testing, full-scale buckling tests are rare. The curious 
reader can find a pretty good description of a buckling test of a full-scale 
launch vehicle shell in [57] by Hao et al.

3. Analysis of an isotropic cylinder under axial compression

In this chapter, state-of-the-art shell buckling design concepts with 
regard to imperfections are explored, laying the groundwork for more 
complex analyses ahead in chapter 4. A simple example of a cylindrical 

shell under uniform axial compression is presented and validated with 
experimental data and verified with analytical equations as well as nu-
merical methods. By observing the model’s response to various imper-
fections concepts, fundamental principles of shell buckling behavior are 
illustrated.

3.1. Benchmark geometry and finite element model

The shell presented in this section is an unstiffened isotropic steel 
shell (seamless beer can) which was investigated by Verduyn et al. [58]. 
The corresponding material and geometry properties are given in 
Table 1. The whole test series consisted of 33 nominal identical test 
specimens and is therefore well suited to validate numerical design 
approaches.

The IW1 shells were modeled by using linear shell elements (S4R in 
ABAQUS [59]) and the finite element length (see Fig. 2) was defined as 
0.92 mm according to 0.5

̅̅̅̅̅
Rt

√
[16]. The mechanical boundary condi-

tions on both cylinder edges are defined as clamped by using rigid-body 
interactions (Tie) which are coupled with a reference point. The 
displacement in axial direction is free at the top cylinder edge for load 
application.

The load-displacement curve of the perfect shell IW1 according to a 
GNA using ABAQUS is shown in Fig. 3, a summary of the corresponding 
buckling loads is given in Table 2.

3.2. Application of numerical shell buckling design concepts to the 
cylinder

Geometric imperfections have a significant influence on the buckling 
load of structural elements. The primary reasons for the reduction in 
buckling load due to these imperfections are as follows: 

Fig. 1. Scatter of the GMNIA solutions for the wind turbine tower LC1 (left) LC2 (right) reproduced from [56].

Table 1 
Geometry and material data for the cylindrical shells after [58].

Material parameter Shells IW1

elasticity modulus E 208,000 N/mm2

Poisson’s ratio v 0.3
Yield Stress 450 N/mm2

Geometry parameter 
Radius R 33 mm
Free Length L 100 mm
Wall thickness t 0.1 mm
R/t 330
L/R 3
Z 2890
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1. Initial Deformations: Imperfections such as initial out-of- 
straightness or out-of-roundness result in pre-existing deformations 
in the structure. These initial deformations mean the structure is 
already closer to its buckling shape before any external load is 
applied, requiring a smaller additional load to reach the critical 
buckling condition.

2. Stress Concentrations: Imperfections lead to localized stress con-
centrations, where certain regions of the material experience higher 
stresses than in a perfect structure. These localized stresses can cause 
premature yielding or instability, thus reducing the overall buckling 
load.

3. Load Redistribution: Geometric imperfections cause an uneven 
distribution of loads. In an ideal, perfectly symmetrical structure, the 
load is distributed evenly. However, imperfections cause some areas 
to carry more load than others, leading to earlier buckling in the 
more heavily loaded regions.

In summary, geometric imperfections reduce the buckling load due 
to the creation of initial deformations, stress concentrations, uneven 
load distributions, and nonlinear behavior, thereby making the structure 
less stable under compressive loads.

The initial measured geometric imperfections (MGI) of the IW1 shells 
have been measured and documented in form of Fourier coefficients 
which are used for a double Fourier series in order to apply the imperfect 
shell geometry to the mesh of the ABAQUS FEA model. The imperfection 
pattern leading to the highest (IW1–33 – 26 %) and lowest (IW1–30 – 15 
%) buckling load reduction are shown in Fig. 4.

A detailed comparison of the experimental results of the IW1 shells 
with the numerical analysis using ABAQUS is shown in Fig. 5. The MGI 
were considered using a GNIA in ABAQUS, however, the average 
buckling load reduction due to MGI is only 20 % whereas the average 
buckling load reduction in the experimental results is about 50 %.

A design concept for thin-walled shells which is independent of 
imperfection measurements and based on the single dimple is the SPLA 
by Hühne [44]. Within the framework of the SPLA a single dimple is 
caused in a thin-walled shell by means of a lateral perturbation load. The 
buckling load is then determined with respect to the amplitude of the 
perturbation load (or depth of the dimple) and for multiple calculations 
with increasing amplitude of the perturbation load a characteristic 
lower-bound diagram can be determined.

The characteristic lower-bound diagram is shown in Fig. 6 (left). This 
diagram has in general 4 sections for axial compression. In the first 
section the “perfect” buckling load N0 is constant because the “imper-
fection” is too small and the influence is negligible. In the second sec-
tion, a linear reduction of the buckling moment occurs. The third section 
is characterized by local and subsequent global buckling (also known as 
snap-through buckling [60,61]). Local buckling is the sudden formation 
of a dimple on the cylinder surface (the shell surface snaps inwards) 
which is accompanied by a stiffness degradation of the load displace-
ment curve as shown in Fig. 6 (right). In numerical simulations with for 
example artificial dampening the load can still be increased after the 
local buckling event occurred until the buckles globally. The buckling 
load N1 corresponds to the global buckling load values in Section 3 and 4
as shown in Fig. 6 (right). The global buckling load is not sensitive to a 
further increase of the perturbation load (or increase of the dimple 
amplitude) and remains rather constant. This plateau behavior of the 
buckling load is also known as lower-bound of the buckling load [62,
63]. The buckling load of a shell is independent from further increasing 
local imperfections because the membrane stresses are zero in this re-
gion [50]. The local buckling load, however, reduces in a linear fashion 
using the SPLA.

The authors of this article studied the local and global buckling event 
in axially compressed cylinders experimentally by inducing local 
buckling deliberately [64]. The experimental studies showed that local 
buckling leads in almost all cases to global buckling of the cylinder 
(meaning the load cannot be increased as shown in Fig. 6 left) but in rare 
cases the shell buckles locally and the load can be further increased and 
global buckling occurs at higher loads. For a worst-case scenario, 
choosing the minimum local buckling load Nmin is necessary for safe 
design.

In the fourth section, the structural behavior of the cylinder changes, 
sudden local buckling does not occur anymore. The dimple amplitude in 
region 4 is so large that local buckling occurs not suddenly anymore it is 
rather a smooth formation of a dimple (the shell surface is already bent 
inwards and only the dimple amplitude increases) on the cylinder sur-
face which leads to a more stable load carry behavior of the cylinder 
until global buckling and a slight degradation of the axial stiffness. A 

Fig. 2. CAD model of the IW1 shells with mesh and reference points for 
boundary condition and load application.

Fig. 3. Load Displacement curve of the IW1 shell according to GNA and results 
from LBA and analytical equations.

Table 2 
Buckling loads of the IW1 shells.

LBA GNA Analytical
7.90 7.66 7.90
Shell Nexp Shell Nexp Shell Nexp Shell Nexp

IW1–16 3.05 IW1–24 4.27 IW1–33 4.03 IW1–42 3.82
IW1–17 3.53 IW1–26 3.99 IW1–34 4.68 IW1–43 3.83
IW1–18 4.5 IW1–27 4.16 IW1–36 4.43 IW1–44 4.23
IW1–19 4.51 IW1–28 4.24 IW1–37 3.55 IW1–45 3.99
IW1–20 3.89 IW1–29 4.49 IW1–38 4.2 IW1–46 3.35
IW1–21 4.01 IW1–30 4.46 IW1–39 4 IW1–47 3.51
IW1–22 3.82 IW1–31 4.47 IW1–40 4.08 IW1–48 3.43
IW1–23 4.5 IW1–32 4.01 IW1–41 4.03 IW1–49 3.48
      IW1–50 3.93
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more detailed description of this behavior is given in [49].
In its original definition, the SPLA defined the load N1 in the plateau 

range as its design load, which is in the pure elastic case 4.59 kN. 
However, many publications like [9] and [10] have shown that the N1 
load is often not conservative enough with respect to experimental re-
sults. A worse outcome with respect to buckling occurs if local 
snap-through buckling happens (from Section 3). The authors therefore 
recommend using the minimum local buckling load Nmin for design 
purpose when using the SPLA. The minimum local buckling load ac-
cording to the SPLA (for pure elastic material behavior) is for the IW1 
shell series 2.74 kN as shown in Fig. 7 (left) which is conservative with 
respect to all experimental results.

Successor design approaches to the SPLA like the SBPA [62] (Fig. 8– 
right) or the LRSM [50] (Fig. 8- left) choose always the minimum local 
buckling load in Section 3 as a design load. The SBPA and LRSM work 
similar to the SPLA, they induce a single dimple by means of a localized 
imperfection. In case of the SBPA, an edge perturbation is used as 

imperfection and the LRSM used a localized reduction of the membrane 
stiffness (the LRSM is a further development of the reduced stiffness 
methods – RSM). For large, localized imperfections snap-through 
buckling occurs and the minimum local buckling loads can be used as 
design loads.

The minimum local buckling loads of the SPLA, SBPA and LRSM are 
shown in Fig. 12 for the elastic case and the perfect-plastic case, an 
interesting observation is that the minimum local buckling load is 3–10 
% lower if the yield stress of 450 MPa is considered when compared to 
pure elastic buckling. Even the lowest experimental buckling load from 
IW1–16 with 3.05 kN can be approximated if the yielding is considered. 
This test specimen was in prior analysis always defined as an outliner, 
but it is assumed that imperfections occurred for this specimen which 
led to some kind of stress concentration in a way the premature yielding 
occurred hence leading to a lower-than-expected buckling load.

The yield stress for this specimen is much higher than the elastic 
buckling stress which would one lead to believe that this shell buckles 

Fig. 4. MGI pattern for shell IW1–33 (left) and IW1–30 (right).

Fig. 5. Comparison of buckling loads: LBA, GNA, MGI and test data for the IW1 shells.
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pure elastically. However, the definition if a shell buckles in the elastic 
or plastic range is still subject of research. Authors in [65] stated the 
shell buckle in the pure elastic range if λ >

̅̅̅
3

√
and this shell has λ ~ 1, 

see Fig. 10. According to the Eurocode EN 1993–1–6 [8] definition it 
buckles still in the elastic range.

The SBPA (Fig. 7– right) gives much higher results if yielding is 
considered from 3.35 kN in the elastic case to 5.9 kN in the plastic case. 
This behavior is not yet understood and subject to research. But it looks 
like the SBPA is not suitable for the design of cylinders if yielding is 
relevant. The design load according to the LRSM (Fig. 9- left) equals to 
3.1 kN in the pure elastic case and 3.01 kN in the perfect-plastic case.

The energy barrier criterion (EBC illustrated in Fig. 11) was also 
applied to the IW1 shells, this method works basically inverse to the 
previously presented lower-bound approaches.

Within the framework of the EBC, the shell is pre-loaded with an 
axial Force F which is smaller than the expected buckling load (for 
example 10 % of the expected buckling load which is then incrementally 
increased until the lower local buckling load is determined). In a sub-
sequent second step a radial perturbation displacement is applied to the 
pre-loaded shell and the corresponding reaction force Rf is measured (as 
shown in Fig. 9- right). For axial forces which are below the lower local 
buckling load (design load of the EBC), the reaction force RF increases as 

Fig. 6. Characteristic Lower-bound diagram of the SPLA (right) – corresponding reaction force – axial shortening curve (left).

Fig. 7. SPLA (left) vs. SBPA (right).

Fig. 8. Design concepts for cylinders under axial compression (SBPA and LRSM).
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the perturbation displacement increases. However, as the axial force F 
approaches the lower local buckling load, the reaction force Rf ap-
proaches zero. This method finds basically the load level which leads to 
the first occurrence of local buckling. The previously presented lower- 
bound methods reduce the buckling load until the minimum local 
buckling load is found. The minimum local buckling load according to 
the EBC equals to 3.24 kN in the pure elastic case and 3.16 kN in the 
perfect-plastic case (Y = 450 MPa).

The main results of this section are summarized in Fig. 12 for pure 
elastic buckling (left) and perfect-plastic buckling (right). Overall, all 
lower-bound methods determine a close approximation for the lowest 
experimental result of the IW1 shell series. The SPLA using Nmin is 

conservative in every case as is the LRSM, the EBC comes very close 
(difference in plastic case to lowest test result is only 3.7 %). The SBPA is 
conservative to nearly all test results in the pure elastic case but is not 
suitable for the application of shell buckling if yielding is relevant, the 
design load of the SBPA is with 5.9 kN far above the test results.

3.3. Application of analytical knockdown factors to the cylinder

In shell buckling design KDFs are commonly applied to cover the 
effect of imperfections, the most commonly applied cylinder buckling 
KDFs in aerospace engineering belong to the NASA SP-8007. New and 
less conservative design KDF have been developed by the authors of this 

Fig. 9. LRSM (left) vs. EBC (right) – difference between pure elastic and perfect-plastic is not shown as it is very small.

Fig. 10. Test results of the IW1 shells vs. shell slenderness parameter λ.

Fig. 11. Illustration of the EBC applied to a cylinder.
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paper in [66,50] using the SBPA, LRSM and SPLA which are shown in 
Fig. 13 (left) for different values of the Batdorf parameter Z, see Eq. (5). 

Z =
L2⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − v2)

√

R⋅t
(5) 

Those curves are very similar for the LRSM and SBPA for Z > 1300 
and only a slightly different for small Z 〈 1300. The SPLA curve for N1 is 
basically constant for Z 〉 800 (KDF = 0.6) but depends on Z if the 
minimum local buckling load Nmin is chosen as a design load. The 
minimum local buckling load SPLA curve is lower compared to the 
LRSM and SBPA curves for Z > 800.

The experimental results of the IW1 test series can be approximated 
very well with the LRSM and the SBPA curves except for one test case 
(IW1–16) which probably buckled in the plastic range and the former 
design curves were developed for pure elastic buckling, which explains 
the discrepancy in this case. The SPLA design curve for N1 is not con-
servative with respect to the experimental results but the curve corre-
sponding to Nmin is well below the test series.

The relative slenderness λ curves for different geometric ratios were 
calculated using the LRSM for an isotropic and unstiffened cylinder with 
clamped boundary conditions at both edges and are shown in Fig. 13
(right). This is an early look at the design curves which are currently 
under development. The LRSM delivers in this case conservative esti-
mation of all experimental results and reveals quite different design 
lower-bounds for different L/R ratios, note that currently in engineering 
design empirical lower-bounds are used meaning one lower-bound 
“undercutting” all experimental results but not considering the 

individual geometric ratios of the shells. There is a lot of potential to be 
unveiled.

3.4. Summary

In this chapter a benchmark example was defined in order to show 
the challenges of shell buckling design. The present test series consisted 
of 33 nominal identical steel cylinders which have an average buckling 
KDF of 0.5 (minimum KDF = 0.4). The initial geometric imperfections 
where measured and approximated using a double Fourier series. The 
analytical solution for this shell results in an elastic buckling load of 7.9 
kN. Numerical simulations using ABAQUS were performed in order to 
approximate the experimental buckling loads. GNIA using the MGI were 
performed however, those simulations were still far off the experimental 
results as shown in Fig. 14. Lower-bound concepts like the SPLA, LRSM 
and SBPA deliver far better approximations of the experimental test 
series, especially if yielding is considered. Also, when compared to the 
MGI approach, the presented lower-bound design concepts are relatively 
simple to implement in FEM codes.

4. Analysis of a wind turbine tower under combined load

4.1. Benchmark geometry and finite element model

The wind turbine tower shell is based on the international shell 
buckling exercise from Sadowski et al. [56,5] and is shown in Fig. 15. 
The tower shell is a cylindrical-conical-cylindrical shell which 

Fig. 12. Comparison of lower-bound approaches vs experiments: pure elastic (left) perfect-plastic Y = 450 MPa (right).

Fig. 13. Comparison of lower-bound approaches vs experiments for IW1 shells for elastic buckling (left) and plastic buckling (right).
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transitions from a cylinder to a cone between section 110–111 and 
transitions back to a cylinder at the tower top, the main geometry 
properties and ratios of the tower are given in Table 3.

The wind turbine tower shell has a varying thickness of 17 mm at the 
bottom and 13 mm at the top as shown in Fig. 15. The material is S355J0 
grade steel and the corresponding material properties are given in 
Table 3.

The tower was modeled using linear shells elements with reduced 
integration (S4R [59]). The mechanical boundary conditions on the 
bottom tower end are defined as clamped by using rigid-body in-
teractions (Tie – in ABAQUS) which is coupled with a reference point. 

An additional reference point was defined at the tower top (see Fig. 16), 
here two points loads were defined for the vertical force and shear force, 
and two moments for the bending moment and the torque moment, the 
remaining degrees of freedom (DOF) are free. The loads originated 
largely from the dead weight of the rotor and the nacelle assembly [56].

The reference buckling loads for this article are determined for a 
perfect shell (no imperfections) and are determined according to a linear 
bifurcation analysis (LBA) and a material nonlinear analysis (MNA) 
which is based on perfect plastic material law. In addition, a geometri-
cally and material nonlinear analysis (GMNA) combining perfect plastic 
material law and nonlinear large deflection theory. The multiple com-
bined loads at the tower top are represented by a load proportionality 
factor (LPF) which is the ratio of the measured load divided by the 
design load. The tower has two load cases (LC) which are summarized in 
Table 4. The main difference between LC1 and LC2 is that LC2 has 
additional torsion.

The first eigenmodes of the LBA are shown in Fig. 16 (right), the 
deformation plot for LC1 indicates that the most sensitive part of the 
tower is the transition zone between cylinder and cone. The first 
eigenmode of LC2 is dominated by the deformation of the torque 
moment. The linear buckling LPF for LC1 equals to 3.01 (which means 
the tower can withstand 3 times the design load according to a linear 
analysis). In case of LC2 the additional torsion reduced the LPF to 1.41.

The results of the MNA and GMNA are shown in Fig. 17. The 

Fig. 14. Comparison of numerical analysis types vs. experiments for IW1 shells.

Fig. 15. Wind turbine tower geometry details: (left) main cylinder-cone tran-
sition (middle) detailed geometry (right) tower with different shell thick-
ness sections.

Table 3 
Geometry and material data for tower shell [56].

Material parameter

elasticity modulus E - [MPa] 210 000
Poisson’s ratio n 0.3
Yield strength Y - [MPa] 345
Density r - [kg/m3] 7850
Geometry parameter 
Radius R - [mm] 2750
Cylinder Length Lc - [mm] 9542
Tower Length L - [mm] 36,000
Thickness t – [mm] 15
R/t 183.3
Lc/R 3.47
L/R 13.1
Z (only bottom cylinder) 2105
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influence of yielding reduces the LPF in case of LC1 by about 40 %, the 
additional influence of nonlinear geometry reduces the LPF further by 
36 %. As shown in Fig. 18, the slenderness ratio of the wind turbine 
tower indicates that plastic buckling is relevant for this analysis because 
λ < 1 for LC1. In the case of LC2 the LPF is 1.89 which is 32 % higher 
compared to the linear LPF of 1.43. The linear elastic buckling load for 
torque is usually much smaller than the plastic buckling load, which 
explains this behavior. The consideration of additional nonlinear ge-
ometry reduces the buckling LPF of LC2 to 1.29. The LPFs for both load 
cases are already at 1.2 / 1.29 and this is without consideration of 
imperfections.

4.2. Application of shell buckling design concepts to the wind turbine 
tower

In this section different concepts for the design of imperfection 
sensitive cylindrical shells are presented and applied to the wind turbine 
tower geometry from Section 3. The geometric imperfections which lead 
to the highest buckling load reduction from chapter 3, (IW1–33) were 
scaled to the geometry of bottom cylinder (see Fig. 19) of the wind- 
turbine tower and corresponding results are shown in Fig. 20.

The buckling load reduction ranges from 9 – 14 % when MGI are 
applied compared to the GMNA without imperfections. Within the ISBE, 
the tower model should represent an ‘excellent’ (but not perfect) con-
struction quality which could be interpreted as “low imperfection 
magnitude” and low buckling load reduction as shown in Fig. 20.

The SPLA was applied next to the wind turbine tower, here two 
positions are of interest, the intersection between cylinder and cone and 
the middle of the bottom cylinder, as shown in Fig. 21. The SPLA results 
for the wind turbine tower (both load cases – intersection between cone 
and bottom cylinder) are shown in Fig. 22. The LPF corresponding to the 
minimum local buckling load are 0.52 for LC1 and 0.59 for LC2 for the 
position intersection between cone and bottom cylinder. If the pertur-
bation load is applied to the middle of the cylinder the resulting LPF are 
0.67 for LC1 and 0.71 for LC2 (20–28 % higher compared to the inter-
section area).

For the SPLA results there is room for interpretation because ac-
cording to the requirements of the ISBE the tower model should repre-
sent an ‘excellent’ (but not perfect) construction quality which the 

Fig. 16. Wind turbine tower loading details (left) first eigenmode of LBA for LC1 & LC2 (right).

Table 4 
Loads and LPFs of the wind turbine tower for different load cases LC1 and L2.

Design loads Load Case 1 (LC1) Load Case 2 (LC2)

Torque moment – 22 MNm
Shear force 1.76 MN 1.6 MN
Vertical force 4 MN 4 MN
Bending moment 33 MNm 30 MNm
Analysis type LPF (LC1) LPF (LC2)
LBA 3.01 1.43
MNA 1.85 1.89
GMNA 1.20 1.29

Fig. 17. LPF vs. axial shortening of the tower for MNA and GMNA (left) plots of the tower (right).

H.N.R. Wagner and C. Hühne                                                                                                                                                                                                               Thin-Walled Structures 206 (2025) 112577 

10 



authors interpret as the LPF corresponding to N1 load of the SPLA 
(buckling load in the plateau range) which correspond to 0.79 for LC1 
and 0.77 for LC2 for the intersection area and 0.9 for LC1 and 0.89 for 
LC2 for the middle of the cylinder.

The SBPA cannot be applied to the tower as it relies on the appli-
cation of an edge imperfection which does not work in combination with 
the other loads (bending, torsion, shear), also the most sensitive part of 
the tower is not on the top or bottom edge but at the intersection from 
cylinder to cone section (section 112). In addition, as shown in Section 3

of this paper, the SBPA does overestimate the buckling load if yielding is 
relevant. The LRSM can in general be applied to the tower but a lower- 
bound cannot be found, the buckling load reduces but no plateau can be 
identified if the imperfection is applied and incrementally increased, as 
shown in Fig. 23. Usually there is a plateau for the buckling load be-
tween 0 < Rs/R < 0.4 but not in this case.

This is most likely because only the bottom end of the tower is fixed 
(and not also the top end), local buckling cannot be induced using this 
kind of imperfection combined with the present mechanical boundary 

Fig. 18. LC1 and LC2 with respect to their corresponding slenderness.

Fig. 19. Imperfection pattern for the bottom cylinder of the tower (left) numerical model of the tower with imperfect bottom cylinder (right).

Fig. 20. LPF vs. axial shortening for the tower according to GMNIA (MGI – IW1–33): LC1 (left) LC2 (right).
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conditions.
For the EBC only the intersection area between cylinder and cone 

was investigated, the results are shown in Fig. 24. The design LPF of the 
EBC corresponds to the load increment which leads to a reaction force Rf 
= 0 and was determined to LPF = 0.82 for both load cases. In the case of 
the EBC the ‘excellent’ (but not perfect) construction quality is not 

applicable.

4.3. Application of analytical knockdown factors to the wind turbine 
tower

In this section the EBC results for the wind turbine tower with its 

Fig. 21. Position 1 & 2 of the perturbation (EBC, LRSM & SPLA) for the tower (left) – LRSM illustration for the tower at position 1 (right).

Fig. 22. SPLA diagram for the tower: LC1 (left) LC2 (right).

Fig. 23. LRSM diagram for the wind turbine tower.
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combined loads are compared with analytical KDFs for cylinders under 
axial compression (for pure elastic buckling) in Fig. 25 (left). For this 
analysis only the bottom cylinder was considered as it is assumed that it 
is the most sensitive part of the tower. For LC1 the KDFs are not appli-
cable because the tower is well in the plastic buckling range, the KDFs 
overestimate the buckling capacity. For LC2 the KDFs underestimate the 
buckling capacity.

A more accurate approach is to look at the relative slenderness ratio λ 
because it considers the material behavior (elastic or plastic buckling). 
The EBC was used to determine design curves for cylinder under axial 
compression and for the tower with its combined load cases. Note, that 
the results shown in Fig. 25 (right) are still at an early stage and not yet 
ready for all geometric configurations, the slenderness curves depend on 
R/t and L/R ratio and require a large amount of calculations. Also, they 
are not the focus of this article but still important for the estimation of 
the tower buckling capacity in a future design scenario.

This comparison highlights significant limitations in the current 
application of design curves in engineering practice, the design curves 
for an isotropic cylinder: 

1. uniform thickness
2. under axial compression
3. With both edges clamped

Are used for a wind turbine tower: 

1. Non-uniform thickness
2. Under axial compression, bending, shear and torsion
3. Only bottom edge is fixed

4. Whole tower or only a section of the tower?

The bottom cylinder has L/R = 3.47 and R/t = 183 which means the 
approximate design values should be between the green and blue EBC 
curves. The exact design curves according to the EBC have been also 
determined partially (7 points – to show a general trend) and plotted in 
Fig. 25 (right). For LC1 the EBC cylinder curves overestimate the EBC 
tower capacity for LC2 the EBC cylinder curves underestimate the EBC 
tower capacity. This example shows that with the increasing number of 
wind turbine towers being built, a revision of corresponding design 
codes seems to be in dire need.

4.4. Summary

The summarized results for the wind turbine tower with the two load 
cases are shown in Fig. 26. The results indicate that the additional torque 
moment for LC2 does not really influence the buckling loads as both LPF 
are the same for the GMNIA (with MGI). In Addition, the results show 
that the design loads of the tower are not safe as they are about 20 % 
lower in the case of the EBC and 25 % lower in the case of the SPLA 
compared to LPF = 1.0 although it was stated in the exercise that partial 
safety factors are already included in the design. It can be concluded that 
there is a definitive need for more research regarding firstly the appli-
cation of dimple imperfection concepts to wind turbine towers and 
problems with plastic buckling in general.

5. Conclusion and outlook

This article is a follow-up article to the results of the international 

Fig. 24. EBC diagram for the tower.

Fig. 25. Summary of results for the different analysis types for the wind turbine tower and both load cases.
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shell buckling exercise (ISBE) which are published in [56]. The main 
tasks of this article are to simplify and summarizes the results of the ISBE 
in chapter 2 to increase the research audience and to show how the 
authors which participated in the ISBE overcome its challenges.

Shell buckling is one of the main challenges for wind turbine tower 
design and strangely enough, the wind turbine tower design still relies 
on ancient imperfection concepts like eigenmode imperfections which is 
clear from the ISBE.

For the demonstration of state-of-the-art imperfection concepts the 
authors of this article defined a simple to reproduce example in chapter 
3 and discussed the limits of applicability of the dimple concepts. In 
chapter 4, the wind turbine tower was analyzed using the lessons 
learned from chapter 3. In comparison to the eigenmode imperfections, 
the presented EBC and SPLA deliver a definitive design value for the 
buckling load and are easy to realizes in modern FEA codes like ABA-
QUS. This results also show that the proposed design values of the wind 
turbine tower are not conservative enough because the design loads of 
the EBC/SPLA are about 20 % lower.

For future research, we identified the following topics: 

1. Application of dimple imperfection concepts for elastic and plastic 
buckling, some concepts (LRSM) work better than others (SBPA) for 
elastic and plastic buckling, why is that in detail?

2. The relative slenderness λ depends on geometric ratios R/t and L/R 
and should be computed in dependence on those ratios

3. The relative slenderness λ depends on the applied load cases and 
should be computed for different load cases

4. Based on the results in Section 4, it seems that the influence of im-
perfections or local snap-through buckling is reduced in the plastic 
buckling range, is it really like this?

5. Based on the results in Section 4, could a specific design approach 
(EBC or SPLA) be proposed for wind turbine towers under certain 
structural configurations and load conditions?
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Appendix

This chapter summarizes the Eqs. (6) – (9) for SPLA N1, SPLA Nmin, SBPA [61] and LRSM [50] in terms of the Batdorf Parameter Z from Fig. 27. 
The equations are considered valid for 50 < Z < 5000. 

ρSPLA− N1
= 0.5830967 +

0.7790791 − 0.5830967

1 +

(
Z

235.9102

)1.751103 (6) 

ρSPLA− min = − 551.8718 +
552.8144 − − 551.8718

1 +

(
Z

858.6543

)0.0003917715 (7) 

ρSBPA = 1.23⋅Z− 0.138 (8) 

Fig. 26. Summary of results for the different analysis types for the wind turbine tower and both load cases.
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ρLRSM = 1.58⋅Z− 0.17 (9) 

Fig. 27. Lower-Bound Curves for cylinder under axial compression according to different dimple concepts.

Data availability

The data will be uploaded to Github. 

References

[1] M.W. Hilburger, W.A.J. Waters, W.T. Haynie, Buckling test results from the 8-foot- 
diameter orthogrid-stiffened cylinder test article TA01. [Test Dates: 19-21 
November 2008] l-20490, (2015) NF1676L–20067.

[2] H. Wagner, C. Hühne, S. Niemann, Buckling of launch-vehicle cylinders under axial 
compression: a comparison of experimental and numerical knockdown factors, 
Thin-Walled Struct. 155 (2020) 106931, https://doi.org/10.1016/j. 
tws.2020.106931.

[3] J. Zhang, Y. Wang, F. Wang and W. Tang, "Buckling of stainless steel spherical caps 
subjected to uniform external pressure".Ships Offshore Structu.10.1080/17 
445302.2018.1459358.
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