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ABSTRACT

Context. Detailed shape modeling is a fundamental task in the context of small body exploration aimed at supporting scientific research
and mission operations. The neural implicit method (NIM) is a novel deep learning technique that models the shapes of small bodies
from multi-view optical images. While it is able to generate models from a small set of images, it encounters challenges in accurately
reconstructing small-scale or irregularly shaped boulders on Ryugu, which hinders the investigation of detailed surface morphology.
Aims. Our goal is to accurately reconstruct a high-resolution shape model with refined terrain details of Ryugu based on a limited
number of images.

Methods. We propose an improved NIM that leverages multi-scale deformable grids to flexibly represent the complex geometric struc-
tures of various boulders. To enhance the surface accuracy, three-dimensional (3D) points derived from the Structure-from-Motion
plus Multi-View Stereo (SfM-MVS) method were incorporated to provide explicit supervision during network training. We selected
131 Optical Navigation Camera Telescope images from two different mission phases at different spatial resolutions to reconstruct two
Ryugu shape models for performance evaluation.

Results. The proposed method effectively addresses the challenges encountered by NIM and demonstrates an accurate reconstruc-
tion of high-resolution shape models of Ryugu. The volume and surface area of our NIM models are closely aligned with those of
the prior shape model derived from the SEIM-MVS method. However, despite utilizing fewer images, the proposed method achieves
a higher resolution and refinement performance in polar regions and for irregularly shaped boulders, compared to the SfTM-MVS
model. The effectiveness of the method applied to Ryugu suggests that it holds significant potential for applications to other small

bodies.
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1. Introduction

Hayabusa2, led by the Japan Aerospace Exploration Agency
(JAXA), explored and returned a sample from the C-type aster-
oid (162173) Ryugu (Miiller et al. 2017; Watanabe et al. 2017,
2019). Ryugu has an overall spinning-top shape, and its sur-
face is covered with numerous boulders of varying sizes and
shapes, attesting to the asteroid’s physical properties and evo-
Iution (Michikami et al. 2019). In this paper, we focus on the
refined global shape modeling of the asteroid, in particular, on
capturing the fine details of small-scale and irregularly shaped
boulders.

Optical image data serve as an invaluable resource
for the high-resolution modeling of the shapes of small
planetary bodies. Stereo-PhotoGrammetry (SPG) and Stereo-
PhotoClinometry (SPC) have been widely used to support
surface and shape reconstruction for various exploration mis-
sions, including Cassini (Giese et al. 2006; Daly et al. 2018),
Rosetta (Preusker et al. 2015; Jorda et al. 2016), Dawn
(Preusker et al. 2016; Park et al. 2019), Hayabusa

* Corresponding authors: hao.chen.2@campus. tu-berlin.de;
hxiao@iaa.es

(Gaskell et al. 2008), Hayabusa2 (Watanabe et al. 2019),
and OSIRIS-REx (Al Asad et al. 2021; Palmer et al. 2022;
Gaskell et al. 2023), among others. One of the prominent
shape models of Ryugu was derived by applying the Structure-
from-Motion plus Multi-View Stereo (SfM-MVS) technique
(Watanabe et al. 2019), which is similar in approach to the
SPG method (Chen et al. 2024a). However, these classical
methods typically require a large number of images that meet
specific criteria: SPG methods require images with consis-
tent illumination conditions and sufficient repeat coverage
from different viewpoints to achieve accurate shape modeling
(Willner et al. 2010; Preusker et al. 2015), while SPC methods
yield improved performance by using multiple images of the
same portion of the target body taken under different illumina-
tion conditions (Gaskell et al. 2008; Palmer et al. 2022; Chen
et al. 2024b).

Recent advancements in deep learning techniques have been
applied to high-resolution shape modeling of small bodies.
For example, Chen et al. (2023) enhanced SPG by integrat-
ing a deep learning-based feature matching technique, improv-
ing the robustness of image correspondence, while the overall
framework remained within the SPG method. Furthermore,
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Fig. 1. Framework of the proposed NIM for small body shape modeling. The network employs an MLP architecture to learn neural fields that
encode the SDF and color information, using volumetric rendering to integrate these properties and ultimately reconstruct the target shape models
(Sect. 2.1). This method relies on a limited number of images while leveraging multi-scale deformation grids (Sect. 2.2) and explicit SDF constraints

(Sect. 2.3) to reconstruct high-resolution shape models.

an advanced three-dimensional (3D) scene representation tech-
nique, known as the neural implicit method (NIM) based on
the neural radiance field (NeRF), has been applied to model
the shape of small bodies (Chen et al. 2024a,c). Similarly to
the SPG method, it requires images with precise interior and
exterior parameters. However, instead of reconstructing surface
geometry locally and then merging it into a global model, NIM
generates the global model directly through end-to-end process-
ing (Preusker et al. 2015; Chen et al. 2024a). Additionally, unlike
the SPG method, which represents the target’s shape using dis-
crete point clouds and produces surface models with spatial
resolutions lower than the input images by a factor of several
(Oberst et al. 2014), NIM represents the 3D scene implicitly
through a continuous scene function, allowing for a detailed sur-
face reconstruction (Remondino et al. 2023). Chen et al. (2024c¢)
introduced a NIM that incorporates multi-view photometric con-
sistency for small body shape modeling; however, this strategy
still relies on a large number of images to achieve higher-quality
shape models. Chen et al. (2024a) proposed a NIM to model
the shape of small bodies using a sparse image set, usually
consisting of dozens of images. However, it faced challenges
in accurately reconstructing the shape of boulders on Ryugu’s
surface.

In this paper, we propose an improved NIM for detailed
global shape modeling of Ryugu, using only a few dozen images.
To accurately reconstruct the surface morphology, including the
varying scale and shaped boulders, our approach introduces
a multi-scale deformable grid representation and incorporates
explicit supervision from 3D points generated by the SEIM-MVS
method, which is typically used for image pose recovery and
3D scene boundary definition in the NIMs. Since both the
grid representation and 3D point-based geometric constraints
are independent of image features, our method reduces reliance
on a large number of input images, while ensuring an accurate
reconstruction. To assess the effectiveness of the proposed NIM,
we selected two image sets captured at different altitudes rela-
tive to Ryugu. This allowed us to derive models with varying
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resolutions for comparison. Based on the derived models, we
present a performance analysis of the reconstruction of boulders
in the polar region, where camera coverage from Hayabusa2 is
limited, as well as typical large-scale, irregularly shaped boul-
ders. Given the improved accuracy of our method, we provide
a suggestion for simplifying future mission planning to acquire
images for global shape modeling.

2. Methodology

Figure 1 illustrates the framework of the proposed NIM for
the global shape modeling of small bodies, designed to achieve
detailed reconstruction using only a sparse set of images. This
section begins with an introduction to the NIM in Sect. 2.1. Then,
we describe the multi-scale deformable grids to provide neigh-
boring information with flexible representations in Sect. 2.2 and
present the explicit 3D point-based supervision used to improve
the surface geometry in Sect. 2.3. Finally, Sect. 2.4 describes the
details of the network training.

2.1. Small body shape modeling with NIM

First, the SfM technique is used to recover the poses of the
input images and generate a sparse point cloud of the body
(Schonberger & Frahm 2016; Chen et al. 2024a). The NIM then
samples points along rays originating from the camera center
(O) and passing through randomly selected pixels on the image,
with the sparse point cloud defining the sampling boundary, as
shown in Fig. 1a. The positions of these sampled points (x € R3),
along with their view directions (v € S?), which correspond to
the ray directions, serve as inputs to the method. To represent
the small body’s surface, the NIM utilizes the signed distance
function (SDF), which defines the distance of each point from
the nearest surface (Mildenhall et al. 2021; Chen et al. 2024a).
The surface (S) is then extracted as the zero-level set of this
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Fig. 2. Architecture of the MLP used in the proposed NIM, consisting
of four layers with 256 neurons each. Each neuron in one layer is linked
to every neuron in the next layer. The same network structure is used
independently for f; and f,, but they do not share weights.

function. The NIM encodes S along with the object’s appear-
ance (or color) (C) as a signed distance field f; and a radiance
field f. (Mildenhall et al. 2021). These fields are parameterized
using fully connected neural networks, specifically multi-layer
perceptrons (MLPs) (Goodfellow et al. 2016), as illustrated in
Fig. 2.

fs maps a x to its signed distance d € R,

fi :R* SR, (1)

X P d,

and f, encodes the color ¢ € R? associated with a point x and
its v,

fi RPx§? 5 R?
(x,0) P c. 2

The color of each selected pixel is determined through
volume rendering, where the accumulated radiance along the
camera ray is computed by integrating the volume density (o)
and c contributions from sampled points (Mildenhall et al. 2021),

N
C= ) Tioii,
; 3

i-1
-2 oAt
ili =e Z,,[ J J’

where N denotes the total number of points sampled along the
ray; At; represents the spacing between consecutive samples j
and j + 1; 7; represents the accumulated transmittance of sam-
ple i, computed as the exponential attenuation of the integrated
o over At; for all sampled points preceding point i (Mildenhall
et al. 2021; Wang et al. 2021).

To provide accurate surface constraints for volume rendering
optimization, the NIM applies a logistic sigmoid function to the
predicted d from f; to derive o (Wang et al. 2022). Once the vol-
umetric representation is established through training, the final
shape model of small bodies is extracted from the density field
using the marching cubes algorithm (Mildenhall et al. 2021).
This algorithm converts the density field into a mesh by detect-
ing the surface where the density reaches a predefined threshold,
which is typically equal to zero for SDF-based methods (Wang
et al. 2021).

2.2. Multi-resolution deformable grids

The input x serves as the key basis for learning the geometric
structure of the object. Directly feeding x into the MLP intro-
duces a learning bias, where the network predominantly captures
low-frequency components, making it less effective in recover-
ing fine geometric details (Mildenhall et al. 2021). This phe-
nomenon arises due to the spectral bias of deep networks, which
inherently prioritize smooth variations over high-frequency sig-
nals (Rahaman et al. 2019; Chen et al. 2022). To mitigate this
limitation, positional encoding (PE) is commonly employed in
NIMs to enrich the input representation by mapping x into a
higher-dimensional space using sinusoidal functions at different
frequency bands (Tancik et al. 2020),

PE(x) = (sin(2°ILx), cos(2°ILx), . ..,
sin(2" 'TIx), cos(2* 'TIx)), (4)

where n is usually set to 8.

However, the surface of Ryugu, like many other asteroids
such as Itokawa and Bennu, exhibits pronounced roughness,
characterized by high-frequency topographic features such as
small-scale debris, regolith distributions, and irregularly shaped
boulders (Tancredi et al. 2015; Michikami et al. 2019; Walsh
et al. 2019). While PE enhances the network’s capability to
model high-frequency details, it processes each x independently,
struggling to effectively capture spatial correlations among
neighboring features (Chen et al. 2024a). This limitation hin-
ders the network’s ability to leverage local interactions, which
often provide crucial geometric cues for reconstructing surface
morphology. As an alternative, multi-resolution hash encod-
ing introduces a hierarchical pyramid grid, assigning learnable
encoding features to each vertex of the grid containing x (Miiller
et al. 2022; Chen et al. 2024c). Given that voxel grids are uni-
formly distributed in 3D space (as shown in Fig. 3a), they may
lack the flexibility to capture the diverse topological features
of asteroids. For instance, in the case of Ryugu, whose highly
anisotropic terrain ranges from smooth regolith patches to dense
boulder fields, this would require an encoding scheme that is able
to dynamically adapt to these variations (Cai et al. 2023).

In the present work, we have used multi-resolution
deformable grids to adaptively partition the 3D scene. To achieve
this, we maintained a learnable 3D position at each vertex,
rather than a hash-encoding feature vector. Initially, these ver-
tex positions were uniformly distributed. During the training,
they were dynamically adjusted by optimizing the loss func-
tion (as described in Sect. 2.4), which penalizes discrepancies
between the vertex positions and the underlying surface geom-
etry. This process progressively guides the vertices toward the
surface features (as illustrated in Fig. 3b). This adaptivity allows
the grid structure to conform to high-frequency terrain details,
contributing to a more accurate representation of intricate sur-
face morphology and fine geometric structures. Furthermore,
asteroid surfaces often exhibit complex and multi-scale topo-
graphical variations, encompassing diverse features such as
craters and boulders of varying sizes (Lauretta et al. 2019; Sugita
et al. 2019; Michikami et al. 2019). The grid resolution was
established at an eight-level hierarchical structure, consistent
with multi-resolution hash encoding (Miiller et al. 2022). This
multi-resolution design enables the model to allocate encoding
capacity dynamically across spatial frequencies, improving its
ability to represent both finer details and large-scale geometric
variations.
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Multi-resolution grid

(b)

Fig. 3. Schematic of multi-resolution deformable grids, displayed in
two dimensions with two levels of resolution: (a) depicts the uniformly
subdivided grids, while (b) illustrates the deformation process, where
vertices adjust their positions from a uniform distribution to a more
adaptive arrangement.

Applying a standard PE to each vertex (x; € R®) at every
grid level (/) would result in a large-dimensional embedding.
Specifically, with eight grid levels, a standard PE maps each
three-dimensional x; to 48 dimensions. Since each level contains
eight vertices, this results in a 384-dimensional representation
per level. Consequently, for all 64 vertices in the multi-resolution
deformable grids, the total embedding dimension reaches 3072.

To address this high dimensionality, a hierarchical PE is
employed to transform the vertices:

PE(x;) = (sin(2'TI x)), cos(2'T1x))), (3)

where each x; is mapped to six dimensions. As a result, at eight
grid levels, the representation is reduced to 48 dimensions per
level and all grid voxels collectively form a 384-dimensional
embedding.

2.3. Explicit 3D point-based supervision

The NIM typically optimizes surface geometry using a render-
ing loss, which implicitly minimizes the discrepancy between

A212, page 4 of 11

images rendered from the 3D scene and real observations (Wang
et al. 2021; Chen et al. 2024a),

Ci-cil. (6)

where M indicates the batch size of rays emitted from the camera
center. Also, C ; and C; denote the rendered and real pixel colors,
respectively.

The sparse 3D points (p) generated by the SfM technique
could act as crucial geometric priors for small bodies, as they
are expected to align with the object’s surface. Each point
inherently encodes a known surface location, where the SDF
is zero, making them valuable for constraining shape recon-
struction. However, despite their geometric significance, NIMs
typically use p in a limited manner, primarily to delineate scene
boundaries and constrain the sampling range. This prevents the
network from allocating unnecessary capacity to regions outside
the object, while overlooking the fact that these sparse points lie
directly on the target surface. They can provide explicit super-
vision to refine the learned representation, rather than serving
merely as sampling constraints (Fu et al. 2022).

To better leverage these 3D sparse points p, we introduce an
SDF loss that explicitly supervises the signed distance field, f;,
which estimates the signed distance of spatial points in the 3D
scene to the surface of the body and is essential for optimizing
the surface geometry. Since the points, p, are on the surface, their
ground truth SDF value is

fs(p) = 0. )

We enforce this constraint by penalizing deviations between the
predicted SDF value f,(p) and the ground truth f;(p) using an /1
loss. The SDF loss is defined as:

1,
hay = 5 2 p) = 1ol ®)
i=1

where Q is the number of 3D points. f;(p;) and f,(p;) are the
predicted and ground true SDF values at point p;. Given f(p;) =
0 for surface points, the loss is simplified to

1<,
bay = 5 2\l ©)
i=1

This loss ensures that the predicted SDF values at surface points
are close to zero, effectively aligning the learned geometry with
the true surface. When processing a sparse set of images, the
MVS techniques can efficiently generate a denser 3D point
cloud by leveraging depth consistency across multiple view-
points, refining the coarse reconstruction obtained from SfM
(Schonberger & Frahm 2016). This study uses these dense points
to provide explicit geometric supervision, enhancing the accu-
racy of fine-scale shape modeling for small bodies, which often
exhibit irregular topographies.

2.4. Network training details

In addition to employing the loss terms /. and [y, which
respectively minimize color discrepancies and provide explicit
supervision using STM-MVS derived 3D points (as introduced
in Sect. 2.3), we impose an Eikonal loss term to regularize
the field f; and encourage a valid SDF representation during
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training (Gropp et al. 2020). This loss enforces the Eikonal con-
straint that the gradient magnitude ||V f||, approximates one,
ensuring the SDF maintains a unit-speed distance field critical
for accurate surface reconstruction (Gropp et al. 2020; Wang
et al. 2021). The Eikonal loss is defined as:

MN

=gy 2 (9l - 1)

i=1j=1

10)

where fs(xi, ;) is the predicted SDF value at point x; ;, V fs(x,', i) is
its gradient.
Then, the final loss function is formulated as:

[ =1 + Lt + wiei, (11)
where w is the weight for /,;, which is set to 0.1 in our exper-
iment. Besides, the network is trained for 300 k iterations with
a batch size of M = 512 rays per iteration and an initial learn-
ing rate of 0.0005. Each ray samples N = 128 points, consisting
of 64 uniformly distributed along the ray and 64 adaptively sam-
pled near the surface. The eight hierarchical deformable grids are
structured with subdivisions increasing from 16 to 152, follow-
ing an exponential growth pattern to capture geometric structures
at multiple levels of detail. To ensure the MVS-derived points
maintain high accuracy, we use only those with a reprojection
error of no greater than 1 pixel.

3. Image data and results
3.1. Image data

High-resolution images captured remotely by the Optical
Navigation Camera Telescope (ONC-T) can be used for shape
reconstruction of Ryugu (Watanabe et al. 2017). The “Box-A”
operations, conducted at an altitude of ~20 km above the sub-
Earth point (SEP), are aimed at performing a global mapping
procedure using the ONC-T. In contrast, the “Box-C” operations
are carried out at a lower altitude to observe the surface of the
target closely. To test the performance of the proposed NIM at
different altitudes, we selected two sets of images from both
operations: 70 images from Box-A, with a resolution of ~2.2 m,
and 61 images from Box-C, with a resolution ranging from
about 0.6 to 0.7 m. These sets were used to derive two different
resolution shape models of Ryugu. The centered latitude of all
selected images from the Box-A operation is approximately fixed
near the equator at —8°. Among the images from Box-C, 43 have
center latitudes within +£10°, nine are between 12° ~ 16°, while
another nine are between —38° ~ —47°. The positioning of these
images relative to Ryugu was recovered using the SfM method
(Schonberger & Frahm 2016; Chen et al. 2024a) and referenced
to the Ryugu body-fixed frame as used in Watanabe et al. (2019).
Figure 4a illustrates the spatial distribution of camera frusta for
the selected images. Figure 4b displays example images from
both operations, illustrating variations in Ryugu’s apparent size
and surface details due to differences in camera distances and
viewing angles.

3.2. Reconstruction results

Figure 5 illustrates the reconstructed Ryugu shape models gen-
erated by the proposed method using two distinct image sets.
The figure showcases six-sided views for each model, offer-
ing a comprehensive visual comparison. The method effectively
accommodates image sets with varying resolutions, enabling the
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Fig. 4. Two image sets used to derive the Ryugu shape models. (a) shows
the spatial distribution of camera frusta corresponding to images from
the Box-A and Box-C operations. (b) eight example images, with the top
row (1-4) corresponding to Box-A and showing a global view of Ryugu,
while the bottom row (5-8) corresponds to Box-C and provides detailed
close-up views of the surface. Their spatial locations are indicated
in (a).

recovery of detailed surface terrain features, such as differently
shaped craters and boulders. The enlarged local areas in the right
column of Fig. 5 demonstrate that more details become retriev-
able as the image resolution increases from Box-A to Box-C
operations.

Figure 6 presents the reconstruction performance of the
proposed method in capturing various boulders using the Box-
C images. Figure 6a focuses on the reconstruction of small-
scale boulders in the polar region. Our method effectively
retrieves these features with higher fidelity, capturing intricate
surface details. However, due to the limited camera cover-
age of the ONC-T in the polar region, the STM-MVS method
(Watanabe et al. 2019) struggles to obtain sufficient data points
for a complete shape model. Consequently, the method needs
to interpolate or extrapolate data to fill these gaps, leading
to overly smoothed-out surfaces and a loss of fine geomet-
ric features. Figures 6b and 6¢ further depict two large-scale,
irregularly shaped boulders. Our model exhibits a more contin-
uous and well-defined surface representation, characterized by a
dense vertex distribution that more faithfully follows the boul-
ders’ natural contours. In contrast, the STM-MVS method faces
challenges in terms of accurately reconstructing these complex
geometries. Due to the sparse distribution of reconstructed ver-
tices in these regions, the resulting shape appears fragmented
and lacks continuity. Additionally, the synthetic images further
emphasize these discrepancies, demonstrating that our model
is better equipped to capture the detailed morphology of boul-
ders, including sharp edges and subtle topographical variations,
thereby improving the overall reconstruction performance.
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Fig. 5. Six views of Ryugu shape models derived using the proposed method from two image sets: (a) images from Box-A and (b) images from
Box-C. The right column displays the local regions marked by the blue and pink boxes in the left column.

In addition, Table 1 provides a quantitative comparison of
the volumes and surface areas of existing released Ryugu shape
models and those derived using the proposed NIM. Compared to
the previous NIM (Chen et al. 2024a), the proposed NIM yields
shape models with volumes and surface areas that are more
closely aligned with the STM-MVS reference model (Watanabe
et al. 2019). Notably, the SfM-MVS model reports a volume
of 0.3774 km® and a surface area of 2.7865 km?, which serves
as a benchmark for evaluating the accuracy of other models.
Among the models derived using the previous NIM (Chen et al.
2024a), the Box-A-based reconstruction shows a 0.21% volume
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increase and a 1.26% larger surface area compared to the SfM-
MYVS model. The Box-C-based reconstruction further deviates,
with a 0.48% larger volume and a 2.16% larger surface area.
In contrast, the proposed NIM improves the agreement with
the reference model. Our Box-A-based version achieves a closer
volume estimate (0.3768 km>, a —0.16% deviation) and surface
area (2.7749 km?, a —0.42% deviation) relative to the SEM-MVS
model. The Box-C-derived model from the proposed NIM con-
tinues this trend, with a volume of 0.3779 km? and a surface area
of 2.8152 km?, reducing discrepancies while achieving higher
resolution. Overall, these results demonstrate that our method
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Fig. 6. Comparison of reconstruction performance on various boulders in three local areas: (a) our shape model and the SfM-MVS model (Watanabe
et al. 2019) in the polar region. (b) and (c) our shape model, the STM-MVS model, and corresponding synthetic images for two irregularly shaped
boulders. The real image for (b) is hyb2_onc_20181030_063616_tvf_12c and for (c) it is hyb2_onc_20180720_105527_tvf_12c.

Table 1. Comparison of the volume and surface area with existing released Ryugu shape models.

Method

Volume (km®)  Surface area (km?)

SfM-MVS method (Watanabe et al. 2019)

Chen et al. (2024a) + Box-A images
Chen et al. (2024a) + Box-C images
The proposed NIM + Box-A images
The proposed NIM + Box-C images

0.3774 2.7865
0.3782 2.8217
0.3792 2.8469
0.3768 2.7749
0.3779 2.8152

significantly improves the accuracy of shape modeling, particu-
larly when using higher-resolution Box-C images, achieving the
closest alignment with the benchmark StM-MVS model.

4. Discussion
4.1. Accuracy analysis for the NIM

In this section, we analyze the accuracy of the NIMs proposed in
this study and Chen et al. (2024a). The reference model derived
from the SfTM-MVS method utilized 124 images from the Box-
C observation (~6.5 km above the SEP) and 90 images from
the Mid-Altitude observation (~5.1 km above the SEP) to con-
struct the Ryugu model (Watanabe et al. 2019). In particular, we
examine the NIM-derived models using the Box-C image set.

4.1.1. Comparison of synthetic images

To assess the reconstruction performance of boulders, we com-
pare real images with synthetic images generated from the
SfM-MVS method, as well as NIMs proposed by Chen et al.
(2024a) and this study, as shown in Fig. 7. For a more com-
prehensive comparison, additional examples are presented in
Appendix A. The synthetic images are computed using NAIF’s
SPICE toolkit (version N0067) (Acton 1996; Acton et al. 2018)
and are based on the real images’ acquisition time, ephemeris
data for Hayabusa2, the ONC-T’s nominal pointing and cam-
era parameters, ephemeris data and a rotational model for Ryugu
and, of course, different shape models'.

1 The kernels that were used are collected in the Hayabusa2 mission’s
metakernel hyb2_v03.tm.
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Fig. 7. Comparison of ONC-T images (hyb2_onc_20180720_071230_tvf_12c) with synthetic images from the StM-MVS model (Watanabe et al.
2019),and the NIM models derived from Chen et al. (2024a) and the proposed method.

The synthetic images generated from the NIM model derived
by Chen et al. (2024a) exhibit noticeable high-frequency arti-
facts, leading to distortions in the reconstructed surface and
irregularities in the representation of boulders. These artifacts
introduce a rough, unrealistic texture that deviates from the
surface features observed in the real images. While the SfM-
MYVS method effectively reconstructs the global shape of Ryugu,
it lacks the fidelity to capture small-scale terrain features.
Despite using a large number of images, 3.5 times as many
as our method, it produces overly smooth reconstructions that
blur fine details, making individual boulders appear indistinct.
By comparison, the proposed NIM model demonstrates better
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performance in preserving surface features. The synthetic
images generated from our model exhibit a higher degree of con-
sistency with the real ONC-T images, accurately capturing the
shapes and distribution of boulders across various scales. Over-
all, our approach provides improved geometric fidelity, ensuring
a more realistic representation of the asteroid’s terrain.

4.1.2. Absolute error comparison with the SfM-MVS model

Furthermore, we evaluate the absolute error between the NIM-
derived models and the SfM-MVS model (Watanabe et al. 2019),
as shown in Fig. 8. The error distributions reveal that the most
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Fig. 8. Absolute errors between models derived using the NIMs and the
SfM-MVS method (Watanabe et al. 2019): (a) results from Chen et al.
(2024a); (b) results from the proposed NIM. The values represented
by colors are mapped using a 0.4 power transformation to enhance the
visual contrast.

significant discrepancies occur in the polar regions, where lim-
ited observational coverage provides fewer constraints for the
StM-MVS method. Figure 8a presents the error map of Chen
et al. (2024a), showing extensive high error regions, particu-
larly in areas with large irregularly shaped boulders. In contrast,
Fig. 8b demonstrates that the proposed NIM reduces these dis-
crepancies, resulting in a lower error distribution across the
surface.

To quantitatively assess these differences, in Table 2, we
compare the accuracy of the NIMs at different absolute error
thresholds. The accuracy is defined as the percentage of vertices
in the reconstructed shape model whose absolute error, relative
to the STM-MVS reference model (Watanabe et al. 2019), falls
within specified thresholds, such as <1 m and <2 m. This is
determined by computing the Euclidean distance from each ver-
tex in the NIM-derived model to its nearest corresponding point
on the STM-MVS model and then calculating the proportion of
vertices that satisfy each threshold.

The proposed NIM achieves a 95.48% accuracy at the
2 meter threshold, surpassing the 87.69% accuracy of Chen et al.
(2024a), demonstrating enhanced reliability in fine-scale recon-
struction. The advantage becomes even more pronounced at the
1 meter threshold, where our model retains 80.71% accuracy,
compared to only 57.10% for Chen et al. (2024a). Across all

Table 2. Accuracy comparison of NIMs with respect to the STM-MVS
method (Watanabe et al. 2019) at different absolute error thresholds.

Absolute error  Chen et al. (2024a)  The proposed NIM
<5m (%) 97.91 98.48
<4m (%) 97.00 98.04
<3m (%) 95.00 97.32
<2m (%) 87.69 95.48
<lm (%) 5710 80.71

Box-B

(AX=+10km,

AY =£10km,
Box-( 7=17.5-22.5km)
(AX=+0.5km,
AY =+0.5km,
7=5-17.5km)

1 Simplified hovering boxes for NIM shape modeling

Rotational direction

4 Jbc :I, Box-(
(AX=%0.5km,

Fig. 9. Schematic of the spacecraft hovering (or orbiting) the target,
using Ryugu as an example: (a) spacecraft hovering boxes defined by
the Hayabusa2 team and our simplified operation mode; (b) orbits of
spacecraft around the target in the Ryugu body-fixed frame.

thresholds, the proposed method consistently outperforms the
NIM proposed by Chen et al. (2024a), highlighting its ability
to generate a more precise shape model, while utilizing only a
small set of images.

4.2. Suggestions to future mission planning

While the proposed NIM uses only a small number of images, it
effectively reconstructs boulders of varying sizes, from small-
scale features to large, irregularly shaped formations. This
advantage allows for the simplification of mission planning dur-
ing the proximity phase for global shape modeling. As shown
in Fig. 9, the Hayabusa2 team defined three regions for space-
craft operations above Ryugu (Saiki et al. 2022): Box-A spans
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1 km X 1 km horizontally (X and Y) and extends up to 5 km ver-
tically (Z), with its center corresponding to the Home Position
(HP) at an altitude of ~20 km. Box-B shares the same alti-
tude as Box-A, but it permits a wider range of 10 km in both
X and Y directions. Box-C mirrors Box-A’s horizontal dimen-
sions but allows descent to 5 km above the asteroid surface along
the Z axis. The images obtained from Box-A comprehensively
depict its appearance. Considering Ryugu’s rotation period of
~7.6 hours (Watanabe et al. 2019), acquiring images for NIM-
based shape modeling is feasible within a single day (and even
in as little as 7.6 hours). For detailed global shape modeling,
we propose carrying out a new Box-C operation to hover the
spacecraft above Ryugu. The Z direction range is narrowed from
5-17.5 km to 5-7 km to ensure similar image resolutions. As
images captured from Box-C only partially cover the target, mul-
tiple hovering points along the Y direction are recommended to
fully capture the appearance of the target. Figure 9b depicts the
suggested orbits of the spacecraft relative to the target in Ryugu’s
body-fixed frame.

5. Conclusions

This paper presents an improved NIM for high-resolution shape
modeling of Ryugu, which is covered in boulders and exhibits a
varied surface, using a sparse image set. To accurately recon-
struct the geometric structures of various boulders, we have
introduced multi-scale deformable grids to flexibly learn neigh-
boring information with different receptive fields. We used 3D
points derived from the SfM-MVS method, where the SDF
is zero, to provide explicit supervision, thereby enhancing the
accuracy of surface reconstruction. We demonstrate that the pro-
posed NIM can reliably reconstruct the Ryugu shape models
from two image sets with different resolutions, yielding con-
sistent volumes and surface areas compared to the STM-MVS
model, particularly when utilizing images from the Box-C set.
Our method effectively reconstructs the small-scale boulders and
the large-scale, irregularly shaped boulders. Furthermore, we can
retrieve terrain features in the polar regions, despite the lim-
ited coverage provided by the ONC-T. Due to the relaxed image
requirements, this method offers the possibility of simplifying
mission planning with respect to image acquisition for global
shape modeling.

While our method requires only a small number of images,
these images must have a similar resolution when we are look-
ing to derive a shape model. However, for some small bodies,
such as Phobos, there may be insufficient images with a similar
enough resolution to cover them completely. In the future, we
will investigate the high-quality reconstruction of small bodies
using images of varying resolution.
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Appendix A: Extended comparison of synthetic images

Figure A.1 presents a comparison of synthetic images generated by the SfTM-MVS model, the NIM models from Chen et al. (2024a),
and the proposed method, using the ONC-T image (hyb2_onc_20181030_094954_tvf_12c) as the real image.

Fig. A.1. Comparison of ONC-T images (hyb2_onc_20181030_094954_tvf_12c) with synthetic images from the STM-MVS model (Watanabe et al.
2019), and the NIM models derived from Chen et al. (2024a) and the proposed method.
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